INSE6441		Jia Yuan Yu
	11: Refinements	
Concordia		April 5, 2017

We have already seen the refinement of Nash Equilibria to Subgame Perfect Equilibria. In this lecture, we see further refinements for multi-stage games of incomplete information.

1 Signaling Game

We consider an important instance of games of incomplete information. In these games, there are two players, a leader and a follower. The leader's action set is A_1 , the follower's is A_2 . The leader has a private type t taking values in T, and utility function u_1 . The follower has a type that is common knowledge to everyone, and utility function u_2 . The follower has an initial belief $p \in \Delta(T)$ about the distribution of the type t, which is also common knowledge.

The leader acts first, and the follower observes this action before taking its own action. A strategy for the leader is a mapping $\sigma_1 : T \to \Delta(A_1)$ from its type $t \in T$ to a probability distribution

$$\sigma_1(z \mid t) \quad z \in A_1.$$

A strategy for the follower is a mapping $\sigma_2 : A_1 \to \Delta(A_2)$ from the leader's action $a_1 \in A_1$ to a probability distribution

$$\sigma_2(z \mid a_1) \quad z \in A_2.$$

Given a strategy profile (σ_1, σ_2) , the expected payoff to the leader is straightforward:

$$\tilde{u}_1(\sigma_1, \sigma_2, t) = \mathbb{E}u_1(\mathbf{a}_1, \mathbf{a}_2, t) = \sum_{a_1 \in A_1} \sum_{a_2 \in A_2} \sigma_1(a_1 \mid t) \sigma_2(a_2 \mid a_1) u_1(a_1, a_2, t).$$

The expected payoff to the follower depends on both the prior belief p and the observation a_1 . Before observing a_1 , the ex-ante expected payoff corresponding to strategy profile (σ_1, σ_2) is

$$\hat{u}_2(\sigma_1, \sigma_2) = \sum_{t \in T} \sum_{a_1 \in A_1} \sum_{a_2 \in A_2} \sigma_1(a_1 \mid t) p(t) \sigma_2(a_2 \mid a_1) u_2(a_1, a_2, t).$$

However, observing a_1 affects the belief of the follower on the probability distribution of the leader's type **t**. By Bayes' rule:

$$\mathbb{P}(\mathbf{a}_1 = a_1, \mathbf{t} = t) = \mathbb{P}(\mathbf{a}_1 = a_1 \mid \mathbf{t} = t)\mathbb{P}(\mathbf{t} = t)$$
$$= \mathbb{P}(\mathbf{t} = t \mid \mathbf{a}_1 = a_1)\mathbb{P}(\mathbf{a}_1 = a_1).$$

Hence, if $\mathbb{P}(\mathbf{a}_1 = a_1) > 0$, then

$$\mathbb{P}(\mathbf{t} = t \mid \mathbf{a}_1 = a_1) = \frac{\mathbb{P}(\mathbf{a}_1 = a_1 \mid \mathbf{t} = t)\mathbb{P}(\mathbf{t} = t)}{\mathbb{P}(\mathbf{a}_1 = a_1)}.$$

Given strategy profile (σ_1, σ_2) and the observation a_1 , the ex-post expected payoff to the follower is

$$\begin{split} \tilde{u}_{2}(\sigma_{1},\sigma_{2},a_{1}) &= \sum_{t \in T} \sum_{a_{2} \in A_{2}} \mu(t \mid \sigma_{1},a_{1}) \sigma_{2}(a_{2} \mid a_{1}) u_{2}(a_{1},a_{2},t), \\ \text{for all } t \in T, a_{1} \in A_{1}: \quad \mu(t \mid \sigma_{1},a_{1}) &= \begin{cases} \frac{\mathbb{P}(\mathbf{a}_{1}=a_{1} \mid \mathbf{t}=t)\mathbb{P}(\mathbf{t}=t)}{\mathbb{P}(\mathbf{a}_{1}=a_{1})} & \text{ if } \mathbb{P}(\mathbf{a}_{1}=a_{1}) > 0, \\ p(t) & \text{ otherwise,} \end{cases} \\ &= \begin{cases} \frac{\sigma_{1}(a_{1} \mid t)p(t)}{\sum_{t' \in T} \sigma_{1}(a_{1} \mid t')p(t')} & \text{ if } \sum_{t' \in T} \sigma_{1}(a_{1} \mid t')p(t') > 0, \\ p(t) & \text{ otherwise.} \end{cases} \end{split}$$

We are ready to definite the following solution concept.

