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Abstract In this paper, we present solution algorithms for the Cycle Hub Location
Problem (CHLP), which seeks to locate p hub facilities that are connected by means
of a cycle, and to assign non-hub nodes to hubs so as to minimize the total cost of
routing flows through the network. This problem is useful in modeling applications
in transportation and telecommunications systems, where large setup costs on the links
and reliability requirements make cycle topologies a prominent network architecture. We
present a branch-and-cut algorithm that uses a flow-based formulation and two families
of mixed-dicut inequalities as a lower bounding procedure at nodes of the enumeration
tree. We also introduce a metaheuristic based on greedy randomized adaptive search
procedure (GRASP) to obtain initial upper bounds for the exact algorithm and to
obtain feasible solutions for large-scale instances of the CHLP. Numerical results on a
set of benchmark instances with up to 100 nodes and 8 hubs confirm the efficiency of
the proposed solution algorithms.

Keywords hub location · cycles · branch-and-cut · GRASP

1 Introduction

Hub location problems (HLPs) arise in the design of hub-and-spoke networks. They
have a wide variety of applications in airline transportation, freight transportation,
rapid transit systems, trucking industries, postal operations, and telecommunications
networks. These systems serve demand for transportation of passengers, commodities,
and/or transmission of information (data, voice, video) between multiple origins and
destinations. Instead of connecting every origin-destination (O–D) pair directly, hub-
and-spoke networks serve customers via a small number of links, where hub facilities
consolidate the flows from many origins, transfer them through the hub level network,
and eventually distribute them to their final destinations. The use of fewer links in the
network concentrates flows at the hub facilities, allowing economies of scale to be ap-
plied on routing costs, besides helping to reduce setup costs and to centralize commodity
handling and sorting operations. Broadly speaking, HLPs consider the location of a set
of hubs and the design of the hub-and-spoke network so as to minimize the total flow
cost.

Since the seminal work by O’Kelly (1986), several classes of fundamental discrete
HLPs, such as p-hub median problems, uncapacitated hub location problems, p-hub
center problems, and hub covering problems, have been studied in the literature. For a
detailed classification and review of discrete HLPs, the readers are referred to Alumur
and Kara (2008), Campbell and O’Kelly (2012), Zanjirani Farahani et al (2013), and
Contreras (2015). For the case of continuous HLPs, we refer the readers to Iyigun (2013)
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and references therein. Even though these problems are different on a number of char-
acteristics, mainly due to their particular applications, the vast majority of them share
in common four assumptions. The first one is that flows have to be routed via hubs and
thus, paths between O–D nodes must include at least one hub. Second, it is possible to
connect hubs with more effective pathways that allow a constant discount factor to be
applied to the flow cost between hubs. The third assumption is that hub arcs have no
setup cost and thus, hub facilities can be connected at no additional cost. The last one
is that distances between nodes satisfy the triangle inequality.

To some extent, the above mentioned assumptions and their implications simplify
the network design decisions. For example, the last two assumptions allow the backbone
network to be fully interconnected (i.e. a complete graph), whereas the access network is
determined by the allocation pattern of O–D nodes to hub facilities. Moreover, the com-
bination of the first, third and fourth assumptions results in O–D paths containing at
least one hub or at most two hub nodes. This results in HLPs having a number of attrac-
tive theoretical features, which have given rise to various mathematical models (Ernst
and Krishnamoorthy, 1998a; Labbé and Yaman, 2004; Hamacher et al, 2004; Contreras
and Fernández, 2014) and specialized solution algorithms (Ernst and Krishnamoorthy,
1998b; Labbé et al, 2005b; Cetiner et al, 2010; Contreras et al, 2011; Martins de Sá
et al, 2015b) that exploit the structure of the hub-and-spoke network to solve real-size
instances. In several applications, these assumptions are reasonable and provide a good
approximation to reality. However, in other applications, they can lead to unrealistic
results.

It is known that fully interconnected networks may be prohibitive in applications
where there is a considerable setup cost associated with the hub arcs (see, for instance,
O’Kelly and Miller, 1994; Klincewicz, 1998). To overcome this deficiency, several models
considering incomplete hub networks have been introduced. The so-called hub arc lo-
cation problems (Campbell et al, 2005a,b) relax the assumption of full interconnection
between hubs and deals with the location of a set of hub arcs that may (or may not)
require a particular topological structure in the induced network. Some of these models
do not even require the hub arcs to define a single connected component. Alumur et al
(2009) and Calık et al (2009) study the design of incomplete hub networks with single
assignments in which no network structure other than connectivity is imposed on the
backbone network. Other works have also proposed different models that consider an
incomplete backbone network with a particular topological structure. For example, Con-
treras et al (2009, 2010) and Martins de Sá et al (2013) study the design of tree-star hub
networks in which the hubs have to be connected by means of a tree and the O–D nodes
follow a single allocation pattern to hubs. These papers focus on the minimization of
the total flow cost whereas Kim and Tcha (1992), Lee et al (1996), and Lee et al (1993)
consider minimizing the setup costs associated with the design of tree-star networks.
Labbé and Yaman (2008) and Yaman (2008) consider the design of star-star networks in
which hub nodes are directly connected to a central node (i.e. star backbone network)
and the O–D nodes are assigned to exactly one hub node. Yaman (2009) studies the
problem of designing a three-layer hub-and-spoke network, where the top layer consists
of a complete network connecting the central hubs, and the second and third layers are
unions of star networks connecting the remaining hubs to central hubs and the O–D
nodes to hubs, respectively. Yaman and Elloumi (2012) consider the design of two-level
star networks, while taking into consideration the service quality in terms of the length
of paths between pair of O–D nodes. Martins de Sá et al (2015a,b) study the problem of
designing a hub network in which hubs are connected by means of a set of lines where
the objective is to minimize the total weighted travel time between pairs of nodes.

In this paper, we study the cycle hub location problem (CHLP), which seeks to locate
p hub facilities that are connected with a set of hub arcs by means of a cycle. Each O–D
node must be allocated to exactly one hub (i.e. single assignment) and flows between
pair of nodes have to be routed through the cycle-star network so as to minimize the
total flow cost. The CHLP is a challenging NP -hard problem that combines location and
network design decisions. The location decisions focus on the selection of the set of nodes
to locate facilities, whereas the network design decisions focus on the design of the cycle-
star network, by selecting the access and hub arcs as well as the routing of flows through
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the network. This problem was first introduced in Contreras and Fernández (2012) in
the context of general network design problems, but to the best of our knowledge, there
is no paper in the literature dealing with approximate or exact solution methods for
solving it.

The CHLP shares some similarities with other network design problems in which a
cycle-star network is sought. The so-called ring-star problem (RSP) that arises in the
design of telecommunications networks, introduced by Labbé et al (2004), aims to locate
a simple cycle through a subset of nodes with the objective of minimizing the sum of
setup costs of the cycle and assignment costs from the vertices not in the cycle to their
closest vertex on the cycle. Another closely related problem is the median cycle problem
(MCP), studied by Labbé et al (2005a). This problem arises in the design of ring-shaped
infrastructures and consists of finding a simple cycle that minimizes the setup costs for
the cycle, such that the total assignment cost of the non-visited nodes do not exceed a
given budget constraint. Current and Schilling (1994) and Gendreau et al (1997) study
covering versions of the RSP in which all nodes must be within a prespecified distance
from the cycle. Baldacci et al (2007) present the capacitated m-ring-star problem, which
deals with the location of m cycles that pass through a central node and the assignment
of nodes to cycles. Lee et al (1998) and Xu et al (1999) study the Steiner ring-star
problem, in which the cycle only contains Steiner nodes chosen from a given set. Current
and Schilling (1994) consider the median tour problem, where a cycle with p nodes has
to be located. It is a bicriteria problem which consists of minimizing the setup cost of
the cycle and of minimizing the total assignment cost of nodes to their closest facilities.
Liefooghe et al (2010) study a bi-objective ring star problem, in which the setup cost of
the cycle and the assignment costs are considered.

