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SUMMARY

Fowler et al. identified 22 Code Bad Smells to direct the effective refactoring of code. These are
increasingly being taken up by software engineers. However, the empirical basis of using Code Bad
Smells to direct refactoring and to address ‘trouble’ in code is not clear, i.e., we do not know whether
using Code Bad Smells to target code improvement is effective. This paper aims to identify what is
currently known about Code Bad Smells. We have performed a systematic literature review of 319 papers
published since Fowler et al. identified Code Bad Smells (2000 to June 2009). We analysed in detail 39 of
the most relevant papers. Our findings indicate that Duplicated Code receives most research attention,
whereas some Code Bad Smells, e.g., Message Chains, receive little. This suggests that our knowledge of
some Code Bad Smells remains insufficient. Our findings also show that very few studies report on the
impact of using Code Bad Smells, with most studies instead focused on developing tools and methods to
automatically detect Code Bad Smells. This indicates an important gap in the current knowledge of Code
Bad Smells. Overall this review suggests that there is little evidence currently available to justify using
Code Bad Smells. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The 22 Code Bad Smells identified by Fowler et al. [1] aim to indicate software refactoring
opportunities. Fowler et al. [1] suggest that Code Bad Smells can ‘give you indications that there
is trouble that can be solved by a refactoring’. They are widely used for detecting refactoring
opportunities in software [2], and few people argue about their usefulness. However, two recent
studies [3, 4] show that not all Code Bad Smells lead to reduced software reliability. Consequently,
in this paper we ask: Do we know enough about Code Bad Smells to justify their use? And
what is the current state of knowledge on Code Bad Smells? This paper presents our investigation
reviewing the current state of published research on Code Bad Smells.

Fowler and Beck [1] informally introduce 22 Code Bad Smells. These Code Bad Smells range
from straightforward software coding problems, such as ‘Switch Statement’, to complicated soft-
ware structure problems, such as ‘Shotgun Surgery’ (see Appendix A for a summary of Code Bad
Smells). It is likely that our knowledge varies from one Code Bad Smell to the next. In this paper
we examine the current evidence for using each Code Bad Smell.

We review all studies of Code Bad Smells published in leading software engineering journals
and proceedings since Fowler et al. [1] identified Code Bad Smells (Our review spans 2000 to
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June 2009). We select papers and extract data using a systematic literature review protocol which
follows Kitchenham’s [5] literature review guidelines, and statistically analyse the results to answer
the following research questions.

1.1. RQ1: Which Code Bad Smells have attracted the most research attention?

The 22 Code Bad Smells introduced by Fowler et al. [1] target different coding problems. Indeed
it is likely that some Code Bad Smells receive more research attention than others. Consequently,
we investigate the intensity of previous studies of each Code Bad Smell. This will indicate whether
some Code Bad Smells are popular whereas others lack attention. This will identify gaps in the
current research of Code Bad Smells and provide directions for further study on Code Bad Smells.

1.2. RQ2: What are the aims of studies on Code Bad Smells?

Investigating why researchers are studying Code Bad Smells can provide insight into what aspects
of Code Bad Smells are most commonly studied, i.e., we will capture whether the current studies
of Code Bad Smells mainly aim to introduce tools/methods to detect Code Bad Smells or whether
studies explore methods to refactor Code Bad Smells from code. Furthermore, we will also identify
whether the aims of studies for different Code Bad Smells vary. This will tell us whether the
different aspects of Code Bad Smells are studied in all Code Bad Smells, and provide information
about which aspects lack attention.

1.3. RQ3: What methods have been used to study Code Bad Smells?

This analysis will identify whether empirical as opposed to theoretical approaches have been used
to investigate Code Bad Smells. We will also identify the source of data collected in studies,
in particular whether the data used are real world, open source, commercial or academic. This
will indicate the balance of empirical evidence and theoretical underpinnings presented by the
published studies, and suggest what data and methods should be applied in future studies of Code
Bad Smells.

1.4. RQ4: What evidence is there that Code Bad Smells indicate problems in code?

Fowler et al. [1] suggest that Code Bad Smells cause detrimental effects on software and provide
useful indicators of opportunities for refactoring. However, they do not provide any empirical
evidence to support this claim. We explore whether any published studies provide empirical
evidence to support Fowler et al.’s claims.

