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Abstract
Purpose  Growing evidence suggests an association between lumbar paraspinal muscle degeneration and low back pain 
(LBP). Currently, time-consuming and laborious manual segmentations of paraspinal muscles are commonly performed on 
magnetic resonance imaging (MRI) axial scans. Automated image analysis algorithms can mitigate these drawbacks, but they 
often require individual MRIs to be aligned to a standard “reference” atlas. Such atlases are well established in automated 
neuroimaging analysis. Our aim was to create atlases of similar nature for automated paraspinal muscle measurements.
Methods  Lumbosacral T2-weighted MRIs were acquired from 117 patients who experienced LBP, stratified by gender and 
age group (30–39, 40–49, and 50–59 years old). Axial MRI slices of the L4–L5 and L5–S1 levels at mid-disc were obtained 
and aligned using group-wise linear and nonlinear image registration to produce a set of unbiased population-averaged 
atlases for lumbar paraspinal muscles.
Results  The resulting atlases represent the averaged morphology and MRI intensity features of the corresponding cohorts. 
Differences in paraspinal muscle shapes and fat infiltration levels with respect to gender and age can be visually identified 
from the population-averaged data from both linear and nonlinear registrations.
Conclusion  We constructed a set of population-averaged atlases for developing automated algorithms to help analyze par-
aspinal muscle morphometry from axial MRI scans. Such an advancement could greatly benefit the fields of paraspinal 
muscle and LBP research.

Graphical abstract  These slides can be retrieved under Electronic Supplementary Material.
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1. Population-averaged MRI atlases of lumbar paraspinal muscles were constructed at 
the L4-L5 and L5-S1 levels to provide a reference space for automated image 
analysis. 

2. The presented atlases showed differences in paraspinal muscle morphology and 
composition with respect to gender and age.  

3. Paraspinal muscle fatty infiltration increased with age and was greater in female as 
compared to male.
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Fig.1 Demonstration of atlas construction Fig.2 Population-averaged lumbar paraspinal muscles

Take Home Messages

1. Group-wise registration provided clear paraspinal muscle anatomical definition
while removing individual differences. 

2. The presented atlases space showed gender- and age-related differences in
paraspinal muscle morphology and composition after normalizing for global body 
size variations.

3. The introduced atlases have a great potential to open doors to automated image
segmentation and assessments of paraspinal muscles in relation to low back pain. 
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Introduction

With a lifetime prevalence of up to 84%, low back pain 
(LBP) is the most common musculoskeletal disorder in 
adults [1] and causes enormous economic burden on indi-
viduals, family, and governments. While conditions such 
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as lumbar spinal stenosis and disc herniation can result in 
LBP, the underlying pathology remains unknown in the vast 
majority of patients seeking care [2]. Most LBP is consid-
ered self-limited, but evidence suggests that a high portion 
of patients develop recurrent symptoms, resulting in poor 
functional outcomes and additional medical treatments [3].

To improve the understanding of LBP pathology and 
prognosis, as well as developing appropriate treatment and 
rehabilitation strategies, there is a growing interest in inves-
tigating the association between LBP and lumbar paraspinal 
muscle atrophy, fatty infiltration, and abnormal anatomical 
asymmetries shown on magnetic resonance imaging (MRI) 
scans [4–6]. Previous case–control studies have suggested 
that LBP and lumbar pathology are associated with smaller 
muscle size or more fatty infiltration when contrasting those 
with symptoms to healthy controls [7, 8], although findings 
have not been entirely consistent. Such muscle measures 
are also influenced by other factors, such as physiological 
changes due to natural aging and sex differences, complicat-
ing analyses of associations with pain and pathology [9, 10].

