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Ultrasound Volumes with Non-corresponding
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Abstract—Brain tissue deforms significantly after opening the
dura and during tumor resection, invalidating pre-operative
imaging data. Ultrasound is a popular imaging modality for
providing the neurosurgeon with real-time updated images of
brain tissue. Interpretation of post-resection ultrasound images
is difficult due to large brain shift and tissue resection. Fur-
thermore, several factors degrade the quality of post-resection
ultrasound images such as the strong reflection of waves at the
interface of saline water and brain tissue in resection cavities,
air bubbles and the application of blood-clotting agents around
the edges of resection. Image registration allows the comparison
of post-resection ultrasound images with higher quality pre-
resection images, assists in interpretation of post-resection images
and may help identify residual tumor, and as such, is of signif-
icant clinical importance. In this paper, we propose a nonrigid
symmetric registration (NSR) framework for accurate alignment
of pre- and post-resection volumetric ultrasound images in near
real-time. We first formulate registration as minimization of a
regularized cost function, and analytically derive its derivative
to efficiently optimize the cost function. An outlier detection
algorithm is proposed and utilized in this framework to identify
non-corresponding regions (outliers) and therefore improve the
robustness and accuracy of registration. We use an Efficient
Second-order Minimization (ESM) method for fast and robust
optimization. Furthermore, we exploit a symmetric and inverse-
consistent method to generate realistic deformation fields. The
results show that NSR significantly improves the quality of the
alignment between pre- and post-resection ultrasound images.

Index Terms—Efficient Second-order Minimization (ESM),
Image Registration, Neurosurgery, Outlier Detection, Ultrasound
Imaging

I. INTRODUCTION

THE problem of residual tumor has attracted serious
concern in tumor surgery. The infiltrating nature of brain

tumors and the possibility of causing cognitive deficit to the
patient after the resection of critical parts lead to residual
tumor in as much as 64% of patients [1]. Therefore, neuro-
navigation systems are commonly used in many sites where
image-to-patient registration is performed by selecting corre-
sponding landmarks in the pre-operative magnetic resonance
(MR) image and on the skin. Unfortunately, this registration
is inaccurate for two main reasons. First, brain tissue deforms
during surgery and after craniotomy as much as 50 mm [2],
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which renders pre-operative MR images inaccurate. Second,
the selection of corresponding landmarks on the skin and in
the MR image is inaccurate, and leads to large registration
errors. To allow the visualization of the brain during surgery,
intra-operative MR has been used. However, intra-operative
MR is extremely expensive and requires dedicated operation
rooms as well as MR compatible equipment, which hinder its
wide application in surgical operations.

Alternatively, intra-operative ultrasound imaging is conve-
nient and significantly less expensive, and as such, is used in
many neurological centers. An ultrasound volume is obtained
before tumor resection to allow the visualization of tumor
boundaries and critical brain structures. More ultrasound scans
are acquired during and after resection to help the surgeon
locate and minimize residual tumor. Unsgård et al. [3] and
Solheim et al. [4] demonstrated the significance of intra-
operative ultrasound imaging in neurosurgery based on more
than 900 operations. El Beltagy et al. [5] collected pre-,
during and post-resection ultrasound images, as well as MR
images before and immediately (within 48 h) after surgery,
and concluded that intra-operative ultrasound was useful in
identifying tumor boundaries and minimizing residual tumor.
Recently, Renovanz et al. [6], Petridis et al. [7], Coburger et
al. [8] and Moiyadi & Shetty [9] performed a retrospective
analysis of the Gross-Total Resection (GTR) of patients who
underwent ultrasound guided neurosurgery and concluded that
ultrasound could be effective in achieving GTR, especially for
low-grade glioma.

It is generally more difficult for neurosurgeons to interpret
post-operative ultrasound images due to resection of tissue
and large brain shift. In addition, the large difference in
acoustic impedance between the saline water solution, as well
as the blood clotting agent that is placed around resection
cavities create strong reflection at the boundary of resection.
This strong reflection can overshadow possible residual tumor
in post-resection ultrasound images. In Selbekk et al. [10],
different underlying reasons of image artifacts and their impact
on the quality of ultrasound images were demonstrated, and a
novel acoustic coupling fluid method was proposed to reduce
these artifacts.