The remainder of this paper is structured: Section 2 describes our systematic literature review
protocol. Section 3 provides the results of this systematic literature review. Our results are discussed
and the research questions are answered in Section 4. Conclusions are drawn in Section 5.
Section 6 describes the limitation of our studies, and suggests further investigations to follow-up this
study.

2. REVIEW PROTOCOL

According to Kitchenham [5]:
‘A systematic literature review is a means of identifying, evaluating and interpreting all
available research relevant to a particular research question, or topic area, or phenomenon of
interest’.

Kitchenham [5] also indicates that a systematic literature review is a useful approach to ‘summa-
rize the existing evidence concerning a treatment or technology’.

We adopted our own systematic literature review protocol based on Kitchenham’s [5] systematic
review guidelines. Four researchers are involved in our systematic literature review. This section
briefly describes our review protocol, more details of which can be found in [6].
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Table I. Targeted journals and proceedings.

Publication name Abbreviation

IEEE Xplore (http://ieeexplore.ieee.org) IEEE
Journal of Systems and Software JSS
Empirical Software Engineering Journal EMSE
Information and Software Technology Journal IST
Journal of Software Maintenance and Evolution: Research and Practice JSME
ACM Transactions on Software Engineering Methodology TOSEM
Software: Practice and Experience Journal SP&E

IEEE Xplore is an online database of the IEEE Computer Society. It contains all journals and conference
proceedings published by IEEE. Appendix D lists the IEEE journals and conference proceedings included in
this study.

2.1. Define search strategy

Our search strategy addresses the scope of our search for published studies, the search terms we
used and the inclusion/exclusion criteria adopted for studies.

2.1.1. Scope. This systematic literature reviews used papers and publications from seven different
sources (Table I).

There are two reasons for choosing IEEE Xplore. First, IEEE Computer Society is said to be
one of the main platforms for the publication of software engineering research results [7]. Second,
IEEE Xplore contains a wide range of journals and proceedings which means that a variety of
studies on Code Bad Smells are likely to be contained in this database. In addition important joint
IEEE/ACM proceedings are also included in this portal (for example, IEEE/ACM International
Conference on Automated Software Engineering).

As including papers from one single publisher may be a bias in our study, we also consider
papers from six software engineering journals. These journals have been used in Sjoeberg et al.’s [8]
study and are thought to be the most representative leading journals in software engineering. We
review all Code Bad Smell papers published in these software engineering publications since
Fowler et al. [1] identified Code Bad Smells (2000 to June 2009 inclusive).

2.1.2. Search terms. Our search terms are constructed using the following strategy:

1. Derive major terms from research questions.
2. Identify alternative spellings or synonyms for major terms.
3. Check the search terms in relevant papers we already have.
4. Use the Boolean OR to combine alternative spellings and synonyms. Use the Boolean AND

to link major terms.

The details about how we apply this strategy can be found in [6]. Our search terms are attached
in Appendix B of this paper. In total, 319 papers were returned from our selected databases using
these search terms.

2.1.3. Inclusion/exclusion criteria. Papers from the 319 identified are included for further analysis
by applying the inclusion/exclusion criteria presented in Table II.

This systematic literature review excludes studies using secondary data. This is because although
some studies using secondary data could improve the understanding of Code Bad Smells, these
studies do not add new empirical evidence. As a consequence, we do not consider studies using
secondary data in this systematic literature review.

2.2. Define classification schemas

In order to provide quantitative evidence to answer our research questions, defining classification
schemas to accurately classify data collected from investigated papers is important in this literature
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Table II. Inclusion/exclusion criteria.

Inclusion criteria Exclusion criteria

1. A paper must be on the topic of software
engineering. Consequently, it must be categorized
into one or more of the 10 Knowledge Areas
(KAs) defined by SWEBOK [9].

1. A paper just mentions the names of Code Bad
Smells but does not further discuss or
investigate.

2. A paper answers at least one of our research
questions directly.

2. A paper uses secondary data (e.g., a literature
review paper).

3. A paper is a complete paper rather than an
abstract of an unfinished paper.

3. A paper is about software engineering of
particular computer hardware.

4. A paper is written in English. 4. A paper is about methods of software
engineering education.

Table III. Aims of studies classification schema.

Name Code Definition

Methods/tools to detect
Code Bad Smells

DC The aim of a study is to enhance tools/methods for detecting Code
Bad Smells in source code.