In practice, axial slices obtained from lumbar spinal 
MRI are often used to perform muscle measurements since 
muscle cross-sectional area (CSA) is commonly viewed 
as an indicator for muscle force production capacity, and 
fatty infiltration and left-and-right asymmetry can also be 
gauged [8]. To date, almost all related studies [4, 5, 7–9] 
have used qualitative measurements or manual segmentation 
to measure variation in muscle morphology and composi-
tion. While manual segmentation allows quantitative muscle 
measures, it is a time-consuming and arduous procedure. In 
addition, inter- and intra-rater variability can affect the qual-
ity of analysis. Fully automated imaging analysis algorithms, 
including image segmentation, can improve the efficiency 
and consistency of muscle morphometry and composition 
measurements, potentially yielding more insightful results. 
However, so far, very few semi- or fully automated algo-
rithms [11] have been proposed. To take advantage of com-
puter-assisted image analysis, individual MRI images are 
often aligned to a standard “reference” coordinate system 
that is represented by an atlas. For cardiac [12] and brain 
MR imaging [13, 14], such atlases have been well estab-
lished, and contributed significantly to the advancements 
of automated image segmentation and more sophisticated 
techniques for morphometric analysis while correcting for 
unrelated global anatomical variations among individuals 
[15–18]. In addition, they also formed the common ground 
for comparing and sharing research results. However, so far 
there has not been any atlas of similar nature for the assess-
ment of lumbar paraspinal muscles.

In this article, we present the construction of a set 
of population-averaged unbiased atlases for axial MR 
images of the lumbar paraspinal muscles at the L4–L5 
and L5–S1 levels. The atlases were established for three 

different age-groups (30–39 years old, 40–49 years old, 
and 50–59  years old) stratified by gender, as well as 
the entire cohort using both linear and nonlinear image 
registrations. They will provide the necessary reference 
coordinate spaces to help develop and conduct automated 
imaging analysis with improved efficiency for lumbar 
paraspinal muscles in relation to aging, LBP, and various 
lumbar pathologies.

Materials and methods

Subjects and imaging protocol

In total, 117 patients aged between 30 and 59 years old with 
commonly diagnosed lumbar pathologies were included in 
this study. These subjects were retrospectively selected from 
a larger sample of patients participating in the multi-center 
Genodisc project. Patient selection was done randomly and 
was stratified by age groups and gender. Only patients with 
good MRI quality were included. All patients provided 
informed consent, acknowledging that their data would be 
used for research on better understanding and characteriz-
ing common spinal disorders. The study was approved in 
Hungary by the Scientific and Research Ethics Committee 
of the Medical Research Council (431/PI/2007), as well as 
the local ethics committee of the institute, where the study 
was conducted. For atlas construction, the population was 
divided into three groups: 30–39, 40–49, and 50–59 years 
old, and for each group, 19–21 subjects were included for 
each of male and female cohorts. T2-weighted (T2w) MRI 
scans of the lumbar muscles were used for all patients, and 
axial slices of the L4–L5 and L5–S1 levels at mid-disc were 
acquired to make the final atlases since they are most often 
used in lumbar spinal pathology studies. All patient data 
were acquired in the supine position.

Image preprocessing

As the patient data were acquired at multiple medical cent-
ers, different MRI protocols and scanners have been used 
for scanning, resulting in different image resolution, image 
intensity range, and some discrepancies in image contrast. 
To unify these variations, all axial cross-sectional images 
were corrected for MRI intensity inhomogeneity due to 
non-uniform magnetic field in the scanner [19], and then 
image intensity standardization was performed using the 
technique introduced by Nyul et al. [20] so that each scan 
exhibits a unified image contrast and intensity range. Finally, 
all images were resampled to the same in-plane resolution 
of 0.33 × 0.33 mm2.
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Atlas construction

In general, two types of atlases (linear and nonlinear) 
were constructed using the preprocessed images. The lin-
ear atlases help define the general reference space, where 
the global body size differences were normalized with lin-
ear spatial transformations (translation, scaling, rotation, 
and shear), but with the individual morphometric features 
remained intact. The nonlinear version further reduces 
individual morphometric features by nonlinear image 
deformation from the linear version to form an atlas with 
well-delineated anatomy. To construct the linear atlases, 
all preprocessed images were co-registered (e.g., data were 
transformed into one coordinate system so that correspond-
ing anatomical features were matched/aligned to each other) 
linearly using an algorithm [21] that intends to maximize the 
structural coherence among aligned images. The final atlas 
was formed by averaging all the linearly registered images. 
The nonlinear atlas follows the results of linear registration. 
Unbiased group-wise nonlinear registration using cross-
correlation as the similarity metric [22] was performed for 
images after linear alignments, and the transformed results 
were averaged to form the atlas. To improve the image qual-
ity, left–right-mirrored images were used for both linear and 
nonlinear registrations, resulting in symmetric images. Here, 
Fig. 1 is included to help understand the atlas construction 
process.