All the above mentioned problems focus on the minimization of the setup cost for the
design of the network and on the assignment of nodes to facilities. Service is given at or
from the facilities, so that service demand occurs at nodes. In the case of HLPs, and in
particular the CHLP, service demand is between pairs of nodes and the facilities are used
as intermediate locations in the routes that connect node pairs. Therefore, in addition
to the network design and assignment decisions considered in the above problems the
CHLP considers additional routing decisions and focuses on the minimization of the
total flow cost between many node pairs. This makes the problem more challenging as
the O-D paths need to be known to compute the routing cost. In fact, even if the location
of the hub facilities and the assignment of O-D nodes to hubs is known, the problem
remains NP-hard as it reduces to the minimum flow cost Hamiltonian cycle problem
(see Ortiz-Astorquiza et al, 2015).

Potential applications where the location of a hub cycle is required arise in the design
of telecommunications networks. In this case, hub facilities correspond to electronic
equipments, such as concentrators, multiplexors and switches, and demand flows are
data packages routed over a variety of physical media, such as coper cables, fiber-optic
cables and telephone lines, or through the air by using satellite channels and microwave
links. A common architecture of such networks consists of a number of tributary networks
that connect nodes to the hubs, and a backbone network that interconnects the hubs.
Due to the configuration of these networks, backbone links (i.e. hub arcs) usually have
higher capacities and route larger volumes of flow than tributary links (i.e. access arcs).
A discount on the costs of using a backbone link is thus perceived as compared to the cost
of a tributary link. These usage (or communication) costs represent operations costs or
fees for using a public network. Given the large setup costs incurred for the activation of
links, network planners usually consider the design of a network containing the minimum
number of links so as to minimize the total communication cost. In this sense, tree-star
and line-star topologies are very attractive network topologies. However, these may not
be appropriate for telecommunication networks where there are requirements for the
backbone network to guarantee that there is more than one path between any pair of
hubs, in the event that a backbone link fails. For that reason, a cycle-star topology
may be preferred as it offers an alternative path between every pair of hubs whenever
a link fails. Hence, a hub cycle guarantees connectivity of the remaining network while
minimizing the setup cost. For more details about the design of telecommunications hub
networks, we refer to the review paper by Klincewicz (1998).
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Additional applications for the location of hub cycles arise in public transportation
planning, in particular in the design of rapid transit systems. In this case, network
planners may be interested in studying the impact of extending an already established
public transportation network in a metropolitan region by locating a circular rapid
transit line (i.e. hub cycle), such as a subway, a tram or an express bus lane. Examples
of such circular lines are the Moscow Underground, the Melbourne Circular Tram Line,
and some of the Montreal bus lines, among others. Hub facilities correspond to subway,
tram or bus stations where a change of mode of transportation is usually possible.
Nonhub nodes can be seen as bus stops, taxi stations or urban districts. Demand flow
represents users traveling between O-D pairs and the goal is to improve the network’s
overall efficiency, measured in terms of the users’ travel time. In this case, the discount
factor represents the use of a faster transport technology to connect hub node pairs. In
some situations, a circular line may be desirable not only due to reliability requirements
but also because it offers an alternative path that can considerably reduce the travel
time for some O-D pairs. The case of non-circular lines has been studied in detail in
Martins de Sá et al (2015a,b).

The main contribution of this paper is to propose exact and heuristic approaches for
the CHLP. In particular, we present a flow based formulation for the CHLP which is used
in a branch-and-cut (BC) algorithm to obtain optimal solutions for small to medium size
instances and to provide lower bounds for larger instances. It uses two families of valid
inequalities, which can be seen as an extension of the mixed-dicut inequalities for multi-
commodity network design problems, to improve the linear programming (LP) relaxation
bounds at some nodes of the enumeration tree. We develop separation heuristics to
find violated inequalities efficiently. Moreover, we introduce a metaheuristic based on a
greedy randomized adaptive search procedure (GRASP) to obtain initial upper bounds
for the BC algorithm and to obtain feasible solutions for large-scale instances of the
CHLP. In order to evaluate the efficiency and limitations of our algorithms, extensive
computational experiments were performed on benchmark instances with up to 100
nodes and 8 hubs.

The remainder of the paper is organized as follows. Section 2 provides a formal
definition of the problem and presents a flow-based formulation. The BC algorithm and
the metaheuristic are presented in Sections 3 and 4, respectively. The computational
results and the analysis are presented in Section 5. Conclusions follow in Section 6.

2 Definition and Formulation of the Problem

Let G = (N,A) be a complete digraph, where N = {1, 2, . . . , n} represents the set of
nodes as well as the potential sites for locating hubs and A = N ×N is the set of arcs.
For each ordered pair (i, j) ∈ A, let Wij denote the amount of flow between origin i and
destination j. Thus, Oi =

∑
j∈N Wij is the total flow originating at node i ∈ N , and

Di =
∑
j∈N Wji, is the total flow destined to node i ∈ N . The distances, or flow costs dij

between nodes i and j are assumed to be symmetric, however, they may not satisfy the
triangle inequality property. Given that hub nodes are no longer fully interconnected,
O–D paths on the solution network may contain more than two hub nodes. The per unit
flow cost is then given by the length of the path between an origin and a destination,
where the discount factor 0 < α < 1 is applied to all hub arcs contained on the path.

The CHLP seeks to determine the location of exactly p hubs which are connected
by means of a cycle, and the routing of flows through the hub-and-spoke network. Each
node has to be allocated to exactly one hub and if a node is selected as a hub, then it is
self-assigned. The objective is to minimize the total flow cost. In every feasible solution
to the CHLP: i) there exists p hub arcs; ii) every hub node is connected with exactly
two other hub nodes; iii) the graph induced by the hubs does not contain subtours, and
iv) there are exactly two paths between every pair of nodes on the solution network.
This makes the CHLP more difficult to formulate and solve than classical HLPs, as the
shortest path between O–D nodes, containing an undetermined number of hub nodes
and hub arcs, needs to be determined to evaluate the objective function. Note that when
p ∈ {1, 2, 3}, the CHLP reduces to a classical p-hub median problem in which hubs are
fully interconnected.
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Before presenting a mixed integer programming formulation, we first define the graph
of flows GF = (N,EF ), as the undirected graph with node set N and an edge associated
with each pair (i, j) ∈ N ×N such that Wij +Wji > 0. We assume that GF is made up
of a single connected component since otherwise the problem can be decomposed into
several independent CHLPs, one for each connected component in GF . If a particular
application requires a single cycle and the graph of flows contains more than one con-
nected component, we can replace these flows of value zero with Wij = ε > 0 sufficiently
small.

In order to keep track of the path that is used to send the flow between O–D nodes,
we use flow variables that are commonly used in the hub location literature, for instance
Ernst and Krishnamoorthy (1998b), Contreras et al (2010) and Alumur et al (2015).
For each i ∈ N and (k,m) ∈ A, we define xikm equal to the amount of flow with
origin in node i ∈ N that traverses hub arc (k,m) in the direction k → m. For each
i, k ∈ N ; i 6= k we also define binary location/allocation variables zik that equals one if
and only if a non-hub node i is allocated to hub k. When zkk = 1, node k is selected
as a hub and assigned to itself. Finally, for each k,m ∈ N , k < m, we introduce binary
hub arc variables ykm that equals one if and only if hub arc (k,m) is selected, zero
otherwise. Following Contreras and Fernández (2012), the CHLP can be formulated as
the following mixed integer program:

(P ) minimize
∑
i∈N

∑
k∈N

(cikOi + ckiDi)zik +
∑
i∈N

∑
k∈N

∑
m∈N
m 6=k

αckmxikm (1)

subject to
∑
k∈N

zik = 1 i ∈ N (2)∑
k∈N

zkk = p (3)∑
k∈N

∑
m∈N

ykm = p (4)∑
m>k

ykm +
∑
k>m

ymk = 2zkk k ∈ N (5)