Improve understanding of
Code Bad Smells

IC The aim of a study is to enhance the body of knowledge of Code Bad
Smells, such as examining the effectiveness of Code Bad Smells,
creating taxonomy to classify Code Bad Smells or formalizing the
definitions of Code Bad Smells.

Refactor Code Bad Smells RC The aim of a study is to enhance the tools/methods for refactoring
Code Bad Smells.

Others OT The aim of a study cannot be classified into the above categories.

review. For example, to answer research question 3, we need to classify the types of research data
used in different studies so that we can quantitatively analyse which type is the most popularly
used research data. We apply the following strategy for defining our classification scheme:

1. Identify any existing classification schemes relevant to our research questions.
2. Use existing classification schemes if appropriate to our research questions.
3. Otherwise build our own classification schemes.

The details about this can be found in [6].

2.2.1. Classifying the aims of studies. In this literature review, a classification schema is needed to
classify the aims of studies on Code Bad Smells. As a consequence of finding no relevant existing
classification schema, we used a bottom-up approach‡ to build our own classification schema.
Hence, our classification schema for the aims of studies is defined in Table III. The details about
how we defined this classification schema can be found in [6].

2.2.2. Classifying empirical study methods. A classification schema is also needed to classify the
empirical methods applied in the previous research of Code Bad Smells. In this literature review,
an ‘empirical study’ is defined as a study using experiments, questionnaires/surveys, interviews,
observations or case studies [11]. Using this definition study methods are classified in this review
according to Table IV.

This systematic literature review counts studies according to the object of studies. If two or
more studies in the same paper are conducted with the same goal, they are treated as a single
empirical study, even if different sets of data are used in these studies. This is because the same

‡The bottom-up approach is based on grounded theory [10]. This approach is designed to build customized schemas
based on collected research data.
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Table IV. Study methods classification schema.

Name

Experiment
Questionnaire/survey
Interview
Observation
Case study
Non-empirical methods

Table V. Source of data classification schema.

Data type Name Definition

Subjective data Student opinion The data come from questionnaires, surveys or interviews using
students.

Professional opinion The data come from questionnaires, surveys or interviews using
professionals, such as software engineers and academics.

Combination The data combine information from students and professionals.
Objective data Self-constructed project The data are constructed for the purpose of the experiment.

Academic project The data come from projects developed by scientists, PhD
students or research institutes.

Commercial project The data come from commercial projects.
Student project The data come from student projects.
Open source The data come from open source communities.
Unclear Unclear source.

object may be investigated through different dimensions. As a consequence, a paper may conduct
several studies to explore a single object. If these studies are counted as different studies, the big
investigation will be overrepresented, and the small investigation will be overlooked.

2.2.3. Classifying the source of data. To classify different sources of research data, a modified
version of Sjoeberg et al.’s [8] classification schema of research data is used in our study. Our
classification schema is shown in Table V.

2.3. Refinement of included papers

We performed two phases refinement of the included papers on our search results. These processes
aim to eliminate papers that are not related to our research.

2.3.1. Phase One. This phase of refinement aims to eliminate papers easily identified as not
related to our research. One researcher reads the title and abstract of each paper. Using our
inclusion/exclusion criteria (Table II) this researcher judges whether a selected paper is an ‘accept’,
‘reject’ or ‘not sure’ paper. The ‘accept’ and ‘not sure’ papers are included in the next phase of
our literature review, whereas the ‘reject’ papers are excluded. As a consequence, 89 out of 319
papers are selected into the next phase of our study. This means that 72% of the papers are rejected
in this first phase of refinement.

An agreement test was conducted to measure the reliability of the judgements made by the first
researcher. Ten papers are selected from the 319 papers in our search results using the systematic
sampling strategy suggested by Saunders et al. [11]. Details about how we applied this strategy
can be found in [6]. Each of these selected papers is reviewed by three researchers, who judge
whether to classify each paper as ‘accept’, ‘reject’ or ‘not sure’. The Kappa inter-rater test is used
to test classification agreements between these three researchers (Appendix C). Comparing our
Kappa test results with Landis and Koch [12] benchmarks, our refinement process is shown to be
reliable.
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2.3.2. Phase Two. This phase of the refinement process aims to exclude papers from the remaining
set which do not answer our research questions. However, unlike the first phase of refinement, in
the second phase, researchers read the whole research paper in detail. After this phase 39 out of
89 papers remain included in this systematic literature review as papers that address our research
questions and conform to our inclusion criteria. A full list of these 39 papers is listed in Appendix E
of this paper.