Registration of pre- and post-operation ultrasound volumes
is of significant clinical interest: it simplifies interpretation of
post-resection images, and may help in identifying residual
tumor. This registration is challenging for several reasons.
First, both the deformation and imaging data are in 3D,
entailing computationally demanding 3D calculations. Second,
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shadowing and enhancing, which are well-known artifacts
in ultrasound imaging [11], are common in post-resection
images. Therefore, the intensity of the same tissue can be
very different in pre- and post-resection ultrasound volumes.
Finally, because of the removal of partial tissue during resec-
tion, some regions of pre- and post-resection images do not
correspond to each other.

Registration of ultrasound volumes is an active field of
research with numerous new advances. Ultrasound registration
methods can be categorized into feature-based [12], [13],
[14] and intensity-based [15], [16], [17], [18], [19]. Feature-
based methods first find corresponding points in the two ul-
trasound volumes, and then use these correspondences to find
the registration transformation. Intensity-based methods rely
on similarity metrics such as Normalized Cross Correlation
(NCC) [16], [17], [19], mutual information [18], or phase
differences [15]. Another categorization can be made based on
the transformation, which can be rigid [15], [16], [13], [18],
[19] or deformable [12], [17], [14]. Deformable registration
usually has significantly more degrees of freedom, and is
therefore more challenging.

The detection of non-corresponding regions is another area
of related work. Banerjee et al. [20] performed affine regis-
tration between two volumes to compensate for the motion of
liver, while outliers were detected and rejected with a novel
outlier rejection algorithm based on a geometric consistency
term. Gao et al. [21] developed a probabilistic and outlier-
adaptive algorithm using an Expectation Maximization (EM)
framework wherein the ratio of outlier data was updated in
every iteration. Khamene et al. [22] first obtained a prior
intensity distribution of non-corresponding regions in the
training step. In the registration step, the transformations that
mapped the intensity distribution of outlier regions to the prior
distribution were favored.

A closely related work registered pre- and post-resection
ultrasound images of neurosurgery by first performing manual
segmentation of resection cavities [17]. Another related tech-
nique called RESOUND [23] was based on gradient descent
optimization of a regularized cost function with deformable
free-form B-splines transformation. An important issue with
RESOUND, however, is that free-form B-splines are not in-
vertible and can generate folds and ruptures that are physically
unrealistic. Another issue lies in the optimization scheme
used in RESOUND, which is based on gradient descent and
therefore has a linear convergence rate. This can hinder the
clinical application of RESOUND where robust and accurate
performance is critical.

In this work, we build on RESOUND and propose a novel
robust deformable registration technique for the alignment
of pre- and post-resection ultrasound images called Nonrigid
Symmetric Registration (NSR). Two main contributions of this
work are as follows: 1) We incorporate symmetric deformation
fields that are invertible and an Efficient Second-order Min-
imization (ESM) method [24] into our registration technique
to create high quality deformation fields while maintaining a
fast and reliable convergence. To the best of our knowledge,
this is the first time symmetric deformation and ESM are
used in ultrasound registration. 2) We propose an accurate

outlier detection approach and validate its effectiveness on
both simulated images and clinical data. We evaluate our
framework on ultrasound images of 13 patients quantitatively
and qualitatively, and demonstrate that NSR detects non-
corresponding regions and registers these challenging images
accurately and efficiently. A shorter version of this paper was
recently published in [25].

