Particle Image Velocimetry for Fluid Dynamics Measurements

Lyes KADEM, Ph.D; Eng

kadem@encs.concordia.ca Laboratory for Cardiovascular Fluid Dynamics MIE – Concordia University

Presentation

- A bit of history
- What is PIV?
- How to perform PIV measurements?
- Which PIV system and for What?
- How to post-process the Data?

A Little Bit fo History

- Origines: Flow visualizations
- 70's: Laser Speckle Velocimetry
- 80's: LSV,PTV, PIV,
- LASER development
- CCD cameras development
- Computers development

Ludwig Prandtl operating his water channel in 1904

- First scientific paper on PIV (Adrian 1984 in Appl Opt)
- First commercial PIV systems 1988 (TSI Inc.)

What is PIV?

Flow visualization

Particle tracking velocimetry (PTV)

Particle image velocimetry (PIV)

Particle soeckle velocimetry (PIV)

Very Basic Idea Behind Optical flow measurements

Very Basic Idea Behind Optical flow measurements

	0
5	You are Here

Very Basic Idea Behind Optical flow measurements

Laser Sheet

Thin laser sheet Thick laser sheet out of plane movement decrease in S/N

Laser Sheet

- A large amount of light (from 20 mJ to 400 mJ) must be available in a short time (~ 5ns).
- Inter-pulse (Δt) timing may vary from less than 1µs to many ms depending upon the velocity of the flow.
- The repetition rate of a pulsed laser is typically 10-30Hz
 - → adequate only for velocities < 1 m/s</p>

Laser Sheet

Which Laser and for what?

- Double pulsed laser (Δt : 1-150 μs), 10 Hz, adequate for high-speed airflow applications.
- Dual head system (Δt : 100 ns-1s), over 50 Hz, adequate for time resolved PIV.
- Two color Laser for two-color PIV, adequate for two phase flow measurement.

Laser Sheet: Safety

The laser used are usually in Class 4

High power devices; hazardous to the eyes (especially from reflected beam) and skin; can be also a fire hazard

- Keep all reflective materials away from the beam.
- Do not place your hand or any other body part into the laser beam.
- Wear a safety glasses (same wavelength as the laser beam).
- Work back to the laser sheet.
- Put a light to indicate that the laser is on.

Which particle size to choose?: the size dilemma !!!

Light diffusion by a particle: Mie's Theory

Applied for $d_p >> \lambda_{light}$

A part of the light is scattered at 90°:

 $\frac{CCD \ captured \ light \ intensity}{Laser \ light \ intensity} = 10^{-5}$

Light diffusion ~ 1/r²: minimize the distance camera-laser sheet

A <u>large</u> particle scatters more light than a small particle.

 $\frac{side \ intesity(90^{\circ})}{forward \ intesity} = 10^{-3}$

Light scattering by a 10µm glass particle in water (from Raffel 1998)

Which particle size to choose?: the size dilemma !!!

For spherical particles, in a viscous flow at low Reynolds number (Stokes flow)

Velocity shift due to difference in density

$$U = d_p^2 \frac{\left(\rho_p - \rho\right)}{18 \ \mu} \ a$$

For gravitational velocity : $a \equiv g$

Which particle size to choose?: the size dilemma !!!

Step response of a particle

$$\tau_s = d_p^2 \frac{\rho_p}{18 \ \mu}$$

Measures the tendency of a particle to attain velocity equilibrium with fluid

A <u>small</u> particle follows better the flow than a large particle.

15

Which particle size to choose?: the size dilemma !!!

	Follow the flow	Light scattering	Step response
Small particles	Good	Bad	Good
Large particles	Rad	hoop	Bad
	Dau	good	Dau

Which particle size to choose?: the size dilemma !!!

For liquids

- Polystyrene (10-100 μ m); aluminum (2-7 μ m); glass spheres (10-100 μ m).

Usually particle diameter of 10-20 μm is a good compromise.

Which particle size to choose?: the size dilemma !!!

For gas

- Polystyrene (0.5-10 μ m); aluminum (2-7 μ m); magnesium (2-5 μ m); different oils (0.5-10 μ m).

- Due to the great difference between the index of refraction of gas and particles: small particles in gas scatter enough light to be detected

Usually particle diameter of 1-5 μm is a good compromise.