3. RESULTS

Taking a general look at the papers that investigate Fowler et al.’s Code Bad Smells, we found
that most papers either focus on one or two Code Bad Smells or else all 22 Code Bad Smells
together. Figure 1 shows the distribution of the investigated Code Bad Smells.

Figure 1 shows that 20 out of the total 39 papers investigate only one of Fowler et al.’s Code Bad
Smells. Five papers investigate all of Fowler et al.’s 22 Code Bad Smells together, for example,
Mantyla et al. (SLR 17. see Appendix E for the details of each paper) provide a taxonomy to
classify Fowler et al.’s Code Bad Smells, and Mantyla et al. (SLR 16) investigate the opinions
of developers on the existence of each Code Bad Smell. Figure 1 also shows that there are five
papers that do not include any of Fowler et al.’s Code Bad Smells. Instead, they introduce new
Code Bad Smells based on Fowler et al.’s [1] ideas. These papers extend the body of knowledge
of Code Bad Smells and are therefore included in our literature review.

Figure 2 presents the number of papers for each year that this review covers. This figure shows
that Code Bad Smell papers started to appear in 2001, peaked at 2004, slowly dropped between
2005 and 2007 and greatly dropped after 2008.

3.1. RQ 1: Which Code Bad Smells have attracted the most research attention?

Table VI presents the number of papers focusing on each Code Bad Smell. The details of which
Code Bad Smells are investigated in each paper are presented in Appendix E.

Table VI shows that the Duplicated Code Bad Smell is most studied. This supports Fowler
et al.’s [1] idea that ‘Number one in the stink parade is duplicated code’. Besides the Duplicated
Code Bad Smell, Feature Envy, Refused Bequest, Data Class, Long Method and Large Class Bad
Smells are each studied in more than 20% of the research papers.

Furthermore, the Duplicated Code Bad Smell tends to be studied alone. This may mean that
the Duplicated Code Bad Smell is different in nature from other Code Bad Smells. To further
investigate this, we separated the research papers into two groups, the papers that include the
Duplicated Code Bad Smell and the papers that do not include the Duplicated Code Bad Smell.
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Figure 1. Distribution of Code Bad Smells in research papers.
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Figure 2. Number of research papers by year.

Table VI. Attention on Code Bad Smell.

No. of papers
Bad Smell name (Total number of papers = 39) Percentage (%)

DUC—Duplicated Code 21 54
FE—Feature Envy 12 31
RB—Refused Bequest 11 28
DC—Data Class 10 26
LM—Long Method 8 21
LC—Large Class 8 21
LPL—Long Parameter List 7 18
SS—Shotgun Surgery 7 18
LAZ—Lazy Class 6 15
TF—Temporary Field 6 15
COM—Comments 6 15
SW—Switch Statements 6 15
DCP—Divergent Change 5 13
DAC—Data Clumps 5 13
PO—Primitive Obsession 5 13
PIH—Parallel Inheritance Hierarchies 5 13
SG—Speculative Generality 5 13
MC—Message Chains 5 13
MM—Middle Man 5 13
II—Inappropriate Intimacy 5 13
ACDI—Alternative Classes with Different Interfaces 5 13
ILC—Incomplete Library Class 5 13
OTHERS—Other Code Bad Smell 13 33

The percentage may not add up to 100% in this table, because one paper may investigate more than one Code
Bad Smell.

We compare the proportion of papers that only investigate one Code Bad Smell between these two
groups of papers. The results are summarized in Table VII.

Table VII suggests that the Duplicated Code Bad Smell is likely to be studied alone and is
generally a single research area. The implications of the Duplicated Code Bad Smell having a
different research profile will be discussed in Section 4.

In addition, we also notice that ten Code Bad Smells (Divergent Change, Data Clumps, Primitive
Obsession, Parallel Inheritance Hierarchies, Speculative Generality, Message Chains, Middle Man,
Inappropriate Intimacy, Alternative Classes with Different Interfaces, and Incomplete Library Class)
were only studied in five papers. These five research papers considered all 22 Code Bad Smells
together. This indicates that these Code Bad Smells have not been studied individually in previous
studies. We will discuss the implications of this in Section 4.
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Table VII. Numbers of investigated Code Bad Smells between Duplicated Code related and non-Duplicated
Code related papers.