Anatomical variations due to age and gender

To preliminarily demonstrate the potential applications of 
the reference space that the atlases offer, we performed 

linear and nonlinear registrations in the atlas space with 
respect to different schemes of subgrouping and compared 
their results. More specifically, in two different experiments, 
we regrouped the cohort with respect to gender and age, and 
visually inspected the differences potentially linked to these 
factors. For the age factor, the cohort was re-divided into the 
age groups of 30–39, 40–49, and 50–59 years old.

Results

Population‑averaged atlases

The resulting linear and nonlinear versions of atlases for 
the entire cohort are shown in Fig. 2. As displayed in the 
figures, both atlases showed the averaged image features of 
the anatomy at the L4–L5 and L5–S1 levels, with the struc-
tures more well defined in the nonlinear versions. Due to 
the inclusion of left–right-mirrored images, the final atlases 
are symmetric. Compared with the individual MRI scans 
in Fig. 1, the atlases preserved the typical anatomy while 
largely reducing the individual differences in muscle shapes 
and composition, making them unbiased toward specific 
individual anatomical characters.

Anatomical variations due to gender and age

The averaged images after group-wise linear and nonlinear 
registrations with respect to gender are shown in Fig. 3. In 
addition, the muscle groups of each gender from nonlinear 
registration were contoured manually in different colors and 
overlaid on the population-averaged atlas from Fig. 2 for 

Fig. 1   Demonstration of atlas construction using L4–L5 cross-sectional MRI scans as an example. The comparison between before and after 
image preprocessing is shown on the left for an individual patient, and the process of atlas construction is illustrated on the right
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visual comparison. From both linear and nonlinear versions 
of the images, it can be observed that female subjects have 
more fatty infiltration in multifidus and erector spinae mus-
cles at both spinal levels. From the overlaid muscle contours, 
we can see that the psoas muscle is larger for males. While 
the multifidus muscle of females is slightly wider in the lat-
eral direction, it appears to be shorter in the anterior–pos-
terior direction as compared to males. For the L4–L5 level, 
the erector spinae muscle is slightly larger for males than 
females.

The averaged images after group-wise linear and non-
linear registrations with respect to different age-groups are 
depicted in Fig. 4. From both linear and nonlinear registra-
tion results, we can observe that fatty infiltration increases 
with age and is more severe for the 50–59-year-old age-
group. The paraspinal muscles resulting from the nonlinear 
registration of each age-group were also contoured manually 
in different colors and overlaid on the population-averaged 

atlas from Fig. 2 to allow comparison. From the muscle con-
tours overlay, it can be observed that the shapes of multifidus 
and erector spinae muscles are similar across the three age-
groups, while the size of psoas muscle appears larger in the 
30–39-year-old group than in other groups.

Discussion

MRI atlases have been almost ubiquitously employed to aid 
neuro-image analysis. They provide the references that indi-
vidual anatomy can be spatially normalized to, and are often 
used in two ways. First, by registering individual MRIs to 
the atlas, local tissue atrophy can be pinpointed from mor-
phometric analysis [16, 23] by statistically comparing the 
resulting deformation fields or tissue density after the initial 
registration to compensate for global body size differences. 
Second, as multi-atlas label fusion [18] and convolutional 

Fig. 2   Population-averaged linear and nonlinear atlases of the entire cohort for lumbar paraspinal muscles at L4–L5 and L5–S1 levels

Fig. 3   Demonstration of ana-
tomical variations with respect 
to gender with group-averaged 
images using linear and non-
linear registrations in the newly 
defined atlas coordinates. At the 
bottom, the contours of muscle 
groups for both genders were 
overlaid upon the population-
averaged results of the entire 
cohort from Fig. 2



European Spine Journal	

1 3

neural networks [24] have become the “state of the art” for 
automatic brain image segmentation, individual alignment to 
the atlas space ensures the efficiency and accuracy of these 
algorithms. Automated image processing and analysis tech-
niques by leveraging the power of MRI atlases have resulted 
in a large body of potential image-based biomarkers for neu-
rological conditions. Similar MRI processing and analysis 
methods may very well benefit the research of LBP and other 
common spinal disorders.

