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First, we review how to compute the least-squares forecast in the linear regression
setting. Next, we consider two models of supply chain problems that involve Markov
chains.

1 Stochastic inventory management

Figure 1: From shutterstock.com

The EOQ model has deterministic demand, the newboy model does not allow in-
ventory carry-over from one time period to the next (perishable inventory). These
problem are essentially one-decision problems. In this section, we model stochastic
demand for inventory that is not perishable, where solving the problem requires a se-
quence of decisions. This model of stochastic inventory management is closer in spirit
to the beer game.

Consider a single product, and discrete time steps (e.g., months 1, 2, etc.). Every
time step (e.g., every month), the decision maker oberserves the current inventory
level, and decides how much inventory to order from the supplier. There are costs for
holding inventory. The demand is random, but we know the distribution of the random
variable. The goal is maximize the expected value of the profit (revenue minus costs)
over a number N of months.

Assumptions:

• Delivery is instantaneous (no lead-time);

• The demand take integer values;

• The demand is i.i.d. with given distribution pj = P(Dt = j) for j = 0, 1, . . .;
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• Inventory has a capacity M .

For time steps t = 1, 2, . . ., let st denote the inventory level, at the order size, and
Dt the demand at time t—these are all integer-valued. The inventory level from one
time step to the next follows this dynamics:

st+1 = max{st + at −Dt, 0}.

The reward or profit at time t is

rt(st, at) = F (st + at)︸ ︷︷ ︸
present value of inventory

−O(at)︸ ︷︷ ︸
order

−h(st + at)︸ ︷︷ ︸
holding

, for t = 1, . . . , N − 1,

rN(sN , aN) = g(sN , aN)︸ ︷︷ ︸
salvage value

.

where the expected present value of inventory is

F (z) =
z−1∑
j=0

f(j)︸︷︷︸
revenue from j sales

pj +
∑
j≥z

f(z)︸︷︷︸
revenue capped to z sales

pk, for z = 0, 1, . . .

The order and holding cost function can be arbitrary; for instance, O(z) = [K +
c(z)]1[z>0].

Remark 1. Backorder costs (missed sales) are implicitly accounted for in the profit.

1.1 MDP

We can describe the stochastic inventory management problem as an MDP. The inputs
are:

• Holding cost function h, order cost O, sales revenue f , salvage revenue g;

• Probabilities p0, p1, . . .;

• Time horizon: {1, 2, . . . , N};

• State space: S = {0, 1, . . . ,M};

• Action space: A = {0, 1, . . . ,M};

• Expected reward: r1, r2, . . . , rN ;

• State transition probabilities:

P (s′ | s, a) =


0 if s′ ∈ (s+ a,M ],

ps+a−s′ if s′ ∈ (0, s+ a] and s+ a ≤M,∑
k>s+a pk if s′ = 0 and s+ a ≤M.

The output is a optimal sequence of policies σ1, σ2, . . ., where σj : S → A. These
policies are used to pick the optimal action to take at each time step: suppose that
at time t = 1, 2, . . . , N , we observe the state st (a random variable), then the optimal
action is σt(st).

2



1.2 Solving finite-horizon MDP by backward induction

How do we compute the optimal policies σ1, σ2, . . .? We propose a method of dynamic
programming called backward induction.

To illustrate how it works, consider first the game of tic-tac-toe and solving it
by backward induction. Take the point of view of one player (e.g., the X-player),
consider every possible board configuration with only one last move remaining for the
X-player1, record in a look-up table the outcome. Next, consider every possible board
configuration with two moves remaining, find the best next move using the last look-
up table, record the outcome corresponding to the best move in a new look-up table.
Repeat until we are at the first move for the X-player. As another example, consider
how to solve the shortest path problem by backward induction2.

Figure 2: From https://en.wikipedia.org/wiki/Tic-tac-toe

The backward induction algorith for MDPs proceeds as follows.

1. Set j = N , and VN(s) = maxa∈A rN(s, a) = g(s) for all s ∈ S;

2. For j = N − 1, N − 2, . . . , 1:

(a) For s ∈ S:

i. Compute

Vj(s) = max
a∈A

{
rj(s, a) +

∑
s′∈S

P (s′ | s, a)Vj+1(s)

}
;

ii. Output σj(s) ∈ arg maxa∈A
{
rj(s, a) +

∑
s′∈S P (s′ | s, a)Vj+1(s)

}
.

The output policies σ1, . . . , σN are optimal (cf. Puterman, Section 4.3).
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Figure 3: From Flylib

2 Queues

Queues appear supply chain design: communication networks, supermarkets, assem-
bly lines, airports. Whenever you have customers or items arriving at one rate and
departing at another rate, you have a queue. For instance, queues arise when stock
arrive in a warehouse at a different rate than the demand—inventory is an example of
queue. Queues also arise when customers arrive at random time instants and take a
nonzero amount of time to serve and depart, which is not capture in the Bass model.
Queueing models do capture the interaction between the arrival times and the service
times of the supply chain. The arrivals can model jobs, phone calls, inventory items,
etc. Sevice can model demand, sales, etc.

2.1 Queues as Markov chains

Many queueing models can be analyzed as Markov chains. For instance, in the M/M/1
queue model3, customers arrive at random time instants, where the time interval be-
tween consecutive arrivals is exponential with parameter λ. The customers are served
on a first-come first-served basis. The service times are exponential with parameter
1/µ. There is no limit on the number of customers in the queue.

Figure 4: From https://en.wikipedia.org/wiki/M/M/1_queue

Example 2.1 (M/D/1 (D for deterministic service)). Consider deterministic service
times of length τ . Let X0 = 0 and let Xk denote the number of customers waiting
in the queue when the k-th customer enters service. Let ξk denote the number of
customers who arrived during the k-th customer’s service time. Since the service times

1These are all board configurations where neither player has three squares in a row, and each
player has made four moves.

2Cf. Chapter 11 of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-
Wesley, 1977), http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

3M stands for Markovian: the arrival and the service processes are modeled as Poisson processes,
which are Markovian.
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are fixed, and the time between arrivals are i.i.d. random variables, ξ1, ξ2, . . . are i.i.d.
The queue length evolves as a Markov chain:

Xk+1 = max{Xk + ξk − 1, 0}.

Remark 2. Queues can also be controlled with actions and analyzed as MDPs (cf.
Puterman, Section 3.7).

2.2 Quality of service, waiting time

When queues model customers, an important way of measuring quality of service is
through the waiting times for customers. The waiting times are random variables. For
instance, in the M/D/1 model, the arrival times are t1, t2, . . ., where

t1 = 0,

ti =
i−1∑
j=1

ej, for i = 2, 3, . . . ,

and e1, e2, . . . denote i.i.d. exponential random variables with parameter λ for the times
between consecutive arrivals. Observe that the arrival times form a Markov process.

Suppose that it takes τ time units to serve each customer. Let t1 + d1 + τ, t2 + d2 +
τ, . . . denote the departure times of customers, so that d1, d2, . . . are the durations of
time that customers spend in the queue—i.e., their waiting times. Waiting times are
also described by a Markov process4:

d1 = 0,

di = max{di−1 − (ti − ti−1)︸ ︷︷ ︸
difference in arrival times

+ τ︸︷︷︸
service time

, 0}, i = 2, 3, . . . .

The probability distribution of the random variables di can be derived from first prin-
ciples or estimated by simulation (by generating many samples of each di and counting
empirical frequencies, as in Figure 2.2). The decision-maker can control this probabil-
ity distribution by controling the parameters τ and λ, e.g., by hiring more workers to
reduce service time, by limiting the number of customers arriving in the queue through
an invitation system, etc.

3 Reading material

• Chapters 1, 2, and 3 of Markov Decision Processes (Puterman).

• Chapter 11 of Applied Mathematical Programming by Bradley, Hax, and Mag-
nanti (Addison-Wesley, 1977), http://web.mit.edu/15.053/www/AMP-Chapter-11.
pdf.

4We say Markov chain for processes that take a finite number of values.
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Figure 5: Simulated empirical frequency histogram for di given a fixed di−i.
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