Papers investigated Paper not investigated
Duplicated Code Bad Smell Duplicated Code Smell

One Code Bad Smell 13 7
More than one Code Bad Smells 8 11
Total 21 18

Table VIII. Aims of papers.

Percentage %
(Number of papers/

Code Aim of studies Number of papers total number of papers)

DC Method/tools detect Code Bad Smells 19 49
IC Improve understanding of Code Bad Smells 13 33
RC Refactor Code Bad Smells 6 15
OT Others 1 3
Total 39 100

3.2. RQ 2: What are the aims of studies on Code Bad Smells?

This research question intends to provide insight into the current focus of research in Code Bad
Smells and investigate what aspects of Code Bad Smells are most commonly studied. The results
of this study are provided in Table VIII. The aims of each of the 39 investigated papers are
summarized in Appendix E.

Table VIII shows that

• Nearly half (49%) of the papers aim to enhance tools/methods to detect Code Bad Smells,
for example, Munro (SLR 25) proposes a methodology to identify Code Bad Smells from
source code using a combination of software metrics, whereas Tourwe and Mens (SLR 33)
suggest identifying Code Bad Smells using logic meta programming.

• One third of the papers (13) aim to improve the current understanding of Code Bad Smells.
However, only five investigate the impact of Code Bad Smells. These include Shatnawi et al.’s
(SLR 28) empirical experiment to investigate the association between Code Bad Smells and
software faults (these five papers are discussed in more detail in Section 3.4). Other papers
include, for example, Mantyla et al.’s (SLR 17) taxonomy to classify Fowler and Beck’s
Code Bad Smells and Mantyla et al.’s (SLR 16) investigation of developers’ agreement on
the existence of Code Bad Smells in software applications.

• Only 15% of the papers (6) focus on enhancing the current knowledge of refactoring Code
Bad Smells. These include Counsell et al.’s (SLR 3) method to reduce refactoring effects by
prioritizing the refactoring order of each of the 22 Code Bad Smells.

Overall, these results suggest that enhancing the tools/methods to detect Code Bad Smells is
the most popular aim of research into Code Bad Smells. We will discuss the implications of this
skewed research focus in Section 4.

We investigated whether the profile of the research aims are different for different Code Bad
Smells. We concentrated on those Code Bad Smells that were studied in more than 20% papers§

(see Table VI). As a consequence, six Code Bad Smells are investigated. They are the Duplicated
Code, Feature Envy, Refused Bequest, Data Class, Long Method and Large Class. In addition, not
all the research papers were included in this analysis; we excluded the five papers that analyse

§The reason for us only investigating the six Code Bad Smells studied in more than 20% papers is that the numbers
were too small for the rest of the Code Bad Smells to make analysis of them meaningful.
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Table IX. Distribution of aims of studies for different Code Bad Smells.

Code Bad Smells

Duplicated Feature Refused Data Long Large
code envy bequest class method class

Aim of studies % n % n % n % n % n % n

Methods/tools 56 9 29 2 50 3 60 3 0 0 0 0
Improve understanding 25 4 57 4 50 3 40 2 100 3 100 3
Refactor 13 2 14 1 0 0 0 0 0 0 0 0
Others 6 1 0 0 0 0 0 0 0 0 0 0

Table X. Research methods used in studies of Code Bad Smells.

Empirical methods Number of studies Percentage (%)

Case study 22 52
Experiment 14 33
Questionnaire/survey 5 12
Non-empirical methods 1 2
Interview 0 0
Observation 0 0
Total 42 100

all 22 Code Bad Smells together because these papers focus on the general features of Code Bad
Smells and do not look in detail at the features of individual Code Bad Smells. Consequently,
the 27 papers that investigate six different Code Bad Smells are analysed here. These results are
presented in Table IX.