To better represent the general population that is affected 
by LBP and related pathologies, we have included roughly 
equal numbers of patients in each of the three age-groups 
investigated, as well as for each gender. For this study, 
we used data from 117 patients to construct the atlases. 
Although it is widely accepted in brain imaging analysis 
that a larger cohort will enrich the representativeness of the 
atlas considering the publicly available ones containing vari-
ous numbers of subjects [13, 14, 25], so far, we are aware of 
no determinations of the minimum sample size in relation 
to the variation, since the underlying variation can be com-
plicated by many factors, and their characteristics are also 
under investigation. In this study, we demonstrated the tech-
nique of atlas construction using a cohort of patients with 
LBP, taking into account the following two considerations. 
First, there is a strong interest in characterizing the morphol-
ogy (e.g., shape and size) and composition (e.g., fatty infil-
tration) of paraspinal muscles in this population. Second, 
lumbar-related pathologies have been associated with par-
aspinal muscle degenerative changes (atrophy, asymmetry, 

fatty infiltration) and thus are more challenging in terms of 
group-wise image alignment in atlas making, in comparison 
with healthy subjects. With precedence of the atlases in this 
article, we can easily adapt the proposed technique to con-
struct similar atlases for healthy subjects in the future. The 
employed image registration methods for atlas making were 
not exclusively designed for brain analysis and can be used 
for many other structures by adapting the relevant param-
eters to accommodate the properties of the structures under 
study. The description of the full methodologies is described 
in [21, 22]. Since muscle asymmetry can occur on either side 
of the body, we decided to generate symmetric atlases using 
both the original and left–right-mirrored images. In addition, 
by increasing the total number of images for averaging from 
using mirrored images, the image quality and atlas repre-
sentativeness can be further improved.

Overall, the observations from population-averaged 
images with respect to differences between genders agree 
with previous studies [9]. With respect to age, visual com-
parison shows that more fatty infiltration and atrophy of the 
psoas muscles occur in the 50–59-year-old group, and the 
differences between the 30–39- and 40–49-year-old groups 
are less pronounced. These observations follow the general 
trend of previous studies [5, 10]. It is important to note that 
these observations are confounded by the underlying pathol-
ogies, and further detailed investigations are necessary to 
decouple different factors with the help of image segmenta-
tion [15, 17, 18] or morphometric analysis techniques [23]. 
More particularly, for morphometric analysis, it is desirable 

Fig. 4   Demonstration of anatomical variations with respect to age 
with group-averaged images using linear and nonlinear registrations 
in the newly defined atlas coordinates. On the right, the contours of 

muscle groups for all age-groups were overlaid upon the population-
averaged results of the entire cohort from Fig. 2
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to match the characteristics of the atlas with the popula-
tion under study [13] to reduce the morphological changes 
induced from unwanted factors. Therefore, in certain cases, 
age- or gender-specific atlases as demonstrated in this article 
can be used instead. However, comprehensive studies on 
muscle morphology and composition due to factors such as 
physical fitness or specific pathologies were not the focus of 
this work and are therefore out of the scope of the article. In 
the future, we will conduct more thorough studies using the 
resulting atlases from this work.

Conclusion

The proposed population-averaged atlases provide the stand-
ard imaging space data necessary for the development of 
automated image analysis algorithms, which would greatly 
simplify the tedious aspect of MR imaging assessment of 
paraspinal muscle morphometry and provide a standardized 
procedure to facilitate comparison among studies. Our pre-
liminary results from the L4–L5 and L5–S1 levels with the 
image processing techniques demonstrated good results. We 
are now expanding this work to other lumbar spinal levels 
using larger samples to develop a fully automated atlas-
based segmentation algorithm.
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