Oizik +
∑
m∈N
m6=k

ximk =
∑
m∈N
m 6=k

xikm +
∑
m∈N

Wimzmk i, k ∈ N ; k 6= i (6)

zkm + ykm ≤ zmm k,m ∈ N ;m > k (7)

zmk + ykm ≤ zkk k,m ∈ N ;m > k (8)

xikm + ximk ≤ Oiykm i, k,m ∈ N ;m > k (9)

xikm ≥ 0 i, k,m ∈ N (10)

zkm ∈ {0, 1} k,m ∈ N (11)

ykm ∈ {0, 1} k,m ∈ N ;m > k (12)

The first term of the objective function represents the flow cost on the access arcs
whereas the second term evaluates the discounted flow cost on the hub arcs. Constraints
(2) ensure that each node is assigned to exactly one hub. Constraint (3) is a cardinality
constraint on the number of hubs that must be opened, whereas constraint (4) state
that the number of hub arcs in the cycle is equal to p. Constraints (5) guarantee that
each hub node must be connected to exactly two other hub nodes. Constraints (6) are
the flow conservation constraints. Constraints (7) and (8) ensure that both end nodes
of a hub arc are opened hubs and also, they ensure that non-hub nodes are assigned
to an open hub. Constraints (9) state that the flow between hubs moves through the
hub cycle. Finally, constraints (10)–(12) are the standard nonnegativity and integrality
constraints. As mentioned in Contreras and Fernández (2012), the assumption that the
graph of flows GF contains a single connected component, together with constraints
(2)–(12), eliminates the need for subtour elimination constraints.
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3 An Exact Algorithm

In this section, we present an exact branch-and-cut (BC) algorithm that uses the linear
programming (LP) relaxation of formulation P as a lower bounding procedure at nodes
of the enumeration tree. The LP bounds from the formulation are strengthened with
the incorporation of two families of valid inequalities that exploit the structure of the
CHLP.

3.1 Valid Inequalities

The first set of inequalities is an adaptation of the so-called mixed-dicut inequalities,
first introduced by Ortega and Wolsey (2003) for the fixed-charge, single commodity,
network flow problem and later extended to the multi-commodity case for the tree of
hubs location problem by Contreras et al (2010). Let Z denote the set of feasible integer
solutions of (2)–(12). The mixed-dicut inequalities can be defined as follows.

Proposition 1 For i,m ∈ N , F ⊆ N \ {m}, J ⊆ N \ {i,m}, and Q =
∑
j∈J∪{m}Wij,

the inequality

∑
k∈N\(F∪{m})

xikm +Q

∑
k∈F
k<m

ykm +
∑
k∈F
k>m

ymk

 ≥ ∑
j∈J∪{m}

Wij (zjm − zim)

(13)

is valid for Z.

The idea behind constraints (13) is that when m is a hub node and i is a non-hub node
not allocated to m, the term on the right-hand-side (RHS)

∑
j∈J∪{m}Wij (zjm − zim),

denotes the total flow originating at i and having as destination some non-hub node
j ∈ J or hub m itself. Therefore, the RHS of (13) is a lower bound on the total flow
arriving to m from i. Note that the RHS can only be non-negative when m is a hub and
i is not allocated to m. As for the left-hand-side (LHS), in any feasible solution that
node i is not assigned to hub m, the flow arriving to m from i will enter m through one
intermediate hub k̂ (possibly node i). Thus, only one of the terms of the LHS will be

positive, depending on whether or not k̂ ∈ F , and such a value will be an upper bound
on the value of the RHS when m is a hub and i is not assigned to m.

We can generalize the mixed-dicut inequalities (13) by considering a set of candidate
hub nodes M ⊆ N and the set of O–D nodes assigned to them as follows. Let δ−(M) =
{(i, j) ∈ A : i ∈ N \M, j ∈M} denote the set of arcs entering the set M .

Proposition 2 For i ∈ N , M ⊆ N\{i}, J ⊆ N\(M ∪ {i}), F ⊆ δ−(M), and Q0 =∑
j∈(J∪M)Wij, the generalized mixed-dicut inequality

∑
(k,m)∈δ−(M)\F

xikm +Q0

 ∑
(k,m)∈F
k>m

ymk +
∑

(k,m)∈F
k<m

ykm


≥

∑
j∈(J∪M)

Wij

(∑
m∈M

zjm −
∑
m∈M

zim

)
(14)

is valid for Z.

Proof Observe that when m ∈M are open hubs and node i is not allocated to any node
in M , the RHS

∑
j∈(J∪M)Wij(

∑
m∈M zjm−

∑
m∈M zim), denotes the total flow coming

from i and destined to either the hub nodes m ∈M or the non-hub nodes j ∈ J assigned
to some hub m ∈M . The RHS of (14) is thus a lower bound on the total flow arriving
to the set of hub nodes M from i. Note that this RHS can only be non-negative when
there is one or more nodes m ∈M which are open hubs and i is not assigned to any of
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them, otherwise the RHS would be less than or equal to zero. In the case of the LHS,
we note that in any feasible solution in which node i is not allocated to a hub m ∈ M ,
any amount of flow routed from i to nodes m ∈ M will arrive via a subset of hub arcs
in the cut δ−(M). If at least one open hub arc is in F , then the second term of the LHS
provides an upper bound on the total amount of flow originated at i with destination
M ∪ J . If all hub arcs in F are closed, then the first term of the LHS provides an upper
bound on the total amount of flow originated at i with destination M ∪ J entering via
a subset of open hub arcs in δ−(M) \ F and the result follows. ut

3.2 Separating Mixed-dicut Inequalities

Given a fractional solution (x̄, ȳ, z̄) of the LP relaxation of formulation (1)-(12), the
separation problem of inequalities (13) and (14) must be solved to determine whether
there exist a violated inequality at (x̄, ȳ, z̄).

In the case of (13), for each pair of nodes i,m ∈ N , we want to find sets F and J
such that

∑
k∈N\(F∪{m})

x̄ikm +Q

∑
k∈F
k<m

ȳkm +
∑
k∈F
k>m

ȳmk

− ∑
j∈J∪{m}

Wij (z̄jm − z̄im) < 0.

Contreras et al (2010) present an exact algorithm for solving the separation problem
of constraints (13) for the tree of hubs location problem. Given that for each i,m ∈ N ,
the proposed algorithm requires the solution of several 2-dimensional knapsack prob-
lems, the optimal solution of the separation problem requires a considerable amount of
time, especially for large-scale instances. Therefore, we next present a fast heuristic to
approximately solve the separation problem so as to find violated inequalities (13).

Note that the set J ⊆ N \ {i,m} affects both the LHS and RHS of the inequality,
whereas the set F ⊆ N \ {m} affects only the LHS. Moreover, given a set J and its
associated Q =

∑
j∈J∪{m}Wij , we can efficiently select the set F that minimizes the

value of

L(Q) = min
F⊆N\{m}

∑
k∈N\(F∪{m})

x̄ikm +Q

( ∑
k∈F :k<m

ȳkm +
∑

k∈F :k>m

ȳmk

)
,

using the following result.

Proposition 3 (Contreras et al, 2010) Let i,m ∈ N , Q ≥ 0, and (x̄, ȳ, z̄) be given.
Then, a set F ⊆ N \ {m} that minimizes the value of L(Q) is given by F = F< ∪ F>,
where

F< = {k ∈ N : k < m and
x̄ikm
ȳkm

≥ Q},

and

F> = {k ∈ N : k > m and
x̄ikm
ȳmk

≥ Q}.