Which particles concentration?

- The probability of finding a particle within the region of interest: 1>> Prob >0.

Usually a concentration of 15-20 particles/mm³

Higher particle concentrations are either not achievable or not desirable fluid dynamically (to avoid a two phase flow effect)

CCD Camera

Particle image acquisition

Single frame/ multi-exposure Multi-frame/ multi-exposure

Ambiguity in the direction of the flow

The spatial resolution of CCD arrays is at least two order of magnitude lower than photographic film.

CCD Camera

Particle image acquisition

CCD Camera: Frame-stradelling technique

Particle image acquisition **Transfert time:** - pixel to frame storage area: 500 ns - frame storage area to PC: 33 ms pixel 1000x1000 frame storage

area

CCD Camera

Particle image acquisition

What do you want from you camera?

- Record sequential images in separate frames.
- High spatial resolution.
- Capture multiple frames at high speed.
- High sensitivity.

Each image is divided into a grid of small sections known as interrogation areas (8 to 64 pixels).

The mean displacement (D) within each interrogation area is calculated and divided by the inter-pulse (Δt)

→ Local mean velocity

How to calculate de particles displacement: Auto-correlation

- The displacement D must be enough important to satellite peaks to be discernable from the central peak.
- Directional ambiguity.

How to calculate de particles displacement: Cross-correlation

- No directional ambiguity.
- Even very small displacements can be measured (~d_p).

FFT based cross-correlation

Cross correlation fonction: $2 \times N^2 \times N^2$ operations

Cross correlation using FFT:

 $R(i, j) = f(i, j) \otimes g(i, j) \Leftrightarrow FFT(R(i, j)) = F(u, v).G^*(u, v)$

Number of operations: N²log₂N

 \Rightarrow In practical applications FFT is used for cross-correlation.

FFT based cross-correlation

Limitations of FFT based cross-correlation

Direct cross correlation can be defined for a finite domain, whereas FFT based cross-correlation is well defined for infinite domain.

The two sub-samples have to be of square and equal size (N) and a power of 2 (8×8 ; 16×16 ; 32×32 ; 64×64).

 \Rightarrow A loss in spatial resolution when N has to be selected larger than required.

Summary of PIV measurement

Optimization of the cross-correlation

- The displacement of the particles during inter-pulse duration must be less that 1/4 of the interrogation area size: "the 1/4 law"

- To increase spatial resolution an interrogation cell overlap of 50% can be used.
- Number of particle per interrogation area: 10-15.
- Standard and deformed window shifting.
- Using PTV and PIV.

Optimization of the cross-correlation

Sub-pixel interpolation

Standard cross-correlation: 1 pixel

Standard cross-correlation and sub-pixel interpolation: 0.1 pixel

3D stereoscopic PIV

3D stereoscopic PIV

(a) Original image

3D stereoscopic PIV

Dual Plan PIV

Endoscopic PIV

tumble flow in IC engine

Spurious vectors !!!!!

- Low particles density
- inhomogeneous particles seeding
- Particles within a vortex
- low S/N
- 3D movement of the particles

Why the spurious vectors have to be eliminated ?

Induce errors in velocity derivation.

How to eliminate spurious vectors?

- Fix a velocity threshold (ex. Max velocity 10m/s)
- Mean local filter (may be biased by the surrounding spurious vectors)
- Temporal median filter
- Median local filter
- Application of the continuity equation
- Calculation of the circulation

How to replace spurious vectors?

- Mean or median of the surrounding velocities.

- A weighted average of the surrounding velocities.

- An interpolation filtering (the spurious vectors are considered as high frequency signals).

Estimation of differential quantities

Finite difference method: forward, backward, <u>center</u>, Richardson, ...

Determination of the vorticity from the circulation (the 8 points circulation method)

Turbulence micro scales (only with high speed PIV)

Pressure field

Micro PIV

41

Polychromatic μ PIV can be used for two phase flow.

Micro PIV

The same old story: the particles

- Particles size: from nanometers to several microns.

- The particles should be large enough to dampen the effects of Brownian motion:

Brownian motion results from the interaction between the particles. This prevents the particles to follow the flow.

The relative error in the measured particle displacement is:

