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In many industries and production systems it is common to face significant rates of product deterioration,
referring to physical exhaustion, loss of functionality, and even obsolescence. This deterioration property,
known as perishability, prevents such products from being stored and used for unlimited periods of time.
In this paper, we present production planning problems that incorporate raw-material perishability and
deterioration and analyze how these considerations enforce specific constraints on a set of fundamental
decisions, especially in the case of multi-level product structures. In particular, we study four variants
of the two-level lot-sizing problem incorporating different types of raw-material perishability: (a) fixed
shelf-life, (b) functionality deterioration, (c) volume deterioration, and (d) functionality-volume deteri-
oration. We propose mixed integer programming formulations for each of these variants. We perform
computational experiments and carry out sensitivity analyses from two different perspectives. We show
the computational performance of the proposed formulations and analyze the added value of incorporat-
ing perishability considerations into standard production planning problems. We finally study the impact
of key parameters in the structure of optimal solutions.

Keywords: perishability; shelf-life; deterioration; production planning; two-level lot-sizing;
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1. Introduction

A common assumption in most of the production planning literature is that finished and inter-
mediate products involved in the production process have unlimited lifespans, meaning they can
be stored and used indefinitely. However, in practice, most items deteriorate over time, referring
not only to physical exhaustion or loss of functionality, but also to obsolescence. Often, the rate
of deterioration is low or can be ignored and there is little need for considering it in the planning
process. Nonetheless, in many types of industries it is common to deal with items that are subject
to significant rates of deterioration. These items are referred to as perishable products.

Although there are multiple definitions of perishability depending on the type of product or
system, the concept basically relates to items that cannot be stored infinitely without deteriora-
tion or devaluation (Billaut 2011). Clear cases of this type of products can be found in the food
or pharmaceutical industries (Farahani, Grunow, and Gunther 2012; Vila-Parrish, Ivy, and King
2008). For instance, in the yogurt industry perishability is found at different stages of the produc-
tion process: from the highly perishable raw-material (milk) that enters the dairy factories to the
finished products, which are all stamped with a best-before-date (Entrup et al. 2005).

As mentioned by Amorim et al. (2011), perishability and deterioration enforce specific constraints
on a set of crucial production planning decisions, specially in the case of multi-level production
structures where two or more items are produced and at least one item is required as an input
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(raw-material, component) of another. These intermediate products are often inventoried, allowing
one to produce and consume them at different moments and rates in time (Pochet 2001). When
dealing with perishability, most of the data associated with inventories has to be extended to trace
the age and usability status of items with specific time-stamps. Besides the amount of inventory
kept in stock we also need to know when the material has been acquired and to what level it has
deteriorated, as well as the impact that such deterioration may have in the production process.
Moreover, production planning decisions determine the size and timing of production lots or batches
and therefore the frequency of setups. Meanwhile, setups affect lead times of items waiting in line to
be processed which consequently increases deterioration. To reach acceptable quality levels and/or
production yields a deteriorated material may consume more resources that would otherwise be
available for production and therefore it may also have an effect on waiting times.

If a perishable item reaches the end of its shelf-life and becomes unsuitable for use, it may have
to be discarded. Thus, besides the obvious waste of valuable resources and the negative impact it
may have on the quality of the finished products, this aspect causes additional costs, as disposed
material may need to be transported to a certain disposal site and incur also a treatment cost.

To the best of our knowledge, raw-material (and/or intermediate products) perishability and the
way it affects the production of higher level items in the product structure have not been studied
extensively. The main contribution of this paper is to study how raw-material perishability can be
incorporated into classical lot-sizing problems and its impact in production processes regarding:
manufacturing, inventory, disposal costs, and quality of the finished products. The initial moti-
vation for this study comes from the area of composite manufacturing and related industries, in
the production of fiber reinforced polymer composites and other applications. These industries
use fibers, such as glass or graphite, impregnated with polyimide monomeric reactants, and other
material that are subject to limited shelf-life, very sensitive to premature aging, and affect the
production process in several ways (see Alston and Gahn 2000, and Alston and Scheiman 1999, for
reports on this type of applications). However, once these materials are used for production they
become stable and no longer deteriorate. We study four variants of a two-level lot-sizing problem
involving different types of perishability. We present mixed integer programming (MIP) formula-
tions to model these problems. We perform a series of computational experiments to evaluate the
proposed models and formulations when used with a general purpose solver. We also analyze the
impact of key parameters in the structure of optimal solutions.

The paper is organized as follows: In Section 2 we review different characteristics considered
when dealing with product perishability and deterioration. Afterwards, we review the most rele-
vant modeling approaches for integrating perishability in production planning and related prob-
lems. In Section 3 we present the four considered problem variants: fixed shelf-life, functionality
deterioration, volume deterioration, and functionality-volume deterioration. In Section 4 we show
computational results for all the problem variants, as well as the analyses carried out on them.
Finally, Section 5 brings final conclusions and future research directions.

2. Characteristics of perishability and modeling approaches

A general definition of perishability presented by Wee (1993) describes it as the decay, damage,
spoilage, evaporation, obsolescence, pilferage, loss of utility or loss of marginal value of an item that
results in decreasing usefulness from the original one. As mentioned by Pahl and Voß (2014), most
authors working in this field use deterioration, perishability, and depreciation interchangeably. In
general, all perishable goods are items with a fixed maximum lifetime, usually referred to as shelf-
life. Shelf-life is the maximum length of time during which a product is considered of satisfactory
quality and can be stored under specified (or expected) conditions, remaining suitable for use,
consumption or for its intended functions. Shelf-life is usually considered from the moment the
product is produced or acquired.
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2.1 Characteristics and classification of perishability

We can distinguish three main viewpoints to characterize and classify product perishability:
(a) the utility or functionality of the product, (b) the physical state of the product, and (c) the
mathematical modeling point of view of perishability.

When the interest is in the utility of the products (Raafat 1991; Pahl and Voß 2010), and based
on the value of inventory as a function of time, perishability is classified in: (1) constant-utility:
items undergo decay but face no considerable decrease in value (prescription drugs), (2) decreasing-
utility: items lose functional value throughout their shelf-life (milk, fruits and vegetables), and (3)
increasing-utility: items increase in value (wines, cheese, antiques).

Similarly, but with an interest in how the customer perceives the functional value of items
(Ferguson and Koenigsberg 2007), we can make two distinctions: (1) items whose functionality
deteriorates over time (fresh produce), and (2) items whose functionality does not degrade, but the
utility perceived by the customers does (fashionable clothing and high-technology products).

The emphasis on the physical state of the product is found in early inventory control papers.
Ghare and Schrader (1963) characterize perishability according to the type of deterioration: (1)
direct spoilage (fresh food), (2) physical depletion (gasoline and alcohol), and (3) decay and ob-
solescence (newspapers). With a similar interest, Lin, Kroll, and Lin (2006) take into account
age-related characteristics and distinguish between: (1) age-dependent deterioration (milk, fruits),
and (2) age-independent deterioration (volatile liquids, radioactive and other chemicals).

The third perspective refers the treatment of perishability from a purely modeling viewpoint.
That is, the interest is not in the origin of the perishable nature of the products, but only in aspects
necessary for the mathematical formulation of the problems. In this regard, Nahmias (1982) divides
perishable products as follows: (1) with fixed shelf-life: cases where the shelf-life is known a priori,
and (2) with random shelf-life: cases where the product shelf-life is a random variable with a
specified probability distribution.

One of the most complete classification of perishability is the one proposed by Amorim et al.
(2011), considering three classifying dimensions: (1) physical product deterioration: reflects if the
item is suffering physical modifications or not, (2) authority limits: represents the external regula-
tions or other conventions that influence perishability, and (3) customer value: reflects the customer
willingness to pay for a certain good.

2.2 Modeling approaches to perishability

We can distinguish two different approaches in which perishability and deterioration have been
taken into account in the fields of inventory control, scheduling, and production and distribution
planning. The first approach assumes a loss of a portion of inventory, determined by a fixed input
parameter (shrinkage factor). In this regard, Hsu (2000) presents an uncapacitated, single-item, lot-
sizing problem (LS ) using a deterioration rate factor and considering age-dependent inventory costs.
The model is later generalized to include back-ordering (Hsu 2003) and capacities (Waterer 2007).
Using a similar deteriorating coefficient, Chen and Chen (2006) integrate LS and scheduling for a
perishable item in a problem maximizing revenue, where demand and production depend on the
selling price. Other studies within this first approach but for Economic Production Quantity (EPQ)
or inventory control and replenishment type settings, normally considering infinite time horizons
for a single-item, are the following: Balkhi and Benkherouf (1996) and Yang and Cheng (1998),
who assume a continuous and constant deterioration rate as a time-dependent function, as well as a
constant demand rate; Skouri and Papachristos (2003), who later extends Yang and Cheng (1998)’s
work for the case of time-dependent back-ordering; and Goyal and Giri (2003), who based their
study on Balkhi and Benkherouf (1996)’s approach considering time-varying demand. Similarly,
Balkhi (2003) also considers time-varying demand in addition to the effect in deterioration of the
so-called “learning phenomenon” (introduced by Wright 1936), which implies an improvement in
the production rate and/or a cost reduction through a repetitive learning process. Moreover, Alamri
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and Balkhi (2007) study the effects of learning-and-forgetting: the system is subject to learning
in the production stage and to forgetting while production ceased, so that the optimal quantity
is dependent on the instantaneous production rate. Lin, Kroll, and Lin (2006) present a multi-
item production-inventory problem with exponential deterioration rates and a constant inventory
shrinkage factor. Other studies in this area of production-inventory and production-distribution
systems are the ones by Tadj, Bounkhel, and Benhadid (2006), Manna and Chaudhuri (2006), and
Belo-Filho, Amorim, and Almada-Lobo (2015). Li, Zhang, and Tang (2014) study dynamic pricing
and inventory control policies for perishable products with stochastic disturbance.

For reviews of available literature regarding perishable goods in the context of inventory man-
agement see Goyal and Giri (2001) and Li, Lan, and Mawhinney (2010). Amorim et al. (2011) and
Pahl and Voß (2014) present reviews on perishability in production-distribution and supply chain
planning.

The second approach avoids inventory expiration by limiting the number of periods of demand
that can be produced and thus, ensures that products do not reach the end of their shelf-life. Entrup
et al. (2005) develop MIP models that integrate this type of approach into production-scheduling
problems for an industrial case study of yogurt production with shelf-life-dependent selling price.
Their objective is to maximize the contribution margin and they use a block planning approach,
where a block is formed from all product variants based on a same recipe. In the same application
area, Amorim, Antunes, and Almada-Lobo (2011) propose two multi-objective LS and scheduling
MIP models for a pure make-to-order environment, and for a hybrid make-to-order/make-to-stock
scenario. The authors use the same block planning approach as Entrup et al. (2005), and incorporate
the maximization of product freshness as a problem objective. Pahl and Voß (2010) extend this
approach without restricting the considered time periods. They allow inventory expiration to then
penalize it by applying a disposal cost and it is integrated into well known discrete lot-sizing
and scheduling problems. Pahl, Voß, and Woodruff (2011) later extend this approach to consider
sequence-dependent setup times and costs.

Other approaches that are relevant to our study are: Abad (2000), who present a constrained
non-linear program for a LS for a perishable good with exponential decay, partial back-ordering and
lost sales and Teunter and Flapper (2003), who consider a stochastic EPQ model where produced
units of a single product may be non-defective, reworkable-defective, or non-reworkable-defective.
In industries such as the food or pharmaceutical, perishable reworkable-defective products are quite
common. Another approach involves the integration of traceability for an EPQ problem (Wang,
Li, and O’Brien 2009). Traceability is the ability to trace and follow the product through all stages
of production, processing and distribution, which is a highly important operations management
function in the food industry.

When integrating perishability into the well-known economic lot scheduling problem, most of the
literature is limited to the addition of a shelf-life constraint (Amorim et al. 2011). Soman, van
Donk, and Gaalman (2004) present a review of available literature, which is later complemented
by Pahl and Voß (2014).

Finally, another approach used to model product perishability constraints is the use of the so-
called production time-windows, in which demand has to be satisfied from products manufactured
within a given time interval (Wolsey 2005). Chiang et al. (2009) study a production-distribution
problem applied to the newspaper industry, where daily product shelf-life is typically only a few
hours. The authors present a simulation-optimization framework and formulate the problem as
an extension of the vehicle routing problem with time-windows. For the case of highly perishable
food products, Chen, Hsueh, and Chang (2009) study a production-scheduling and vehicle routing
problem with time-windows under stochastic demands. Here, the revenue of the supplier depends
on the value of the finished items, which starts to decay once they are produced, as well as on the
time-windows fulfillment set by the retailers.

The studies presented above constitute the state of the art for the treatment of perishability and
deterioration in production planning and other related problems. However, there is an aspect that,
to the best of our knowledge, has not been considered in this field and is the way in which raw-
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material (and/or intermediate products) perishability and deterioration may affect the production
of higher-level items in the product structure for multi-level systems. The work of Cai et al. (2008)
and Billaut (2011), although it does not refers to the problems we study, as they are focused on
scheduling settings, is still relevant in the sense that they study raw-material perishability. The
former refers to a specific application in the seafood industry, and the latter discusses various
different aspect to consider when dealing with perishable inventory in operational decisions.

3. Lot-sizing with perishable raw material

We next consider a production system in which one item (finished product) is to be produced and
another item (raw-material), required as an input of the first, is to be procured from a supplier. This
constitutes the simplest version of a two-level production structure. The two-level lot-sizing problem
(2LS) consists of finding the production, procurement, and inventory plans for the two items over
a discretized planning horizon (divided into n time periods, where T = {1, ..., n}) so as to meet
finished item demand in every period, while minimizing the corresponding costs. As mentioned
above, the core aspect of the problems under study is the perishable condition of the raw-material.
In particular, we study four different variants of the 2LS problem: (a) raw-material subject to
fixed shelf-life (FS); (b) raw-material subject to functionality deterioration rate (FD); (c) raw-
material subject to volume deterioration rate (VD); and (c) raw-material subject to functionality
and volume deterioration rate (FVD).

3.1 Fixed Shelf-Life

The first considered variant is the two-level lot-sizing problem with fixed raw-material shelf-life
(2LS-FS). Raw-material orders are acquired in batches under the immediate receipt assumption
(no ordering lead-time). Associated with each order there are unit batch costs and fixed order-
placement costs. Once the raw-material is received, it is used to satisfy finished item production
requirements or can be inventoried. However, on-hand raw-material can only be kept in stock and
used for a predetermined period of time (shelf-life). If the material reaches the end of its shelf-life
and expires, it will have to be disposed. This causes additional costs that vary depending on when
the disposal is made. Raw-material functionality is considered constant during the entire shelf-
life period. Finished-item production is subject to process capacity, as well as to per-unit basic
production costs and fixed setup costs. Production requirements are derived from the forecast
demand and must be satisfied in every period (back-ordering not allowed). The 2LS-FS consists
of planning the production levels and raw-material orders batches for each time-period, as well
as planning the inventory levels so as to minimize the total production, setup, order-placement,
inventory, and raw-material disposal costs.

Applications of 2LS-FS may arise in the production of plastic films. A plastic film is a thin
continuous polymeric material used to separate areas or volumes, to act as barriers, or as printable
surfaces (Hawkins 2002). Depending on the properties of the desired application, plastic films can
be made from a variety of plastic resins and monomers, which are highly reactive and undergo
uncontrolled polymerization. As raw-material for plastic films, these resins and monomers are
considered fully functional during their shelf-life and, once they are used in production, they become
stable. Furthermore, even though the finished product may present sings of deterioration during
the storage and handling period, they have long enough shelf-lives not to be considered perishable.

In order to formulate the 2LS-FS we propose the following notation:

dt forecast demand
a constant production rate
Bt amount of capacity Ct consumed per setup
Ct available machine (or process) capacity
mt upper bound in production quantity

pt basic unit production cost per period t
qt fixed setup cost per period t
ht unit storage cost per period t
b fixed order batch-size
Kt variable upper ordering limit for t ∈ T
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L lower ordering limit (if a raw-material order
is placed in any period t, at most Kt and at
least L batches have to be ordered)

β raw-material shelf-life (maximum number of
periods material can be stored)

ρt fixed order-placement cost per period t (cost
of placing a raw-material order)

r bill of material (amount of raw-material units
required to produce each finished item)

ζt unit batch cost per period t
γt raw-material unit storage cost per period t
φt raw-material unit disposal cost per period t
Θt last period in which raw-material (received at

period t) can be used for production (Θt =
min{θt, n}, where θt = t+ β − 1)

Πt earliest period in which material can be ac-

quired and still be used for production in pe-

riod t (Πt = max{1, πt}, where πt = t−β+1)

In terms of decision variables, we have the following:

Qt : raw-material order-size (number of batches
to order in period t)

wut : amount of raw-material, received at period
u ∈ T , used to satisfy production require-
ments in period t, for 1 ≤ u ≤ t ≤ n, as long
as (t− u) < β

et : amount of expired (perished) raw-material,
received at period t, to be discarded

st : finished item stock at the end of period t
yt : binary setup variable
zt : binary order-placement variable (equal to 1

if a raw-material order is placed in period t,

and 0 otherwise)

Note that the condition (t− u) < β for wut implies that material received at the beginning of
period u ∈ T can only be used for production during β periods of time (including period u).
Hence, the last period in which material received at period t can be used for production is given
by Θu = min{θt, n}, where θt = t + β − 1. Similarly, let Πt = max{1, πt}, where πt = t − β + 1
denote the earliest period in which material can be acquired and still be used for production in
period t. We further assume that, even though material received during period u : β < u ≤ n does
not expire during the planning horizon n, if it is not used, it is also discarded.

Using the above decision variables, the 2LS-FS can be formulated as follows:

minimize
n∑

t= 1

[ P(w, t) + htst + qtyt + ζtQt + φtet + ρtzt ] +
n−1∑
t= 1

Y(w, t) (1)

subject to bQu =

Θu∑
t=u

wut + eu u ∈ T (2)

st−1 +

(
1

r

) t∑
u=Πt

wut = dt + st t ∈ T (3)

t∑
u=Πt

wut ≤ rMtyt t ∈ T (4)

(a
r

) t∑
u=Πt

wut ≤ (Ct −Bt) yt t ∈ T (5)

Qt ≤ Ktzt t ∈ T (6)

Qt ≥ Lzt t ∈ T (7)

Qu, st, wut, eu ∈ N+ u, t ∈ T : u ≤ t (8)

yt, zt ∈ {0, 1} u, t ∈ T : u ≤ t (9)

s0 = s∗0. (10)

Here, the objective function (1) is conformed by: production cost P(w, t) = pt/r(
∑t

u= Πt
wut),

finished item inventory holding costs, setup costs, raw-material batch costs, raw-material inventory
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holding costs, where Y(w, t) = γt(
∑t

u=Π
(2)
t

∑Θ
(2)
tu

τ=t+1wuτ ), for 1 ≤ t ≤ n − 1, is the raw-material

inventory holding cost function (Θ
(2)
tu = min{θt, θu, n}, and Π

(2)
t = max{1, πt + 1}), lost/perished

raw-material disposal costs, and order-placement costs.
Constraints (2) state that the amount of raw-material entering the production system at each pe-

riod u is equal to the amount of this material used to meet production requirements at subsequent
periods (

∑Θu

t=uwut) plus the amount that is discarded because it is not used before its shelf-life.
Constraints (3) represent finished item inventory balance, whereas constraints (4) are the produc-
tion upper bound and setup enforcement constraints, where Mt = min{mt,

∑n
r=t dr}. Constraints

(5) represent machine (or process) capacity Ct consumption, ensuring that there is enough capacity
in period t to produce all batches of finished items and perform the setup operations. Constraints
(6) and (7) are the variable upper and lower bound constraints for the amount of raw-material
to order at each time-period. Constraints (8) and (9) are integrality constraints. Constraints (10)
represent the assumption that initial finished item stock is fixed and known.

Property 1. When b = 1, there exists an optimal solution to 2LS-FS in which eu = 0 ∀ u ∈ T .

This property states that when it is possible to order any number of raw-material items, then it
will never be optimal to dispose products, and thus, to incur in disposal costs, because it is always
feasible to order exactly what is needed, i.e.,

∑n
u=1Qu = r

∑n
t=1 dt.

3.2 Functionality deterioration

The second variant is the two-level lot-sizing problem with raw-material functionality deteriora-
tion rate (2LS-FD). Here, in addition to having on-hand raw-material subject to a fixed shelf-life,
its functionality decreases progressively as storage time passes. Thus, we introduce a raw-material
functionality deterioration rate parameter, denoted by αut ∈ [0, 1], for 1 ≤ u ≤ t ≤ n, representing
the fraction of decrease in the functionality level of material received in period u, to be used for
production in period t. It is assumed that αut ≥ αjt for 1 ≤ u ≤ j ≤ t ≤ n, meaning that the
longer an item is carried in stock, the greater its level of deterioration. It is also assumed that
αtt = 0 ∀ t ∈ T . Moreover, the shelf-life β parameter, although it remains fixed, it is determined
by the number of periods it takes for αut to reach 1. Progressive decrease in material functionality
has a direct impact on production. This impact may be, for instance, on the quality of the finished
items produced with deteriorated material, or an increase in the production cost in order to reach
the same desired quality or production yield, using material that is not fully functional. Either
way, we represent such impact by an increase in the production cost as: p+

t = pt +
∑t−1

u=1 αutwutpt,
where p+

t is the production cost considering deteriorated raw-material. Figure 1 graphically shows
an instance with a planning horizon T = {1, 2, 3} with basic production cost p3 for period t = 3.
The following are the functionality deterioration rates for material used in production at period
t = 3: α13 = 0.4, α23 = 0.2.

Figure 1.: Functionality deterioration rates and production cost for period t = 3 when β = 3.

Furthermore, process capacity Ct consumption may also be affected by material deterioration.
As expected, the use of any amount of material with, e.g., functionality level of 50% (αut = 0.5)
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for production will consume a higher amount of capacity Ct for setup than any material with
αut < 0.5. This feature may arise in applications in which machines or processes must be re-
configured in order to be able to use deteriorated material and still achieve the same level of
finished item quality or yield, as in the previously mentioned composite manufacturing and related
industries, when producing polyimide reinforced fiber composites and other products. For this
reason, the amount of capacity consumed per setup is now denoted by But, to incorporate the
variation depending on when the material is received (u), and when it is being used for production
(t). Thus, for 1 ≤ u ≤ j ≤ t ≤ n, But ≥ Bjt, meaning that the higher the deterioration of the
material used for production, the more capacity Ct it requires for setup. To model this, we define
an additional set of binary variables Zut which are equal to 1 if there is production in period t
using raw-material units received in period u, and 0 otherwise.

The 2LS-FD can be formulated as follows:

minimize

n∑
t= 1

[
P+(w, t) + htst + qtyt + ζtQt + φtet + ρtzt

]
+

n−1∑
t= 1

Y(w, t) (11)

subject to (2)− (4), (6)− (11)

wut ≤ rMtZut u, t ∈ T : 0 ≤ (t− u) < β (12)(a
r

) t∑
u=Πt

wut + Γ

t−1∑
u=Πt

∆utZut ≤ (Ct −Bt) yt t ∈ T (13)

Zut ∈ {0, 1} u, t ∈ T : u ≤ t, (14)

where Γ ≥ 0 is the coefficient for production cost and capacity consumption depending on the
functionality deterioration.

A setup here is considered to be the realization of all the operations required to reconfigure the
production process at the end of a batch in period t, in order to reach the required level of finished
item quality using deteriorated raw-material. Thus, constraints (12) – (13), ensure that there is
enough capacity in period t to produce all batches and perform the reconfiguration operations
when deteriorated material is used for production. Production cost in the objective function (11)
is represented by the following function: P+(w, t) = pt/r(

∑t
u= Πt

wut + Γ
∑t−1

u= Πt
αutwut). We note

that when Γ = 0, the 2LS-FD reduces to the 2LS-FS.

3.3 Volume deterioration

We next present the two-level lot-sizing problem with raw-material volume deterioration rate
(2LS-VD). Here, the perishability nature of the raw-material refers to a progressive volume loss.
In this sense, we have a volume deterioration rate, denoted by δut ∈ [0, 1], for 1 ≤ u ≤ t ≤ n,
representing the fraction of the material acquired in period u, which is lost at the end of period t.
We assume that δut ≥ δjt for 1 ≤ u ≤ j ≤ t ≤ n, meaning that the longer the material is carried
in stock, the faster it deteriorates and, consequently, the higher the proportion of lost material.
Here the shelf-life β is determined by the number of periods it takes for δut to reach 1. A new set
of inventory variables cut for 1 ≤ u ≤ t ≤ n is introduced as the raw-material stock at the end of t
and received at u.

Applications of this problem can be found in production processes arising in the canning industry,
such as: canning fruits, vegetables, seafood, and meats, among others. The primary objective of
food processing is the preservation of highly perishable goods in a stable form that can be stored
and shipped to distant markets. However, it is normal to face considerable levels of raw-material loss
throughout the multiple steps of the production process, which includes preliminary preparation,
blanching, and filling (Melrose Chemicals Ltd., 2005).
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The 2LS-VD problem can be formulated as follows:

minimize
∑
t∈T

[
pt
r

(
t∑

u= Πt

wut

)
+ htst + qtyt + ζtQt + φtet + ρtzt

]
+

n−1∑
t= 1

Y(w, t)

subject to (3)− (11)

ctt = (bQt − wtt) (1− δtt) t ∈ T (15)

cut = (cu,t−1 − wut) (1− δut) u, t ∈ T : 0 < (t− u) < β (16)

ett = (bQt − wtt) (δtt) t ∈ T (17)

eut = cu,t−1 − wut u, t ∈ T : 0 < (t− u) < β (18)

cut ∈ N u, t ∈ T : u ≤ t, (19)

where constraints (15) – (16) represent raw-material inventory levels and constraints (17) – (18)
represent raw-material disposal.

3.4 Functionality and volume deterioration

We now propose the two-level lot-sizing problem with raw-material functionality and volume de-
terioration (2LS-FVD), which generalizes all the previous problem variants. Here, the perishability
nature of the raw-material is biphasic, referring not only to a functionality loss but, in addition,
to a progressive volume loss.

Several industries and processes, including some of the cases previously mentioned, under cer-
tain conditions, can also constitute scenarios where this problem finds applications. For instance, in
many beverage and food related industries, the perishable nature of the materials may have multi-
ple sources and consequences. In some cases, material waste may be caused by packaging, handling
and/or storing conditions, resulting in material loss due to evaporation, damage, or spillage. In ad-
dition, the intrinsic perishable characteristics of the material may also be a source of deterioration,
resulting in a decrease of freshness or usefulness. In this way, in order to minimize raw-material
waste from several possible sources, these industries need an integrated approach to optimize the
conditions associated with loss of physical quantities of material, as well as those related to func-
tionality deterioration of such material.

The 2LS-FVD can be formulates as follows:

minimize
∑
t∈T

[
P+(w, t) + htst + qtyt + ζtQt + φtet + ρtzt

]
+

n−1∑
t= 1

Y(w, t)

subject to (3)− (4), (6)− (11), (13)− (15), (17)− (21).

Note that, when Γ = 0, the 2LS-FVD reduces to the 2LS-VD. Moreover, if δut = 0 for 1 ≤ u ≤
t ≤ n, the 2LS-FVD reduces to the 2LS-FD.

4. Computational experiments and analyses

In this section we present the results and analyses of extensive computational experimentation
performed to gain a thorough understanding of the considered problems and their solutions, and
to evaluate our MIP formulations when solved with a general purpose solver. In Section 4.1, we
first show the complexity of the problems in terms of computational performance. In addition, we
analyze the added value of the proposed formulations in contrast with two algorithms developed
from the solution obtained with a traditional lot-sizing model. In Section 4.2, we then present an
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analysis of the way in which key parameters impact the structure of optimal solutions and therefore,
the production planning decisions.

