
INSE6290 Jia Yuan Yu

7: Network flow
Concordia November 19, 2015

Network flow problems come in multiple flavors, but they all share a gaphical model.
A graph is a collection of

• Vertices V ,

• Directed edges E ⊆ V × V .

On each edge (u, v), we assign a weight c(u, v), which models its capacity.
We have already seen graphs and network flow problems in this course: Trans-

portation Problem, Uncapacitated Facility Location Problem. This lecture focuses on
another network flow problem: the maximum flow (max-flow) problem.

1 Maximum flow problem

Figure 1: From http://www.theenergycollective.com/ and The Walking Dead.

How many goods can we produce at vertex s, the source, and send from s to
another vertex t, the terminus? In other words, assuming infinite demand at the t
vertex, how can we produce goods at vertex s, and ship them through the network
without incurring any holding cost for those goods?

Answering this question also solves the following problems:

• Delivery of goods in a truck delivery network (e.g., UPS or FedEx trucks on
different legs have available capacities);

• Ticket sale for airlines (vertices are airports, edges are flights);

1

http://users.encs.concordia.ca/~jiayuan/scd15/scd15.html
http://www.theenergycollective.com/


• Water distribution in a pipe network;

• Electricity distribution.

The decision maker’s output is a flow f : V × V → R (one number for each edge)
with the following characteristics:

• Capacity: f(u, v) ∈ [0, c(u, v)];

• Conservation: for each u ∈ V , expect s, t:∑
v∈V

f(v, u) =
∑
v∈V

f(u, v);

• Anti-symmetric shadow edges: for every (u, v) ∈ E, we define f(v, u) = −f(u, v).

Each path in the flow network is a collection of “connected” edges, which represents
one possible supply chain.

Figure 2: Max flow (min cut) problem in the context of the Soviet rail network (cf. clas-
sical paper http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf). The origin
s is to the east of the map, the destination t is to the west.

2

http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf


2 Linear programming

We can solve this problem by linear programming:

max
{xuv :(u,v)∈E}

∑
v:(s,v)∈E

xsv

subject to
∑

u:(u,v)∈E

xuv =
∑

w:(v,w)∈E

xvw, for v ∈ V \ {s, t},

xuv ≤ c(u, v), for (u, v) ∈ E,

xuv ≥ 0, for (u, v) ∈ E.

We simply replaced each output f(u, v) by the decision variable xuv, and expressed the
objective and constraints with linear functions.

There are many ways to solve linear programs (cf. Lecture 5).

3 Ford-Fulkerson

Linear programming solutions for the max-flow problem may take too long, in which
case, we can use the Ford-Fulkerson algorithm.

Example 3.1 (Wikipedia). The idea behind the algorithm is as follows: as long as
there is a path from the source (start node) to the sink (end node), with available
capacity on all edges in the path, we send flow along one of the paths. Then we find
another path, and so on. A path with available capacity is called an augmenting path.

We can solve the max-flow problem as follows:

1. Input: Gc = (V,E), special vertices s, t, and capacity function c.

2. Start with a flow f = 0.

3. While there is a path p from s to t:

(a) (Find an augmenting path in Gc) Find a path p from s to t in Gc.

(b) Find v(p) = min{cf (u, v) : (u, v) ∈ p}.
(c) Update f(u, v)← f(u, v) + v(p) for all (u, v) ∈ p.

(d) (Update the residual network Gc) For each edge (u, v) ∈ p:

i. c(u, v)← c(u, v)− v(p) (Increased flow results in decreased capacity).

ii. c(v, u)← c(v, u) + v(p) (Shadow edge capacity).

4. Output f .

We illustrate this algorithm on the Example of Figure 3.
Let’s consider another example in Figure 3.

3



Figure 3: Max flow example from Introduction to Algorithms.

Figure 4: Max flow example from https://www.topcoder.com/community/

data-science/data-science-tutorials/maximum-flow-section-1/.

4

https://www.topcoder.com/community/data-science/data-science-tutorials/maximum-flow-section-1/
https://www.topcoder.com/community/data-science/data-science-tutorials/maximum-flow-section-1/


4 Reading material

• Ford-Fulkerson: Introduction to Algorithms by Cormen, Leiserson, Rivest, and
Stein.

• More applications of network flows: A full course on network flows.

5

http://www.ieor.berkeley.edu/~hochbaum/files/ieor266-2014.pdf

	Maximum flow problem
	Linear programming
	Ford-Fulkerson
	Reading material