II. METHODS

A. Deformation

NUMEROUS registration algorithms, including RE-
SOUND, find a nonrigid transformation that maps one

image to another. Several issues arise in such registration
framework: the resulting transformation is not symmetric with
respect to the two images, and therefore is biased on the
selection of the moving image domain. Also, the deformation
is not necessarily invertible, and can cause physically implau-
sible folds or ruptures. To overcome these problems, inverse-
consistent registration methods have been proposed in [26],
[27]. They reduce bias by calculating forward and backward
transformations T1 and T2, and penalize the difference be-
tween T1 �T2 and the identity transformation. In this work,
we utilize a symmetric and inverse-consistent method similar
to [28], and apply the iterative approach of [29] to invert trans-
formations. Full forward and backward deformation can then
be calculated as T1(0.5)�T2(0.5)�1 and T2(0.5)�T1(0.5)�1

respectively, where 0.5 means half of the deformation field and
� represents composition of transformations.

The outline of our registration framework is shown in Fig. 1.
Let V1 and V2 represent two ultrasound volumes, and x ⇢ Rd

denote global coordinates, where d = 3 for 3D volumetric im-
ages. Also, Tu(x) = x+ u represents forward and backward
deformations. The goal of our registration framework is to find
the 3D deformation fields u1 from V1 to V2 and u2 from
V2 to V1. To find u1 and u2, a regularized cost function can
be formulated as:

C = D(V1(Tu1(0.5)(x)),V2(Tu2(0.5)(x)))+

↵tr(ru1
Tru1)

2 + ↵tr(ru2
Tru2)

2 (1)

where D is a dissimilarity metric, V1(Tu1(0.5)(x)) is the
middle volume from V1, V2(Tu2(0.5)(x)) is the middle
volume from V2, ↵ is a regularization weight, tr is the trace
operator and tr(ruTru)2 is a diffusion regularization term.

The intensity of the same tissue can vary in two ultrasound
scans due to changes of the insonification angle and shadowing
and enhancing artifacts. We therefore select NCC as the
similarity metric, which is invariant to such intensity variations
and further can be reliably computed over small patches.
Instead of using �NCC as the dissimilarity metric, we use
�NCC2 to employ quadratic optimization methods. Then we
divide the volumes into small patches, calculating �NCC2 in
each patch, and add the results up to generate a global cost:

D = � 1

N

NX

i=1

⇢2i (2)
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Fig. 1. Outline of the NSR registration technique.

⇢2i =
(
Pn

j=1(V1j �V1i)(V2j �V2i))2
Pn

j=1(V1j �V1i)2
Pn

j=1(V2j �V2i)2
(3)

V1 = V1(Tu1(0.5)(x)),V2 = V2(Tu1(0.5)(x))

where V1i and V2i are patch i in V1 and V2 respectively,
V1j and V2j are the intensity of pixel j in patch i, V1i and V2i

are the mean intensity of patch i, N is the number of patches
in the volume and n is the number of pixels in each patch.
The N patches are selected on a grid in image regions with
high signal to noise ratios as elaborated in the next section.

B. Outlier Detection
During neurosurgery, brain tumors are resected and there-

fore do not correspond to resection cavities in post-resection
ultrasound images. Obviously, missing correspondences un-
dermine the effectiveness of our work. Therefore we develop
a novel outlier detection approach to identify outliers and
efficiently reduce the impact of non-correspondences between
pre- and post-resection images.

In a recent work [30], we investigated the directions of
derivatives of NCC in individual pixels in each iteration to
detect outliers. We showed that these derivatives in non-
corresponding regions pointed to random directions, while
they generally pointed to the same direction in corresponding
regions. These directions can be calculated using the vector
@⇢
@u in each patch. Our new detection approach is based on this
work, and further, we utilize an additional feature to improve
the accuracy of detection. This feature is ⇢, which is generally
low for non-corresponding regions. Therefore, the metric r of

a patch, which is used for outlier detection, is calculated using
the following equations:

r1 = std(
@⇢

@u1
)� �⇢2 (4)

r2 = std(
@⇢

@u2
)� �⇢2 (5)

where � is a coefficient and std(v) is the standard deviation of
the elements of vector v. We will provide the analytic formula
for @⇢

@u in Section III. This metric will be assigned to each pixel
of that patch. If there are overlaps among patches, we will
divide the sum of metrics in a pixel by the overlapping times.
After doing this for all patches, a 3D volume whose size is
the same as that of the ultrasound volume is constructed. We
call this 3D volume “Initial Pattern”. After setting a threshold
for the “Initial Pattern”, we treat elements whose value is
greater than the threshold as outliers, and accordingly obtain
a 3D binary volume showing corresponding (1) and non-
corresponding (0) regions. This volume is composed of the
information of outliers, which will be useful in the registration
process. In addition to this mask, we construct a second
volume wherein pixels with intensity less than 3% of the max-
imum intensity (i.e. with very low signal to noise ratio (SNR))
are assigned a value of 0. An “Effective Region” is obtained
by combining these two volumes, where 0 pixels represent
either outliers or regions suffering from low SNR. During
registration, the dissimilarity metric will not be computed in
regions of the “Effective Region” with zero values.

In order to validate the effectiveness of our outlier detection
algorithm, we simulate our method on two images, which are
shown in Fig. 2 (a) and (b). In this test, we only verify our
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(a) (b)

(c) (d)

(e) (f)
Fig. 2. Demonstration of the outlier detection technique. (a) is an image from the BITE database, while the contents in (b) are identical but displaced by
5 pixels in the vertical direction. The circular region in (b) represents an outlier region, simulating tissue resection. In pattern images (c) and (d), the black
parts represent the regions with low metric, corresponding to inlier regions, whereas the bright parts indicate outlier regions. An inlier and an outlier patch
are shown in (d) in red and magenta respectively. (e) and (f) show the Jacobian of NCC at each pixel in the inlier and outlier patches respectively.
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outlier detection algorithm, without the registration process.
The contents of these two images are identical, being displaced
by five pixels in the vertical direction. The circular region in
(b) represents an outlier region. After performing our outlier
detection algorithm, we obtain the “Initial Pattern” in (c)
and (d), wherein we can clearly and accurately distinguish
outliers (non-corresponding regions) from inliers (correspond-
ing regions). (e) and (f) demonstrate the Jacobian of NCC
calculated at each pixel in an inlier patch and an outlier patch
respectively. The location of the inlier patch and outlier patch
is marked by red and magenta boxes in (d) respectively. As
can be seen from these two images, pixels in the outlier patch
generally move in random directions, whereas pixels in inlier
regions move consistently. We repeated this experiment on 10
different pairs of ultrasound images and outlier patterns, and
obtained similar results.

III. OPTIMIZATION

TO calculate the optimal deformation fields, we have to
minimize the cost function. Usually, non-linear mini-

mization problems are solved in an iterative manner. Several
optimization algorithms can be applied to obtain incremental
updates. Steepest gradient descent (SGD) is used in [23]
to optimize the cost function. However, SGD always moves
perpendicularly to isolines and generally has a low conver-
gence rate [24]. The Gauss-Newton method can archive a
quadratic convergence rate, but the cost function must be
of a specific form. The Levenberg-Marquardt minimization
method is indeed efficient for optimization. However since it
is a mixture of the Gauss-Newton method and SGD, it has a
convergence rate between linear and quadratic.

In this work, we use pseudo-inverse of the mean of Jacobian
matrices as the optimization method, which is one of the ESM
methods proposed in [24]. ESM uses first-order derivatives
to approximate second-order derivatives, making optimization
computationally efficient. In this algorithm, forward deforma-
tion Jacobian is combined with backward one to generate
more accurate incremental updates. Despite the fact that ESM
uses only first-order derivatives, it is shown to have a cubic
convergence rate [31]. When we calculate �NCC2 in a patch,
we can also obtain the value of NCC and the derivatives of
NCC with respect to the intensity of each pixel in that patch.
We assign the NCC to each pixel in that patch to act as the
residual function:

@⇢i
@I

=
1

|Va||Vb|
(Va � hVa,Vbi

|Vb|2
Vb) (6)

Va = V1i �V1i,Vb = V2i �V1i

where ⇢i is the NCC of patch i and @⇢i

@I is the derivative vector
of NCC with respect to the intensity of each pixel in patch i.
Since we need the NCC value and its derivative at each voxel,
we define P as:

P =
⇥
⇢1 ⇢2 · · · ⇢j · · · ⇢M

⇤T (7)

where ⇢j is the NCC value computed at pixel j and M is the
total number of voxels in the volume. In an abuse of notation,
we define @P

@I as:

@P

@I
=

h
@⇢1

@I1
@⇢2

@I2
· · · @⇢j

@Ij
· · · @⇢M

@IM

iT
(8)

where @⇢j

@Ij
is the derivative of NCC in pixel j with respect to

the intensity of that pixel. Note that some patches may have
overlapping voxels. Using the chain rule, we obtain:

ru1P =
@P

@u1
=

@IV1

@u1

@P

@IV1

(9)

ru2P =
@P

@u2
=

@IV2

@u2

@P

@IV2

(10)

where @IV
@u is the gradient of intensity and ru1 and ru2 are

the Jacobians with respect to forward and backward deforma-
tion fields respectively. Given the Jacobians of two directions,
we can find the optimal deformation fields following an
iterative rule. First the forward Jacobian is combined with the
backward Jacobian to generate two average Jacobians, which
will be used in the subsequent computation:

ru1Pav =
1

2
(ru1P�ru2P) (11)

ru2Pav =
1

2
(ru2P�ru1P) (12)

where ru1Pav and ru2Pav are average Jacobians for for-
ward and backward deformations respectively. These two
terms are denoted by ru1P and ru2P hereafter to prevent
notation clutter. Incremental updates can then be computed
with the rule (ruP

TruP)�u = ruP
TP, where P is the

vector of NCC (shown in Eq. 7) that acts as the residual
function. Because of the diffusion regularization term, the
update rule becomes [28]:

(ruP
TruP+ ↵I)�u = ruP

TP+ ↵r2uprevious (13)

where I is an identity matrix, ↵ is a coefficient and
r2uprevious is Laplacian of the sum of all previous updates.
The incremental update �u is calculated using a successive
over-relaxation solver. Compared with the Jacobi and Gauss-
Seidel methods, it is more accurate and flexible for solving
equations. Subsequently, deformation fields can be updated by
adding the incremental updates:

u1
t+1 = u1

t + ��u1 (14)

u2
t+1 = u2

t + ��u2 (15)

where � is a step size and �u1 and �u2 are incremental
updates for forward and backward deformation fields respec-
tively. Since we use the NCC vector as the residual function,
whose elements approach one at the optimal alignment, we
utilize a progressively smaller step size strategy. In each
iteration, because of the symmetric and inverse-consistent
registration, full deformation fields are calculated by:
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u1full = u1(0.5) � u2(0.5)
�1 (16)

u2full = u1(0.5)
�1 � u2(0.5) (17)

Moreover, multi-level hierarchical registration from coarse
to fine levels is applied in this work to speed up the registration
process and avoid getting trapped in local minima.

IV. EXPERIMENTS AND RESULTS

TO validate the performance of our outlier detection al-
gorithm and our registration framework, pre- and post-

resection ultrasound images of 13 patients are utilized from the
BITE database [32]. The experimental procedures involving
human subjects in BITE were approved by McGill University’s
Institutional Review Board. NSR takes approximately 40 sec-
onds on a 3GHz processor to perform a typical 3D registration.
These volumes are reconstructed from 2D ultrasound image
sequences with the voxel size of 1 mm⇥1 mm⇥1 mm. And
these datasets also include homologous anatomical landmarks
in pre- and post-resection ultrasound volumes. The distribution
of the landmarks of pre- and post-resection ultrasound volumes
of one patient is shown in Fig. 3 as an example. To quantita-
tively measure the performance of NSR, we use the mean
target registration errors (mTRE) metric, which shows the
average distance between corresponding landmarks as follows.
Let x and x0 represent corresponding landmarks in V1 and
V2 respectively, then mTRE can be calculated as [33]:

mTRE =
1

n

nX

i

kTu1(xi)� x0
ik (18)

where Tu1 is full forward deformation and n is the number
of landmarks.