The proposed heuristic works by iteratively evaluating different subsets J ⊆ N \
{i,m} and computing L(Q) to check whether the associated inequality is violated or not.
First of all, it constructs an initial set J by considering all j ∈ N such that (z̄jm− z̄im) >
0. Then, it modifies the set J by arbitrarily removing elements from it (one at a time)
and evaluating the magnitude of the (possible) violation of the inequality. Let δ denote
the smallest difference between the LHS and RHS of the constraint. If the output of the
algorithm gives δ < 0, it means that a violated inequality has been found. The procedure
is outlined in Algorithm 1.
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Algorithm 1: Separation of inequalities (13) for (i,m)

J ← {j ∈ N : z̄jm − z̄im > 0}
δ ← L (Q)−

∑
j∈J∪{m}

Wij(z̄jm − z̄im)

for (l ∈ J) do
J ← J \ {l}

if

(
δ > L (Q)−

∑
j∈J∪{m}

Wij(z̄jm − z̄im)

)
then

δ ← L (Q)−
∑

j∈J∪{m}
Wij(z̄jm − z̄im)

else
J ← J ∪ {l}

end if
end for

In the case of inequalities (14), for each i ∈ N , we want to find sets M , J and F
such that

∑
(k,m)∈δ−(M)\F

x̄ikm +Q0

 ∑
(k,m)∈F
k>m

ȳmk +
∑

(k,m)∈F
k<m

ȳkm


−

∑
j∈(J∪M)

Wij

(∑
m∈M

z̄jm −
∑
m∈M

z̄im

)
< 0.

Observe that, sets M ⊆ N\{i} and J ⊆ N\M ∪ {i} affect both the LHS and RHS,
whereas set F ⊆ δ−(M) only affects the LHS. Therefore, for given sets M and J , we
can efficiently select the set F that minimizes the value of

R(Q0) = min
F⊆δ−(M)

∑
(k,m)∈δ−(M)\F

x̄ikm +Q0(
∑

(k,m)∈F
k>m

ȳmk +
∑

(k,m)∈F
k<m

ȳkm)

using a similar approach as in the case of constraints (13).

Proposition 4 Let i ∈ N , Q0 ≥ 0, and (x̄, ȳ, z̄) be a given LP solution. Then, a set
F ⊆ δ−(M) that minimizes the value of R(Q0) is given by F = F< ∪ F>, where

F< = {(k,m) ∈ δ−(M) : k < m and
x̄ikm
ȳkm

≥ Q0},

and

F> = {(m, k) ∈ δ−(M) : k > m and
x̄ikm
ȳmk

≥ Q0}.

Proof A set F ⊆ δ−(M) that minimizes the value of R(Q0) is obtained by solving the
optimization problem:

minimize
∑

(k,m)∈δ−(M)

x̄ikm(1− µkm)

+Q0

 ∑
(k,m)∈δ−(M)

k>m

ȳmkµkm +
∑

(k,m)∈δ−(M)
k<m

ȳkmµkm

 (15)

subject to µkm ∈ {0, 1} ∀(k,m) ∈ δ−(M),

where µkm is a decision variable that denotes whether (k,m) belongs to F or not. The
result follows form the fact that the objective function (15) can be restated as

∑
(k,m)∈δ−(M)

x̄ikm+min


∑

(k,m)∈δ−(M)
k>m

(Q0ȳmk − x̄ikm)µkm +
∑

(k,m)∈δ−(M)
k<m

(Q0ȳkm − x̄ikm)µkm

 .

ut
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The proposed heuristic uses an iterative procedure to construct different subsets of
M ⊆ N\{i} and J ∈ N\{i,m} and computes the associated R(Q0). We first order the
variables z̄kk non-increasingly and denote kr the r-th element, i.e., z̄k1k1 ≥ z̄k2k2 ≥ · · · ≥
z̄knkn . We then construct the set M by adding one element at a time with respect to this
ordering. Every time a new element is added to M , an associated set J is constructed by
considering all j ∈ N such that (

∑
m∈M z̄jm−

∑
m∈M z̄im) > 0, and R(Q0) is computed

to check whether the associated inequality is violated or not. If the violation obtained
from the addition of the new element to M is higher that the violation at the previous
iteration, the element is permanently added to M . Otherwise, it is removed and the next
element in the sequence is selected as candidate. Once all candidates with z̄krkr > 0 are
considered, the algorithm tries to modify J by arbitrarily removing elements from it one
at a time and evaluating the corresponding δ. The procedure is outlined in Algorithm
2.

Algorithm 2: Separation of inequalities (14) for (i)

M ← ∅, δmin ← 0, r ← 1
Sort the values z̄kk non-increasingly
while(z̄krkr > 0) do

M ←M ∪ {kr}
J ←

{
j ∈ N :

∑
m∈M z̄jm −

∑
m∈M z̄im > 0

}
δ ← R (Q0)−

∑
j∈J∪M

Wij(
∑

m∈M z̄jm −
∑

m∈M z̄im)

if (δ < δmin) then
δmin ← δ

else
M ←M \ {kr}

end if
r ← r + 1

end while
for (l ∈ J) do

J ← J \ {l}
δ ← R (Q0)−

∑
j∈J∪M

Wij(
∑

m∈M z̄jm −
∑

m∈M z̄im)

if (δ < δmin) then
δmin ← δ

else
J ← J ∪ {l}

end if
end for

3.3 A Branch-and-Cut Algorithm

We present an exact branch-and-cut method for solving the CHLP. The idea is to solve
the LP relaxation of P with a cutting-plane algorithm by initially including only con-
straints (2)–(8) and (10)–(12) at the root node and iteratively adding constraints (9),
(13), and (14) only when violated by the current LP solution. When no more violated
inequalities are found, we resort to CPLEX for solving the resulting formulation by
enumeration, using a call-back function for generating additional violated constraints
(9),(13) and (14) at the nodes of the enumeration tree. The separation problem of
inequalities (9) is solved by inspection at every node of the tree. The separation of in-
equalities (13) is carried out using Algorithm 1 at the root node and at every other node
at a predetemined depth. The separation problem of inequalities (14) is carried out using
Algorithm 2 and only at the root node of the enumeration tree. For constraints (13) and
(14), we limit the number of generated cuts at every iteration of the separation phase by
using a threshold value ε for the minimum violation required for a cut to be added. We
use a branching strategy in which the highest priority is given to the location variables
(zkk), followed by the hub arc variables (y), and least priority to the allocation variables
(zik).



10 Ivan Contreras et al.

4 A Heuristic Approach

In this section we propose a GRASP for the CHLP. GRASP is a multi-start metaheuristic
used for solving combinatorial optimization problems (Festa and Resende, 2011). In
GRASP, each iteration consists of two phases: a constructive phase and a local search
phase.

For the CHLP we propose a constructive phase that comprise three steps. In the first
step, a set of p hubs is randomly selected among a set of candidate nodes. The remaining
nodes are then assigned to their closest open hub. Finally, a set of p hub arcs, associated
with the selected hub nodes, are then chosen in such a way that they form a cycle on
the backbone network. Later, a local search phase is used to improve the initial solution.
In particular, a variable neighborhood descent (VND) method is used to systematically
explore a set of neighborhoods that modify the structure of the network.

In what follows, solutions are represented by a set of hub nodes H, a set of hub
arcs E, and an assignment mapping a. Therefore, solutions are designated by the form
S = (H,E, a) ,where H ∈ N denotes the set of selected sites to locate hubs, i.e., H(i) = 1
if node i ∈ N is selected to be a hub, E : e→ R represents the set of arcs between hub
nodes, i.e., E(e) = 1 if hub arc e exists, and a : N → H is the assigning mapping, i.e.,
a(j) = m if node j ∈ N is assigned to hub node m ∈ H.

4.0.1 Constructive Phase

Let S = (H,E, a) be a partial solution where H(i) = null, E(e) = null and a(j) = null.
To generate a feasible solution, three steps are considered; the selection of a set of hubs,
the assignment of nodes to hubs and the connection of hubs so as to construct a cycle. A
restricted candidate list (RCL) is built using a greedy function, where, at each iteration
t, a sub-region N t

i (r) = {j ∈ N t : dij ≤ r} of candidate nodes N t around a node i with
a radius of size r is considered. We define the greedy function as

ψ1
i =

∑
j∈Nt

i (r)

(Wij +Wji) ,

and

ψti =
∑

j∈Nt
i (r)

(Wij +Wji) +
∑

j∈Nt
i (r)

∑
k∈{1,...,t−1}

∑
m∈Nk

i(k)
(r)

(Wjm +Wmj),

for t > 1, where i(k) denotes the node selected as a hub at iteration k. The first term
of ψti represents the flow originating from node i with destination N t

i (r), and the total
flow going into node i coming from nodes in N t

i (r). That is, node i is considered as a
potential hub to serve nodes j ∈ N t

i (r). The second term of ψti represents the amount of
flow that needs to be routed between nodes inside the sub-region N t

i (r) of a candidate
hub node i and the nodes inside the sub-regions Nk

i(k)(r) of the open hubs i(k) selected
in previous iterations k = 1, . . . , t− 1.