Definition 1.1 (PBE). A Perfect Bayesian Equilibrium of a signaling game is a strategy profile (σ_1^*, σ_2^*) and a posterior belief μ such that for every $t \in T$, and $a_1 \in A_1$:

$$\begin{split} \sigma_1^*(\cdot \mid t) &\in \arg \max_{z \in \Delta(A_1)} \quad \tilde{u}_1(z, \sigma_2^*, t), \\ \sigma_2^*(\cdot \mid t) &\in \arg \max_{z \in \Delta(A_2)} \quad \tilde{u}_2(\sigma_1^*, z, a_1), \\ \mu &= \begin{cases} \frac{\sigma_1^*(a_1 \mid t) p(t)}{\sum_{t' \in T} \sigma_1^*(a_1 \mid t') p(t')} & \text{if } \sum_{t' \in T} \sigma_1^*(a_1 \mid t') p(t') > 0, \\ p(t) & \text{otherwise.} \end{cases} \end{split}$$

The following example illustrates one reason why people go to school.

Example 1.1 (Spence's Education Game). The leader is a worker, the follower is an employer. The worker's type can be t = 1, 2; **t** is a random variable with distribution $\mathbb{P}(\mathbf{t} = 1) = q$. The worker's action is $a_1 \in \mathbb{R}_+$, the amount of investment in education. The employer's action is the wage $a_2 \in \mathbb{R}_+$ offered to the worker, based on the observation of a_1 . Let the employer's belief for types 1,2 be denoted 1 - p, p.

The employer's payoff is

$$u_2(a_1, a_2, t) = -(a_2 - t)^2.$$

The payoff of the worker is

$$u_1(a_1, a_2, t) = a_2 - a_1/t.$$

First, we show that a worker with higher ability prefers at least as much of education as if it has lower ability.

Proposition 1.1 (Monotonicity). Let σ_1^1 and σ_2^2 be equilibrium strategies for types 1 and 2 respectively. If $z^1 \in \text{support}(\sigma_1^1)$ and $z^2 \in \text{support}(\sigma_1^2)$, then $z^1 \leq z^2$.

Proof. By definition of PBE, we have

$$a_2(z^1) - z^1/1 \ge a_2(z^2) - z^2/1,$$

 $a_2(z^2) - z^2/2 \ge a_2(z^1) - z^1/2.$

Adding the two inequalities gives

$$-z^{1}/1 - z^{2}/2 \ge -z^{2}/1 - z^{1}/2$$

(z² - z¹)/2 \ge 0.

Let's look for equilibria for this game. First, consider a PBE where the leader (worker) chooses different actions if different types are observed (i.e., $a_1(1) \neq a_1(2)$). This is called a separating equilibrium. In this case, the follower can infer the type of the leader. The employer's expected payoff is

$$-\mathbb{E}(a_2-\mathbf{t})^2,$$

and its optimal strategy is^1

$$a_2(a_1) = \mathbb{E}[\mathbf{t} \mid a_1] = t.$$

Consider the following PBE strategy for the worker:

- if t = 1, then choose $a_1 = 0$,
- if t = 2, then choose $a_1 = a^*$ for some constant $a^* > 0$,

which is reasonable by the monotonicity proposition and since the expected payoff of the worker is

$$\mathbb{E}[\mathbf{t} \mid a_1] - a_1/t = t - a_1/t.$$

For this strategy to be optimal, we need:

(for
$$t = 1$$
) $\mathbb{E}[\mathbf{t} \mid 0] - 0/1 \ge \mathbb{E}[\mathbf{t} \mid a^*] - a^*/1$
 $1 - 0 \ge 2 - a^*/1$

and

(for
$$t = 1$$
) $\mathbb{E}[\mathbf{t} \mid a^*] - a^*/2 \ge \mathbb{E}[\mathbf{t} \mid 0] - 0/2$
 $2 - a^*/2 \ge 1 - 0/2.$

In other words,

$$1 \le a^* \le 2.$$

Every strategy for the worker with $a_1(1) = 0$ and $a_1(2) = a^*$ is an equilibrium strategy if $a^* \in [1, 2]$. For the employer, one possible posterior belief is

$$\mu(\mathbf{t} = 1 \mid a_1) = \begin{cases} 1 & \text{if } a_1 < a^* \\ 0 & \text{otherwise.} \end{cases}$$

¹cf. http://www.le.ac.uk/users/dsgp1/COURSES/TOPICS/meansqar.pdf

2 Reading material

• Chapter 8 of Fudenberg and Tirole.