The original mTRE and final mTRE of all patients are
shown in Table I. As can be seen from the table, every mTRE
decreases after NSR registration. Even the mTRE of patient
11, whose initial value of 10.5 mm decreases to 2.8 mm
after NSR. The distributions of mTRE and minimum TRE
of RESOUND and NSR in Fig. 4 show that NSR provides
a more outstanding registration result. This improvement is
obtained by both improved optimization and the symmetric
and inverse-consistent approach.

There are two important limitations in BITE TRE values.
First, in average, around 9 landmarks are selected in each 3D
volume, and therefore, the landmarks only show registration
accuracy in a very small portion of ultrasound volumes. Sec-
ond, manually selected landmarks in BITE are only accurate
up to 1.58 mm [17] and 1.4 mm [30]. Therefore, to further
demonstrate the effectiveness of our registration framework
and our outlier detection algorithm, pre- and post-registration
alignments of images of two patients are shown in Figs. 5
and 6. The results in these two patients are representative
of the performance of NSR in all patients, and are selected
for two reasons. First, ultrasound images have distinctive
contours that clearly show the alignment quality. Second,
tumors are large enough to be visible in ultrasound images,
and therefore the quality of alignment can be assessed in
regions close to non-corresponding regions that are hard to

Fig. 3. Ten corresponding landmarks in pre- (top) and post-resection (bottom)
ultrasound volumes.

register. For completeness, the results of the remaining 11
patients are included in the supplementary material. To show
the level of alignment between ultrasound images, we perform
the following three steps: 1) Select an image from the pre-
resection volume and the corresponding frame from the post-
resection volume. 2) Automatically find edges of the pre-
resection image using the Canny edge detection technique,
and overlay the edges on the pre-resection frame in (a). 3)
Overlay the edges of the pre-resection image on the post-
resection frame in (b), which shows the misalignment be-
tween pre- and post-resection volumes. In (c) and (d), the
post-resection images after registration with RESOUND and
NSR are shown respectively. While better alignment with
the pre-resection image is clear in both (c) and (d), NSR
substantially outperforms RESOUND. Improved alignments
with NSR (over RESOUND) are pointed by magenta arrows in
(d) and red arrows in (c) respectively. Such qualitative results
have significant advantages over mTRE because they show the
level of alignment over a much larger region, compared with
few points used in mTRE (around 9/patient). Parts (e) and
(f) show the “Effective Region” for both directions, where the
regions inside the yellow contour are treated as inliners and all
the other regions are deemed as outliers or low SNR regions.
Parts (g) and (h) are overlay of the contour of “Effective
Region” on the corresponding frame of the volume, and we use
these pictures to demonstrate the effectiveness of our outlier
detection algorithm. The results show that NSR can identify
outliers and low SNR regions and register these challenging
images accurately and efficiently.
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TABLE I
MTRE VALUES BEFORE AND AFTER REGISTRATION WITH RESOUND AND NSR. LGG AND HGG REPRESENT LOW AND HIGH GRADE GLIOMA
RESPECTIVELY. THE RESOUND DATA ARE FROM [23] AND ALL SMALLER VALUES ARE IN BOLD. THE p-VALUES IN THE LAST ROW SHOW THE

STATISTICAL SIGNIFICANCE OF IMPROVEMENT OVER THE INITIAL MTRE.

Patient Tumor type Tumor size(cm3) Initial RESOUND NSR
P1 LGG 79.2 2.3(0.6-5.4) 1.8(0.5-4.0) 1.4(0.1-3.6)
P2 HGG 53.7 3.9(2.8-5.1) 1.4(0.5-1.9) 1.2(0.3-2.3)
P3 HGG 31.6 4.6(3.0-5.9) 1.4(0.7-2.2) 1.2(0.4-1.7)
P4 HGG 0.2 4.1(2.6-5.5) 1.2(0.3-2.4) 1.1(0.2-2.2)
P5 HGG 32.3 2.3(1.4-3.1) 1.0(0.2-1.7) 1.1(0.5-2.5)
P6 HGG 13.9 4.4(3.0-5.4) 1.0(0.4-1.7) 1.1(0.7-1.9)
P7 HGG 63.1 2.7(1.7-4.1) 1.7(0.9-3.6) 1.4(0.4-3.0)
P8 HGG 4.8 2.2(1.0-4.6) 1.4(0.6-3.2) 1.3(0.4-3.4)
P9 HGG 10.4 3.9(1.0-6.7) 1.9(0.7-4.1) 2.8(0.5-4.7)

P10 LGG 39.7 2.9(0.8-9.0) 2.2(0.6-5.3) 2.2(0.5-3.9)
P11 LGG 49.1 10.5(7.8-13.0) 2.5(1.1-4.2) 2.8(0.3-6.4)
P12 HGG 31.9 1.6(1.3-2.2) 0.7(0.2-1.6) 0.8(0.4-1.5)
P13 LGG 37.3 2.2(0.6-4.0) 1.3(0.2-2.8) 1.3(0.3-3.4)

mean - 34.4 3.7(2.1-5.7) 1.5(0.5-3.0) 1.5(0.4-3.1)
p-value - - - 0.0023 0.0019

Fig. 4. Boxplots of the mean (top) and minimum (bottom) TRE.

V. CONCLUSION

ANOVEL robust framework is proposed in this paper
for deformable registration of pre- and post-resection

volumetric ultrasound images of neurosurgery. NCC, which
is invariant to affine distortions of intensity values, is used as
the similarity metric. ESM is used to optimize the regularized

cost function to achieve fast and reliable registration. We use
the symmetric and inverse-consistent approach to generate re-
alistic deformation fields. Also, an outlier detection method is
proposed and utilized to identify and locate non-corresponding
regions. NSR outperforms RESOUND, as indicated in our
results, for two main reasons: the improved deformation model
and the more reliable optimization scheme. In future work we
will investigate the parallel implementation of NSR to achieve
real-time performance.
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guided operations in unselected high-grade gliomas—overall results,
impact of image quality and patient selection,” Acta neurochirurgica,
vol. 152, no. 11, pp. 1873–1886, 2010.

[5] M. A. El Beltagy, M. Aggag, and M. Kamal, “Role of intraoperative
ultrasound in resection of pediatric brain tumors,” Child’s Nervous
System, vol. 26, no. 9, pp. 1189–1193, 2010.

[6] M. Renovanz, A.-K. Hickmann, C. Henkel, M. Nadji-Ohl, and N. J.
Hopf, “Navigated versus non-navigated intraoperative ultrasound: is
there any impact on the extent of resection of high-grade gliomas? a
retrospective clinical analysis.” Journal of neurological surgery. Part A,
Central European neurosurgery, vol. 75, no. 3, pp. 224–230, 2014.

[7] A. K. Petridis, M. Anokhin, J. Vavruska, M. Mahvash, and M. Scholz,
“The value of intraoperative sonography in low grade glioma surgery,”
Clinical neurology and neurosurgery, vol. 131, pp. 64–68, 2015.

[8] J. Coburger, A. Scheuerle, D. R. Thal, J. Engelke, M. Hlavac, C. R.
Wirtz, and R. König, “Linear array ultrasound in low-grade glioma
surgery: histology-based assessment of accuracy in comparison to
conventional intraoperative ultrasound and intraoperative mri,” Acta
neurochirurgica, vol. 157, no. 2, pp. 195–206, 2015.



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 8

[9] A. V. Moiyadi and P. Shetty, “Direct navigated 3d ultrasound for resec-
tion of brain tumors: a useful tool for intraoperative image guidance,”
Neurosurgical Focus, vol. 40, no. 3, p. E5, 2016.

[10] T. Selbekk, A. S. Jakola, O. Solheim, T. F. Johansen, F. Lindseth,
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Fig. 5. Registration results of Patient 2. Please refer to the text for details.
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Fig. 6. Registration results of Patient 4. Please refer to the text for details.