4.1 Computational performance of MIP formulations

In order to elucidate the added value of the proposed models, we perform the following analysis.
For each of the four 2LS variants (FS, FD, VD, and FVD), we start by evaluating the feasibil-
ity of the optimal solution obtained by solving the standard 2LS (i.e., assuming no raw-material
perishability or deterioration). Subsequently, based on this initial solution, we implement two dif-
ferent algorithms to find feasible and possibly improved solutions for the original problem variants.
We then compare the deviations of the solutions obtained with these algorithms with respect to
the actual optimal solution obtained with our MIP formulations. This deviation is computed as
%dev = (SOLi − OPT )/OPT × 100, where SOLi denotes the solution value obtained with algo-
rithm i and OPT the optimal solution value.

Fixing-orders (f.o.): The first algorithm fixes the ordering decisions Qt obtained in the initial
standard 2LS solution and optimizes the subproblem associated with the production decisions.

Fixing-production (f.p.): Contrary to the f.o. algorithm, the second approach fixes the pro-
duction decisions obtained in the 2LS solution and optimizes the subproblem associated with the
ordering and wut decisions.

Using a randomly generated instance with n = 6, β = 2, and b = 15 as an example, Figure 2
shows the raw-material inventory levels for the different solutions when solving it as a 2LS-FD.
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(a) Basic 2LS optimal solution
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(b) Solution with fixing-orders (f.o.) algorithm
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(c) Solution with fixing-production (f.p.) algorithm
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(d) Optimal 2LS-FD solution

Figure 2.: A comparison of solutions for the 2LS-FD

As shown in Figure 2(a), the standard 2LS gives a solution with raw-material orders at periods
1 and 4. There is a strictly positive production at each of the six time periods, which corresponds
to the following lot sizes: X1 = 28, X2 = 16, X3 = 27, X4 = 18, X5 = 11, and X6 = 10, with no
finished item inventory at any period (Xt denotes the finished item lot size at period t). However,
the standard 2LS solution is infeasible for the 2LS-FDR variant, since it uses w13 = 81, w46 = 18,
and w16 = 12 units of raw-material for production that are in fact lost/perished and have to be
disposed, given that β = 2. Based on this initial solution, the f.o. and f.p. algorithms are used to
find feasible solutions for the 2LS-FD.

As shown in Figure 2(b), the f.o. approach results in a modification of the wut decisions, which
are the cause of infeasibility. Production now occurs only in t ∈ {1, 2, 4, 5}, which corresponds to
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the following lot sizes: X1 = 28, X2 = 47, X4 = 14, X5 = 21; and to the following finished item
inventory levels: s2 = 31, s3 = 4, and s5 = 10. This results in an objective value with a 8.4%
deviation from the optimal solution of the problem, which is shown in Figure 2(d).

On the other hand, Figure 2(c) shows the solution with the f.p. approach, resulting in a modi-
fication of the orders, now received at t ∈ {1, 3, 5}. In addition, some wut decisions also changed,
resulting in a total e1 + e5 = 15 raw-material units lost/perished and disposed, but in a reduced
objective value with a 2.3% deviation.

Finally, the optimal solution for the 2LS-FD instance obtained with our MIP formulation, as
shown in Figure 2(d), gives a solution with orders at t ∈ {1, 3, 4}; and strictly positive production
at t ∈ {1, 2, 3, 4, 5}, which corresponds to the following lot sizes: X1 = 28, X2 = 17, X3 = 26,
X4 = 18, and X5 = 21.

Considering the same instance, the procedure is used for the 2LS-FVD variant. Figure 3(a) shows
the same initial 2LS solution. Figures 3(b) and 3(c) show the solutions obtained by implementing
the f.o. and f.p. algorithms, respectively, which result in solution values with 11.6% and 2.9%
deviation.
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(a) Basic 2LS optimal solution
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(b) Solution with fixing-orders (f.o.) algorithm
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(c) Solution with fixing-production (f.p.) algorithm
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(d) Optimal 2LS-FVD solution

Figure 3.: Solutions for the 6x2x15x3x5 2LS-FVD problem instance

We have implemented this same procedure for a set of 136 problem instances, which are divided
into four main different groups: (1) Uncapacitated 2LS-FS and 2LS-VD (-U ), (2) 2LS-FS and
2LS-VD with Constant Capacities (-CC ), (3) Uncapacitated 2LS-FD and 2LS-FVD (-U ), and (4)
2LS-FD and 2LS-FVD with Constant Capacities (-CC ). The average computational results for
each of the four group instances are presented in Tables 1 to 4.

Each of these sets consists of three subsets of eight instances with n ∈ {6, 10, 16} and two subsets
of five instances with n ∈ {24, 30}. Moreover, within each subset, we have evaluated instances with
β ∈ {2, 3, 4, 6, 8, 9, 12}, as well as different values for the b, r, and L. For each of the resulting tables,
the first column represents the instance size depending on the number of periods in the planning
horizon. The second and third columns show, respectively, the amount of infeasible solutions ob-
tained when considering the instance to be a standard 2LS, and the averaged deviation from the
optimal solution of the feasible ones. The fourth and fifth columns show the average deviation from
the optimal solution of the problem when implementing the f.o. and f.p. algorithms, respectively.
The next five columns are all regarding the optimal solution of the corresponding problem variant
when solved with our proposed MIP formulations, in the following order: number of instances that
were solved to optimality, averaged optimality gap for the instances that were not solved optimally,
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number of branch and bound nodes explored, CPU time (in seconds), and linear programming gap
(LP Gap %). Furthermore, in the right-hand half of each table, the first four columns show the
number of infeasible solutions and the deviation from the optimal solution of the problem when
implementing the f.o and f.p. algorithms. Finally, the last five columns of each table refer to the
optimal solution of the corresponding problem variant, in the same manner as in the left-hand half
of the table.

All computational experiments were implemented using the Callable Library of IBM CPLEX
12.6.2 on an Intel(R) Xeon(R) CPU E3-1270 v3 processor with 3.50GHz and 24GB of RAM memory
under Microsoft Windows 7 Enterprise operative system. The instances that CPLEX was not able
to solve to optimality were due to memory limitations.

Table 1.: Results for 2LS-FS-U and 2LS-VD-U problem instances

2LS-FS-U 2LS-VD-U
2LS adpt. f.o. f.p. Optimal Node Time LPGap f.o. f.p. Optimal Node Time LPGap

n inf. %dev %dev %dev count (%) count (sec) (%) inf. %dev inf. %dev count (%) count (sec) (%)

6 6/8 0.0 1.3 2.3 8/8 - 156 0.07 11.3 5/8 8.2 5/8 2.4 8/8 - 1,693 0.06 17.9
10 4/8 0.0 1.3 0.3 8/8 - 1,041 0.16 14.6 6/8 8.7 6/8 1.5 8/8 - 28,606 0.69 19.4
16 3/8 0.0 1.4 0.4 8/8 - 19,679 0.49 15.1 6/8 15.1 7/8 3.1 7/8 7.0 32,432,807 2,919.60 19.8
24 3/5 0.0 0.2 0.1 5/5 - 17,117,360 570.10 16.6 3/5 8.6 4/5 3.2 3/5 9.5 108,047,800 10,519.70 23.2
30 3/5 0.0 0.5 0.1 3/5 0.9 288,043,986 29,970.60 17.5 2/5 12.6 4/5 3.3 1/5 9.9 116,859,144 14,775.70 24.1

Table 2.: Results for 2LS-FS-CC and 2LS-VD-CC problem instances

2LS-FS-CC 2LS-VD-CC
2LS adpt. f.o. f.p. Optimal Node Time LPGap f.o. f.p. Optimal Node Time LPGap

n inf. %dev %dev %dev count (%) count (sec) (%) inf. %dev inf. %dev count (%) count (sec) (%)

6 6/8 0.1 1.3 2.1 8/8 0.0 176 0.03 13.4 7/8 3.3 4/8 1.8 7/8 - 796 0.08 16.5
10 5/8 0.1 1.0 0.3 8/8 0.0 1,944 0.08 13.8 8/8 - 6/8 1.4 8/8 0.0 40,884 1.05 22.3
16 6/8 0.1 0.8 0.3 8/8 0.0 22,503 0.56 12.8 8/8 - 7/8 2.7 7/8 9.9 109,998,863 7,459.40 24.3
24 2/5 0.0 0.1 0.1 5/5 0.0 16,206,814 736.96 12.3 5/5 - 4/5 2.1 1/5 6.0 615,170,135 24,211.30 16.3
30 4/5 0.0 0.5 0.1 5/5 0.0 91,452,139 4,744.00 12.8 4/5 7.1 4/5 1.9 1/5 9.5 247,782,238 21,377.10 16.5

Observing the results given in Tables 1 and 2, we note that, for the most basic variant (2LS-FS )
the standard 2LS solution is often infeasible. However, when feasible, its deviation from the optimal
solution is rather small. Moreover, the f.o. and f.p. algorithms always reach feasible solutions for the
2LS-FS, with average deviations ranging from 0.5% to 1.4%, and from 0.1% to 2.3%, respectively.
On the contrary, both algorithms do not reach feasibility for every instance when solved as a 2LS-
VD or as a 2LS-FVD. For the majority of the instances, specially for those with longer planning
horizons, the f.p. algorithm seems to have a better performance. This is somehow expected as
the standard 2LS ignores the disposal and the added production costs when using deteriorated
raw-material, and focuses on the setup and ordering costs.

Table 3.: Results for 2LS-FD-U and 2LS-FVD-U problem instances

2LS-FD-U 2LS-FVD-U
2LS adpt. f.o. f.p. Optimal Node Time LPGap f.o. f.p. Optimal Node Time LPGap

n inf. %dev %dev %dev count (%) count (sec) (%) inf. %dev inf. %dev count (%) count (sec) (%)

6 6/8 3.4 4.1 1.7 8/8 0.0 137 0.03 12.5 5/8 8.2 5/8 2.5 8/8 0.0 1,609 0.04 17.8
10 4/8 2.4 2.9 0.8 8/8 0.0 1,121 0.05 15.7 6/8 8.7 6/8 1.5 8/8 0.0 14,278 0.37 19.3
16 6/8 2.8 4.0 0.4 8/8 0.0 51,607 1.33 16.7 6/8 15.3 7/8 3.4 8/8 0.0 16,681,906 1,009.02 19.7
24 4/5 1.3 1.9 0.5 5/5 0.0 50,411,588 2,870.64 18.2 3/5 8.6 4/5 3.5 4/5 7.9 52,271,838 4,998.75 22.6
30 5/5 - 3.1 0.7 1/5 4.7 118,332,468 14,557.80 19.4 2/5 12.6 4/5 3.5 2/5 6.6 118,686,343 17,733.13 22.2

Table 4.: Results for 2LS-FD-CC and 2LS-FVD-CC problem instances

2LS-FD-CC 2LS-FVD-CC
2LS adpt. f.o. f.p. Optimal Node Time LPGap f.o. f.p. Optimal Node Time LPGap

n inf. %dev %dev %dev count (%) count (sec) (%) inf. %dev inf. %dev count (%) count (sec) (%)

6 6/8 1.0 3.0 1.2 8/8 0.0 154 0.07 15.8 7/8 3.3 4/8 1.9 7/8 - 498 0.05 17.3
10 5/8 3.1 2.2 0.8 8/8 0.0 1,245 0.04 15.9 8/8 - 6/8 1.5 8/8 0.0 36,052 0.94 24.1
16 6/8 1.2 3.8 0.3 8/8 0.0 81,886 2.15 15.0 8/8 - 7/8 3.3 7/8 8.9 38,152,752 2,947.40 18.8
24 2/5 1.8 1.5 0.4 5/5 0.0 30,761,622 1,435.32 14.3 5/5 - 4/5 2.2 5/5 0.0 52,728,983 4,287.57 16.3
30 4/5 81.7 12.3 1.1 3/5 2.3 93,440,018 9,472.11 15.4 4/5 7.0 3/5 1.4 2/5 6.4 93,201,304 10,062.55 16.4
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Table 5 presents the computational results for instances that showed higher complexity in terms
of computational time and number of branch and bound nodes explored (i.e. with n = 24 and
n = 30). The instances are now organized in terms of the shelf-life β values. We can observe how
there is no clear trend in these results. For instance, if we focus on the 2LS-FS-CC version, we see
that there is an increase in the number of nodes and time as β also increases. However, if we focus
on the 2LS-FD and 2LS-FVD versions, we see a decrease in the number of nodes and time as β
increases.

Table 5.: Results for all problem variants in terms of the shelf-life β

Shefl-life Opt. Node Time LPGap Opt. Node Time LPGap
β count count (sec) (%) count count (sec) (%)

2LS-FS-U 2LS-VD-U
4 3/4 129,803,247 12,493.84 17.2 3/4 128,076,280 11,542.77 20.1
8 4/4 182,113,641 18,598.78 16.7 2/4 144,693,916 19,181.14 22.4
12 2/4 139,069,590 14,166.60 17.5 4/4 16,726,967 1,790.60 33.4

2LS-FS-CC 2LS-VD-CC
4 4/4 40,845,010 1,676.29 11.8 2/4 204,447,510 18,324.86 15.4
8 4/4 47,595,288 2,600.39 12.4 4/4 172,436,936 21,807.73 18.4
12 4/4 92,266,789 5,147.90 14.4 4/4 403,612,040 93,867.90 14.2

2LS-FD-U 2LS-FVD-U
4 2/4 99,491,544 10,068.21 19.0 3/4 112,949,084 8,844.56 19.9
8 2/4 76,495,389 8,403.63 18.4 2/4 98,495,104 14,365.35 21.6
12 4/4 69,886,275 6,627.45 19.3 4/4 4,507,079 409.89 28.8

2LS-FD-CC 2LS-FVD-CC
4 3/4 94,335,621 8,206.19 13.8 4/4 48,684,928 2,893.02 15.1
8 3/4 51,330,883 5,114.20 14.9 2/4 114,731,022 13,367.82 16.6
12 4/4 19,171,093 1,061.86 16.8 2/4 246,697,075 21,601.15 18.1

4.2 Analysis on the impact of input parameters

We now analyze the way in which different key parameters constrain and impact the planning
decisions and the structure of optimal solutions. In addition to the particular parameters we have
integrated into traditional lot-sizing to model perishability, such as shelf-life β, and functionality
αut and volume deterioration δut rates, other parameters of traditional use in combination with
the above, markedly affect structure of optimal solutions. One aspect that has greater influence
in this regard is the relation between the ordering batch-size b and the bill of material r. This
relation determines the flexibility to manage raw-material inventories and, depending on β, to
avoid disposing units and incurring in higher finished item inventory costs. The greater flexibility
is found on problem instances with ordering batch-size b = 1 (see Property 1). Figure 4 shows the
changes in the optimal solutions for a single problem instance with a planning horizon of n = 6
periods, and for various β and b values. In particular, Figure 4(a) shows a comparison of the
optimal solutions for the 2LS-FD and 2LS-FVD values for nine different values of β, keeping all
other parameters unchanged.
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Figure 4.: A comparison of solutions for different values of β and b
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As it can be observed, when solving the instance as a 2LS-FD, the optimal solution and the
β values have an inversely proportional relation. This is due to the fact that a shorter shelf-life
requires production to be done faster, which consequently leads to higher finished item inventory
levels and to an important increase of inventory holding costs. On the other hand, a longer shelf-
life allows for more flexibility to balance raw-material and finished item inventory costs, reducing
the total solution value. In contrast, when solving the same instance as a 2LS-FVD, the optimal
solution values are clearly higher, but present no significant variation with respect to the β values.
This is due to a significant increase in raw-material disposal, given its continuous and incremental
volume loss, as well as to larger and more frequent raw-material orders. Figure 4(b) shows the
optimal solutions for the same instance with an additional variation on the ordering batch-size
b ∈ {20, 30, 40, 50}. Although the effect that b has on the optimal solutions is linked to the bill of
material r, we can observe that, for the case of the 2LS-FD, its increment also corresponds to an
increment in the value of the objective function value.

5. Conclusions

In this paper, we studied how raw-material perishability considerations can be integrated into
classical lot-sizing problems. We introduced four variants of the two-level lot-sizing problem with
different types of raw-material perishability: (a) fixed shelf-life, (b) functionality deterioration, (c)
volume deterioration, and (c) functionality-volume deterioration. We proposed MIP formulations
for each of these variants. We pointed out the impact that perishability has in the production
process of finished items regarding: manufacturing, inventory, disposal costs, capacity consumption,
and quality. To the best of our knowledge, these aspects have not been previously studied in the
literature.

Additionally, we studied two solution algorithms using a standard lot-sizing model as a basis,
and performed computational experimentation and analyses to demonstrate the usefulness of our
proposed models. The number of instances for which these algorithms failed to reach feasible
solutions, and the solution deviations for problems with volume deterioration, demonstrate the
advantages of the use of our models.

Considering the memory limitations that CPLEX had and the long computational times to
solve an important portion of medium to large size problem instances, we are currently developing
solution algorithms for efficiently solving particular variants of these problems.
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