In order to achieve a trade-off between quality and diversity, a partially randomized
greedy procedure is considered. At each iteration, one element is randomly selected from
the RCL to become a hub. The RCL is updated at each iteration of the construction
phase and contains the best candidate nodes N t with respect to the greedy function.
Let ψtmin = min{ψti : i ∈ N t} and ψtmax = max{ψti : i ∈ N t}, then

RCL = {i : ψti ≤ ψtmin + β
(
ψtmax − ψtmin

)
},

where 0 ≤ β ≤ 1. Once a hub is located at a candidate node i, we remove all nodes in
N t
i (r) from the set of candidate nodes N t+1. When p hubs are opened, all the non-hub

nodes are simply assigned to their closest opened hub. In order to construct a feasible
solution, a nearest neighbor algorithm (see, Cook et al, 1998) is applied to connect the
set of selected hubs by means of a cycle. It works by arbitrarily selecting a hub node
and connecting it to the nearest hub not yet connected. The process continues until all
hubs are connected. The constructive phase is outlined in Algorithm 3.
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Algorithm 3: Constructive Phase of GRASP

H ← φ, t← 0, Nt ← N
while (| H |6= p) do

Evaluate ψt
i for all i ∈ Nt

RCL = {i : ψt
i ≤ ψt

min + β
(
ψt
max − ψt

min

)
}

Select randomly i∗ ∈ RCL
H ← H ∪ i∗
Nt+1 ← Nt\{i∗ ∪Nt

i∗ (r)}
t← t+ 1

end while
Assign each node j ∈ Nt to its closest hub in H.
Connect hubs using the Nearest Neighbor Algorithm.

4.0.2 Local Search Phase

The local search phase is used to improve the initial solution obtained from the con-
structive phase. We use a local search procedure based on a VND method for the CHLP.
To the best of our knowledge, the VND method was initially introduced by Brimberg
and Mladenovic (1996) and is based on a systematic search in a set of k neighborhoods,
N1,N2, . . . ,Nk. The VND works by performing a local search in a neighborhood N1 un-
til a local optimal solution is found. After that, the algorithm switches to neighborhoods
N2, . . . ,Nk, sequentially, until an improved solution is found. Each time the search im-
proves the best known solution, the procedure restarts using the neighborhood N1. Our
implementation of the VND algorithm explores three types of neighborhood structures.
The first type consist of the classical shift and swap neighborhood. The former one
considers all solutions that differ from the current one by changing the assignment of
one node, whereas the latter one tries to improve the current solution by swapping the
assignment of two nodes. Let S = (H,E, a) be the current solution, then

N1(s) = {s
′

= (H,E, a
′
) : ∃!j ∈ N, a

′
(j) 6= a(j)},

and

N2(s) = {s
′

= (H,E, a
′
) : ∃!(j1, j2), j

′

1 = a(j2), j
′

2 = a(j1), ∀j 6= j1, j2}.

To explore N1(s), all pairs of the form (i, j) are considered, where a(j) 6= i and for N2(s)
all pairs of the form (j1, j2) are considered, where a(j1) = a(j2). In both cases, we use
a best improvement strategy.

The second type of neighborhood structure affects the current set of open hubs. Let
S = (H,E, a) be the current solution and let i ∈ N\H be the nodes which are candidate
to replace the open hubs located at site m ∈ H, then

N3(s) = {S
′

= (H
′
, E
′
, a
′
) : S

′
= H

′
\{m} ∪ {i},m ∈ S

′
, i ∈ N\H}.

To explore N3(s) all nodes m ∈ N\H are considered, and a set of solutions is obtained
from the current one by interchanging an open hub by a closed one and reassigning all
the non-hub nodes to their closest open hub.

The third type of neighborhood structure is the so-called 2-opt (Cook et al, 1998),
commonly used in other optimization problems in which cycle structures are sought.
The procedure works by deleting two hub arcs and reconnecting the network with a new
cycle. Let S = (H,E, a) be the current solution, then

N4(s) = {S = (H,E
′
, a) : E

′
= E\{(i1, j1), (i2, j2)} ∪ {(i1, i2), (j1, j2)}}.

In this neighborhood, a best improvement strategy is also considered.

5 Computational Experiments

We conduct computational experiments to analyze and compare the performance of
the flow-based formulation presented in Section 2 using the commercial solver CPLEX
as well as the proposed solution approaches—the exact branch-and-cut algorithm and
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the GRASP metaheuristic. The formulation and solution algorithms were coded in C
and run on a single possessor of an HP station with an Intel Xeon CPU E3-1240V2
processor at 3.40 GHz and 24 GB of RAM under Windows 7 environment. All inte-
ger programs were solved using the callback library of CPLEX 12.4. The numerical
tests were performed using the Australian Post (AP ) instances obtained from the OR
library (http://mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html). These instances comprise
of postal flow and Euclidean distances between 200 postal districts in the metro Sydney
area. In our experiments, we have selected instances with |N | = 10, 20, 25, 40, 50, 60,
70, 75, 90, and 100 nodes. The number of hubs to be opened was set to p = 4, 6 and 8,
and the value of discount factor was varied from α =0.2, 0.5 to 0.8.

In the first part of the computational experiments, we focus on analyzing the im-
provement of the linear programming (LP) relaxation bounds obtained when adding the
cuts automatically generated by CPLEX and the two families of valid inequalities (13)
and (14) introduced in Section 3 for the formulation P . In particular, we compare the
results of the following experiments:

1. We solve the LP relaxation of formulation P and we do not allow CPLEX to add
cuts.

2. We solve the LP relaxation of formulation P and we allow CPLEX to add cuts to
improve the initial LP bounds. All the cuts parameters are set to their default values.

3. We solve the LP relaxation of formulation P and we dynamically add the mixed-
dicut inequalities (13) using the separation heuristic presented in Section 3 to find
violated inequalities. We set ε = 0.001 for the minimum violation required for a cut
to be added.

4. We solve the LP relaxation of formulation P and we dynamically add the generalized
mixed-dicut inequalities (14) using the separation heuristic presented in Section 3 to
find violated inequalities. We set ε = 0.01 for the minimum violation required for a
cut to be added.

The detailed results of these experiments are shown in Table 1. The first column
lists the problem parameters such as the number of nodes |N |, the number of hubs to be
opened p and the discount factor α for each instance. The second set of columns under
the heading CPLEX reports the LP gap (%LP ), the LP gap after adding CPLEX
cuts (%LPcuts), the number of cuts added by CPLEX (#cuts), and the CPU time
in seconds (CPU) to solve the LP and to add the cuts. The %LP gap is computed as
(UB−LP )/(UB)×100%, where UB denotes the best upper bound (or optimal solution
value) and LP is the optimal value of the LP relaxation. The third set of columns under
the heading MDI shows the results after adding the mixed-dicut inequalities (13) to P .
The results include the LP gap (%LP) after adding inequalities (13), the number of
violated cuts added (Cuts), and the CPU time. The last set of columns reports the LP
gap (%LP) after adding the generalized mixed-dicut inequalities (14), the number of
violated inequalities (Cuts), and the CPU time. In all cases, the CPU time include the
time for separating and adding violated inequalities.

Results in Table 1 show that the average percent LP gap of formulation P is 6.64%
and ranges from 1.15% to 12.84%. With the addition of CPLEX cuts, the LP gap is
reduced to an average of 5.36% and ranges from 0.48% to 10.58%. However, after adding
the mixed-dicut inequalities (13), the average LP gap is further reduced to 2.82% with a
range from 0.03% to 7.14%. When adding the generalized mixed-dicut inequalities (14),
the average LP gap is 1.94% with a range from 0.00% to 5.86%. In fact, constraints (14)
are able to close the optimality gap, and obtain an integer optimal solution in 3 out of
the 6 instances with 10 nodes. However, given that the number of cuts added is much
larger compared to the number of cuts added by CPLEX, the CPU time to solve the
associated LPs substantially increases. We also note that the quality of the obtained
LP bounds seem to depend on the size and the number of hub facilities as well as the
discount factor. For instance, the LP gap is worse as N and p increase. Also, the LP
gaps tend to deteriorate as the value of the discount factor α increases. It is interesting
to observe that the number of generated cuts also depend on these parameters.

We next compare the impact of separating both families of inequalities (13) and (14)
and adding them to formulation P at the same time. In particular, we compare the
results of the following experiments:
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Table 1 Comparison between CPLEX cuts and mixed-dicut inequalities

Instance CPLEX MDI GMDI
|N |-p-α % LP %LPcuts Cuts CPU % LP Cuts CPU % LP Cuts CPU
10-4-0.2 3.37 1.96 84 < 1 0.92 182 < 1 0.60 245 < 1
10-4-0.5 5.34 2.18 75 < 1 0.68 178 < 1 0.07 232 < 1
10-4-0.8 6.93 3.05 74 < 1 0.64 225 < 1 0.00 241 < 1
10-6-0.2 5.62 2.64 69 < 1 0.91 195 < 1 0.00 265 < 1
10-6-0.5 8.58 4.50 88 < 1 1.54 289 < 1 0.00 292 < 1
10-6-0.8 10.62 7.21 71 < 1 2.78 294 < 1 0.09 467 < 1
20-4-0.2 1.70 0.48 198 1 0.03 393 < 1 0.10 432 1
20-4-0.5 4.33 3.32 288 2 1.48 1119 3 1.28 1449 9
20-4-0.8 5.11 3.41 215 2 1.47 843 2 0.83 1077 5
20-6-0.2 5.60 3.62 288 2 1.15 1218 5 0.72 2104 17
20-6-0.5 8.26 6.60 294 2 2.80 1643 5 1.69 2802 29
20-6-0.8 9.68 7.60 300 2 4.46 1388 5 2.87 2300 18
20-8-0.2 7.35 5.98 234 2 2.93 1517 4 1.98 2070 20
20-8-0.5 12.84 10.58 313 3 6.48 1868 7 4.46 3370 37
20-8-0.8 12.66 9.93 329 5 6.18 1671 6 3.87 3059 25
25-4-0.2 1.79 1.35 262 2 0.13 1198 3 0.26 1052 5
25-4-0.5 3.15 2.75 214 2 0.42 1327 5 0.33 1290 10
25-4-0.8 4.50 4.03 249 3 1.63 1211 5 0.76 1289 14
25-6-0.2 3.46 2.44 275 2 0.22 1528 6 0.15 1721 13
25-6-0.5 6.35 5.57 273 2 1.80 2059 6 1.04 2635 44
25-6-0.8 8.87 6.99 392 7 4.29 1476 7 2.72 2488 39
25-8-0.2 7.51 6.31 386 5 3.43 2527 14 2.82 4001 94
25-8-0.5 10.12 8.26 390 6 4.71 2279 11 3.15 3472 81
25-8-0.8 11.09 8.98 378 8 5.84 1851 10 3.66 3255 58
40-4-0.2 1.65 1.55 411 7 0.21 2613 25 0.44 2179 83
40-4-0.5 3.40 3.10 446 17 0.94 2922 66 0.80 3597 379
40-4-0.8 5.29 5.23 398 21 2.44 3164 76 1.60 3786 485
40-6-0.2 4.10 3.44 525 18 1.39 4958 88 1.47 6180 958
40-6-0.5 7.45 7.28 619 22 3.88 5619 124 3.10 8441 2389
40-6-0.8 8.34 8.01 511 27 4.80 3989 92 3.06 7543 2236
40-8-0.2 6.54 5.84 660 17 3.38 6369 96 2.81 11774 2868
40-8-0.5 10.80 9.42 774 46 6.44 5039 125 4.82 10104 4731
40-8-0.8 10.21 8.86 779 48 5.96 4211 106 3.83 9105 3427
50-4-0.2 1.15 1.02 392 23 0.08 2250 41 0.23 2304 144
50-4-0.5 2.57 2.58 610 51 0.52 3677 216 0.62 4091 1326
50-4-0.8 5.02 4.68 504 70 2.45 3838 305 1.66 4768 2184
50-6-0.2 3.56 2.96 631 49 1.06 5486 240 1.21 7448 3605
50-6-0.5 7.92 7.54 850 65 4.78 6132 386 4.13 11016 11900
50-6-0.8 8.20 8.08 756 74 5.18 5219 338 3.57 12809 18687
50-8-0.2 6.41 5.87 867 52 3.72 7381 326 3.51 12827 11965
50-8-0.5 10.76 9.82 1047 94 7.04 6984 393 5.86 14684 27641
50-8-0.8 10.60 10.03 866 96 7.14 5640 348 5.25 1278 18706
Average 6.64 5.36 413.93 20 2.82 2713.57 83 1.94 4179.57 2720

5. We solve the LP relaxation of formulation P and we first dynamically add constraints
(13) using the separation heuristic. When no more inequalities of this type can be
found, constraints (14) are then added.

6. We solve the LP relaxation of formulation P and we first dynamically add constraints
(14) using the separation heuristic. When no more inequalities of this type can be
found, constraints (13) are then added.

The results of these experiments are shown in Table 2. For every instance, we report
the percent LP gap obtained after adding cuts from both families (%LP), the number
of added cuts from both families (Cut1) and (Cut2), respectively, and the CPU time in
seconds (CPU).

Table 2 shows that in the case of MDI + GMDI, the average percent LP gap is
1.75% and ranges from 0% to 5.56%, whereas in the case of GMDI+MDI, the average
LP gap is slightly reduced to 1.68% and ranges from 0% to 5.43%. This is lower than the
LP gaps reported in Table 1 for CPLEX, MDI, and GMDI. Moreover, Table 2 shows
that in 34 out of 42 instances, GMDI +MDI results in lower LP gap as compared to
MDI +GMDI. Furthermore, by adding the two families of inequalities to formulation
P , we are able to obtain an integer solution from the LP relaxation for 5 instances. In
general, combining both families of valid inequalities provides significant improvement
in the quality of the LP bounds. Although the GMDI + MDI scheme provides, on
average, the best LP bounds, the required CPU time is considerably larger than the
other experiments performed. However, experiment 5 provides the best overall results in
terms of the tradeoff between the quality of the LP bounds and the CPU time. Therefore,
in the remainder of the experiments, we consider this scheme only.
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Table 2 Results when combining mixed-dicut inequalities

Instance MDI+GMDI GMDI+MDI
|N |-p-α % LP #Cut1 #Cut2 CPU % LP #Cut1 #Cut2 CPU
10-4-0.2 0.59 197 77 < 1 0.48 60 253 < 1
10-4-0.5 0.00 178 78 < 1 0.00 6 232 < 1
10-4-0.8 0.00 225 60 < 1 0.00 0 241 < 1
10-6-0.2 0.00 195 54 < 1 0.00 0 265 < 1
10-6-0.5 0.00 289 91 < 1 0.00 0 292 < 1
10-6-0.8 0.27 302 203 < 1 0.01 35 480 < 1
20-4-0.2 0.00 398 14 < 1 0.00 48 433 < 1
20-4-0.5 0.99 1210 484 7 0.97 384 1449 11
20-4-0.8 0.67 934 481 5 0.62 225 1077 6
20-6-0.2 0.49 1383 624 16 0.45 446 2104 18
20-6-0.5 1.54 1821 763 15 1.38 472 2802 28
20-6-0.8 2.77 1583 1032 14 2.67 368 2300 17
20-8-0.2 1.99 1582 816 28 1.75 443 2070 19
20-8-0.5 4.43 2061 1356 27 4.27 418 3370 40
20-8-0.8 3.86 1834 1598 20 3.73 308 3059 29
25-4-0.2 0.04 1216 130 4 0.02 339 1052 7
25-4-0.5 0.05 1393 325 20 0.05 296 1290 13
25-4-0.8 0.54 1376 576 16 0.55 298 1289 17
25-6-0.2 0.04 1539 136 8 0.01 156 1823 25
25-6-0.5 0.66 2209 1042 26 0.69 529 2635 50
25-6-0.8 2.55 1680 1212 33 2.45 460 2488 41
25-8-0.2 2.69 2804 1324 38 2.50 938 4001 104
25-8-0.5 2.98 2490 1846 56 2.88 540 3472 75
25-8-0.8 3.66 2092 1579 46 3.51 382 3255 69
40-4-0.2 0.17 2661 120 31 0.04 985 2179 102
40-4-0.5 0.55 3131 778 156 0.46 1,025 3597 430
40-4-0.8 1.26 3609 1728 370 1.27 1,061 3786 520
40-6-0.2 1.33 5104 194 113 1.01 1,815 6180 1040
40-6-0.5 2.97 6269 2228 693 2.69 1,719 8441 2577
40-6-0.8 2.77 4478 4310 1365 2.78 1,190 7543 2247
40-8-0.2 2.57 6868 2912 705 2.52 1,654 11774 3088
40-8-0.5 4.75 5516 4258 1590 4.53 1,464 10104 4706
40-8-0.8 3.52 4675 5210 1946 3.55 1,122 9105 3439
50-4-0.2 0.03 2315 179 61 0.04 533 2304 182
50-4-0.5 0.19 3864 889 506 0.22 1,071 4091 1443
50-4-0.8 1.39 4436 1874 1391 1.36 1,142 4768 2396
50-6-0.2 0.80 5878 1403 822 0.73 2,110 7448 4125
50-6-0.5 3.75 6649 4312 4571 3.72 2,002 11016 12997
50-6-0.8 3.31 5783 6134 7365 3.30 1,481 12809 19314
50-8-0.2 3.05 8113 3867 3226 3.05 2,635 12827 12592
50-8-0.5 5.56 7730 6523 8128 5.43 2,134 14684 29866
50-8-0.8 4.88 6182 8712 12348 5.00 1,331 14882 21671
Average 1.75 2958.38 1703 1090 1.68 801 4506.43 2936

In the second part of the computational experiments, we analyze the performance
of our proposed exact and heuristic approaches. In particular, we compare the quality
of the obtained solutions using both constraints (13) and (14) within a branch-and-
cut framework and the GRASP algorithm introduced in Section 4. These experiments
are performed on the same set of instances as before (ranging from 10 to 50 nodes).
Throughout this experiment, we set a time limit to 86,400 seconds of CPU time. In-
stances that could not be solved to optimality within this time limit are marked with the
label “time”. Preliminary computational experiments showed that the performance of
the branch-and-cut algorithm was sensitive to the values of its various parameters. After
some fine tuning, we fixed the parameters as follows. We set ε = 0.05 for the minimum
violation required for both families of cuts to be added. We also stop adding inequalities
at a given node when the improvement of the LP bounds between the previous iteration
and the current one is less that 0.08%. The separation of inequalities (13) is carried out
using Algorithm 1 at the root node and at all nodes for which the depth is multiple of
25.

The detailed results are reported in Table 3. The first column lists the problem
parameters. The second set of columns under the label “CPLEX” reports the LP gap
(%LP ), the percent deviation between final upper and lower bound (%Gap), the CPU
time (CPU) in seconds, and the number of explored nodes in the branching tree (Nodes).
Note that, the final gap (%Gap) is computed as (UB − LB)/(UB)× 100%, where UB
and LB denote the best upper and lower bounds obtained at termination, respectively.
The third set of columns under the heading “Branch-and-Cut” reports: (%LPcuts) the
LP bound at the root node after adding valid inequalities (13) and (14), (%Gap) the
final percent deviation at termination, the CPU time (CPU) in seconds, and the number
of explored nodes in the branching tree (Nodes).
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The fourth set of columns reports the results of the GRASP. In order to assess the
quality and robustness of the solution obtained from GRASP, the algorithm was run
30 times for each instance. The best objective value obtained across all the 30 runs
is used to compute the best percentage deviation (%Dev) with respect to the optimal
solution value or the best LB bound obtained (i.e.,%Dev = (best solution GRASP −
LB)/(best solution GRASP )×100%). The robustness is measured by using the average
percent deviation (%Avg Dev) using the best solutions obtained in each of the 30 runs.
The CPU time for all the runs of the GRASP is also reported in seconds.

Table 3 Computational results for the branch-and-cut and GRASP algorithms for small/medium size
instances

Instance CPLEX Branch-and-Cut GRASP
|N |-p-α % LP % Gap CPU Nodes %LPcut %Gap CPU Nodes % Dev % Avg CPU
10-4-0.2 3.37 0.00 2 25 0.00 0.00 < 1 0 0.00 0.00 27
10-4-0.5 5.34 0.00 < 1 43 0.80 0.00 < 1 8 0.00 0.00 27
10-4-0.8 6.93 0.00 < 1 16 1.24 0.00 < 1 15 0.00 0.00 27
10-6-0.2 5.62 0.00 1 73 3.93 0.00 < 1 64 0.00 0.00 36
10-6-0.5 8.58 0.00 1 261 4.10 0.00 1 204 0.00 0.00 36
10-6-0.8 10.62 0.00 2 877 5.66 0.00 2 668 0.00 0.00 36
20-4-0.2 1.70 0.00 4 36 0.04 0.00 < 1 3 0.00 0.00 189
20-4-0.5 4.33 0.00 18 485 1.36 0.00 5 54 0.00 0.00 189
20-4-0.8 5.11 0.00 29 1024 0.91 0.00 3 43 0.00 0.00 225
20-6-0.2 5.60 0.00 30 753 0.83 0.00 8 85 0.00 0.00 288
20-6-0.5 8.26 0.00 351 9693 2.08 0.00 24 706 0.00 0.00 315
20-6-0.8 9.68 0.00 1128 32563 3.09 0.00 159 5422 0.00 0.05 351
20-8-0.2 7.35 0.00 181 4837 2.18 0.00 39 1177 0.00 0.00 405
20-8-0.5 12.84 0.00 2737 58631 4.93 0.00 1570 20306 0.00 0.00 468
20-8-0.8 12.66 0.00 8516 245771 4.36 0.00 2120 24271 0.00 0.03 459
25-4-0.2 1.79 0.00 14 66 0.26 0.00 3 19 0.00 0.00 378
25-4-0.5 3.15 0.00 47 248 0.28 0.00 6 16 0.00 0.00 441
25-4-0.8 4.50 0.00 119 928 0.81 0.00 13 50 0.00 0.00 450
25-6-0.2 3.46 0.00 32 312 0.20 0.00 6 22 0.00 0.00 594
25-6-0.5 6.35 0.00 328 3435 1.20 0.00 20 99 0.00 0.00 711
25-6-0.8 8.87 0.00 4065 37955 2.82 0.00 240 2229 0.00 0.00 792
25-8-0.2 7.51 0.00 3170 22421 3.01 0.00 340 2533 0.00 0.00 873
25-8-0.5 10.12 0.00 7711 68475 3.37 0.00 1127 6327 0.00 0.00 999
25-8-0.8 11.09 0.00 18230 152835 4.04 0.00 5855 14780 0.00 0.55 999
40-4-0.2 1.65 0.00 71 127 0.33 0.00 27 32 0.00 0.00 1944
40-4-0.5 3.40 0.00 3445 1816 0.82 0.00 112 69 0.00 0.00 2151
40-4-0.8 5.29 0.00 24354 16182 1.66 0.00 419 343 0.00 0.00 2358
40-6-0.2 4.10 0.00 4119 3332 1.87 0.00 369 1200 0.00 0.00 3303
40-6-0.5 7.45 2.10 time 41396 3.68 0.00 12862 4225 0.00 0.00 3483
40-6-0.8 8.34 1.40 time 46600 3.56 0.00 48756 14547 0.00 0.00 3312
40-8-0.2 6.54 0.70 time 52491 3.77 0.00 17623 9436 0.00 0.00 4905
40-8-0.5 10.80 8.70 time 42625 5.47 3.43 time 6708 3.43 3.43 4788
40-8-0.8 10.21 8.00 time 43053 4.43 2.27 Time 8807 2.27 2.27 4347
50-4-0.2 1.15 0.00 234 190 0.13 0.00 47 28 0.00 0.00 169
50-4-0.5 2.57 0.00 6729 4332 0.47 0.00 262 76 0.00 0.00 177
50-4-0.8 5.02 1.80 86400 12659 1.80 0.00 1570 407 0.00 0.00 162
50-6-0.2 3.56 0.00 25218 7791 1.41 0.00 919 638 0.00 0.00 263
50-6-0.5 7.92 6.60 time 13173 4.57 2.32 time 3554 2.39∗ 2.39 270
50-6-0.8 8.20 7.70 time 8609 4.35 2.64 time 3771 2.64 2.66 253
50-8-0.2 6.41 6.60 time 11128 3.92 1.75 time 3646 1.75 1.76 376
50-8-0.5 10.76 9.60 time 10109 6.70 5.35 time 2961 5.35 5.35 371
50-8-0.8 10.60 10.10 time 14139 6.37 5.48 time 2485 5.48 5.55 316

The results in Table 3 show that by using formulation P and a commercial solver
(CPLEX), we were able to solve 31 instances to optimality and the final gaps on the
remaining instances range from 0.60% to 10.10%. On the other hand, the branch-and-
cut algorithm succeeds in solving 35 out of the 42 instances to optimality within the
time limit. For the remaining 7 instances, the final gaps range from 1.50% to 5.50% .
The branch-and-cut algorithm is faster than CPLEX on 30 out of 31 instances that were
solved to optimality using both the algorithms. Moreover, our branch-and-cut algorithm
is able to solve 4 instances that CPLEX is unable to solve within the time limit. For
the instances that could not be solved to optimality, the branch-and-cut always provides
smaller final percent gaps than CPLEX.

Table 3 also shows that the GRASP algorithm is very effective in finding high quality
solutions for the problem. In particular, it succeeds in finding the optimal solution (or
the best known solution) for 41 out of the 42 instances, while using only a fraction
of CPU time compared to that of the branch-and-cut algorithms. In only one instance
(n = 50, p = 6, and α = 0.5), the branch-and-cut algorithm was able to improve the best
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solution obtained with GRASP by 0.07%. The percent average deviations over 30 runs
ranges from 0.00% to 5.55%, thereby depicting the robustness of the GRASP algorithm.
For 37 instances, GRASP yields the same solution in each run whereas the average
deviation for the other 5 instances range from 0.02% to 0.55%.

In order to further analyze the efficiency and robustness of proposed solution algo-
rithms over large-scale instances, we have run a last set of computational experiments on
instances ranging from 60 to 100 nodes. The results are summarized in Table 4. The first
column lists the problem parameters. The second column reports the improved percent
LP gap (%LP ) obtained by CPLEX when its cut generation strategy is activated.

Table 4 Computational results for branch-and-cut and GRASP for large-scale instances

Instance CPLEX Branch-and-Cut GRASP
|N |-p-α % LP %LPcut % Gap CPU Nodes % Dev % Dev CPU
60-4-0.2 1.69 0.96 0.00 243 224 0.00 0.00 256
60-4-0.5 2.99 1.09 0.00 761 188 0.00 0.00 302
60-4-0.8 5.41 2.10 0.00 8850 939 0.00 0.00 344
60-6-0.2 3.84 2.42 0.00 16838 3927 0.00 0.02 422
60-6-0.5 7.54 4.86 3.45 time 1801 3.45 3.58 584
70-4-0.2 1.57 0.83 0.00 729 379 0.00 0.00 406
70-4-0.5 3.33 1.43 0.00 4315 373 0.00 0.00 457
70-4-0.8 5.59 2.58 0.00 45543 1871 0.11∗ 0.22 551
70-6-0.2 3.88 2.05 0.00 17063 2221 0.00 0.00 737
70-6-0.5 7.83 5.43 4.26 time 802 4.26 4.26 836
75-4-0.2 1.52 1.06 0.00 1320 678 0.00 0.00 475
75-4-0.5 3.40 1.56 0.00 8595 501 0.00 0.00 629
75-4-0.8 5.64 2.54 0.22 time 1727 0.32∗ 0.32 685
75-6-0.2 3.94 2.58 0.25 time 2666 0.25 0.25 868
75-6-0.5 7.61 5.42 4.62 time 766 4.62 4.62 1047
90-4-0.2 1.45 1.35 0.00 9478 2529 0.00 0.00 912
90-4-0.5 3.14 1.93 0.00 65524 1369 0.00 0.00 1042
90-4-0.8 5.40 3.28 3.00 time 165 3.00 3.12 1158
90-6-0.2 3.91 3.34 2.67 time 641 2.67 2.69 1432
90-6-0.5 7.63 5.98 5.96 time 267 5.96 5.96 1788
100-4-0.2 1.50 1.39 0.00 22353 2810 0.00 0.00 1187
100-4-0.5 3.24 2.26 0.74 time 706 0.74 0.74 1448
100-4-0.8 5.52 3.41 3.39 time 29 3.39 3.39 1488
100-6-0.2 4.12 3.73 3.19 time 605 3.19 3.19 1930

It is worth mentioning that CPLEX fails to solve any of these instances within the
time limit due to the size and complexity of problem. However, the exact branch-and-cut
algorithm succeeds in solving 13 out the 24 instances to optimality and for the remaining
instances, the final percent gap is within 6%. The GRASP is able to obtain the optimal
solution for 12 out of the 13 instances that were solved to optimality using the exact
algorithm. For the remaining one instance, the branch-and-cut was able to improve the
best GRASP solution by 0.10%.

Finally, we compare the structure of solution networks obtained with the CHLP and
the classical p-hub median problem (pHMP). Figure 1 illustrates the optimal solutions
for the CHLP and pHMP of the AP instance with n = 20, p = 4 and different values
of α. As can be seen in Figure 1, in both models the location of hub facilities tend
to become closer to each other as the discounting of costs decreases (i.e., α increases).
When considering a small discount factor (α = 0.2) the optimal set of hubs is the same
for both models. However, with larger discount factors, the optimal set of hubs changes.
In the case of α = 0.5, given that node 1 has 23% more incoming and outgoing flow than
node 12, it seems better to open a hub at node 1 and to connect it to hubs 5 and 13 to
reduce the flow cost. As similar situation happens in the case of α = 0.8, where node
14 has 66% more incoming and outgoing flow than node 12. Note that for the pHMP,
the optimal network is the same for α = 0.5 and α = 0.8. However, it is not the case for
the CHLP. This can be partially explained by the fact that in incomplete hub networks,
a smaller discount factor encourage even more the dispersion of hub facilities over the
plane, as compared to a larger discount factor where hubs tend to be closer together.
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Fig. 1 Optimal networks for CHLP and pHMP with p = 4 and different discount factors.

6 Conclusions

In this paper, we studied the cycle hub location problem. We presented two solution
approaches: a branch-and-cut based exact approach and a GRASP based metaheuris-
tic approach. Two families of valid inequalities based on mixed-dicut inequalities were
presented and extensive computational experiments were conducted to evaluate their
impact on the quality of LP bounds. One of these families of valid inequalities is new
and generalizes the other one. These inequalities were embedded into a branch-and-cut
framework to improve the lower bound at some nodes of the enumeration tree. A GRASP
metaheuristic was also presented to efficiently obtain high quality solutions for large-
scale instances. Computational results on benchmark instances with up to 100 nodes
confirm the efficiency and robustness of the proposed algorithms.
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Labbé M, Yaman H, Gourdin E (2005b) A branch and cut algorithm for hub location
problems with single assignment. Mathematical programming 102(2):371–405
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