Table IX suggests significant variation in the aims of studies of different Code Bad Smells. The
studies of the Duplicated Code Bad Smell mainly aim to improve detection methods/tools (56%),
far fewer studies aim to improve the understanding of Duplicated Code (25%), and only 13% of
studies aim to refactor Duplicated Code. In contrast, over half (57%) of the studies of the Feature
Envy Bad Smell aim to improve understanding of it. Our data also show that there are a balanced
number of studies (50% each) on the Refused Bequest Bad Smell aiming to improve methods/tools
for detecting Refused Bequest and to improve the understanding of Refused Bequest. The main
aim of the Data Class Bad Smell studies is to improve the methods/tools for detecting Data Class
(60%); also many studies aim to improve the understanding of Data Class (40%), and no study
aims to refactor Data Class. The studies of Long Method and Large Class Bad Smells only aim to
improve the understanding of these Code Bad Smells, and no other types of studies are reported.
The above results show significant differences in the research profiles between different Code Bad
Smells. We will discuss this further in Section 4.

3.3. RQ 3: What methods have been used to study Code Bad Smells?

This analysis will identify whether empirical as opposed to theoretical approaches have been used
to investigate Code Bad Smells.

3.3.1. Research methods. First we indicate the methods used in the studies. In this systematic
literature review we define that if two or more studies are conducted with the same goal in a same
paper they are treated as a single study. Table X summarizes the results of this analysis. The study
methods applied in the 39 investigated papers are presented in Appendix E.

Our results show that in the 42 studies reported in the 39 included papers, 41 have used
empirical study methods. These results indicate that empirical methods play an important role in
the study of Code Bad Smells. The only non-empirical studies we found were from Counsell et al.
(SLR 3) which presents a categorization schema for Code Bad Smells based on the features of
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Table XI. Source of data in studies of Code Bad Smells.

Percentage %
Source Number (Number of data/total number of data)

Subjective data Student opinion 4 8
Professional opinion 4 8
Combination 0 0

Objective data Self-constructed project 4 8
Academic project 4 8
Commercial project 13 25
Student project 2 4
Open source project 21 40
Unclear 1 2

Total 53 100
Total number of empirical studies: 42

their refactoring solutions. Their theoretical taxonomy is introduced but no empirical methods are
used to validate it in this paper.

Table X also shows that a high proportion of empirical studies on Code Bad Smells are case
studies (52%) or experiments (33%), relatively few are questionnaires/surveys (12%), and none
uses interview or observation methods. These results suggest that objective methods are commonly
used in the empirical study of Code Bad Smells, with only a few current studies using subjective
methods.

3.3.2. Source of data. We review whether the data used in published studies are real world, open
source, commercial or academic. Table XI presents the results of this analysis. The types of research
data used in each paper are presented in Appendix E.

Table XI shows that 53 data sets¶ are used in the 42 studies from the 39 included papers.
Objective data, such as those from open source projects (40%) and commercial projects (25%),
is the main source of research data used in previous studies. Subjective data are seldom used in
previous studies (student opinion 8%, professional opinion 8% and no combination opinion data).
This confirms our finding that objective methods are the most popularly used methods in empirical
studies of Code Bad Smells.

We further investigated the sources of data across the individual Code Bad Smells. Again we
focused only on those Code Bad Smells investigated in more than 20% of papers and excluded
the five papers that analyse all 22 Code Bad Smells together. Table XII shows the results of this
analysis.

Table XII tells us that the studies of the Duplicated Code Bad Smell mainly focus on using open
source project data (48%) and commercial project data (26%), in far fewer student opinion data
(4%) was used. The studies of the Feature Envy Bad Smell also used a high proportion of open
source project data (36%) and commercial project data (18%). However, student opinion (18%)
also played an important role in the studies on the Feature Envy Bad Smell. The studies on Refused
Bequest Bad Smell are similar to the studies on Duplicated Code Bad Smell. High proportions
of open source project data (50%) and commercial project data (25%) were investigated, but no
student opinion was used. The studies on Data Class Bad Smell investigated many open source
project (43%) and commercial project (29%), but at the same time student opinion (14%) also
played an important role. The studies on Long Method Bad Smell used three types of research
data, the student opinion data, self-constructed project data and open source project data (33%
each). Studies on the Large Class Bad Smell only used open source project data. This is different
from other Code Bad Smells. The above results show significant variation between different Code
Bad Smells. We will discuss the reasons and implications of this in Section 4.

¶Some of these 53 sets of data overlap. For example, data from the Eclipse open source project has been used in
several research papers.
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Table XII. Distribution of the source of data used in studies of Code Bad Smells with most research
attention.

Code Bad Smell

Duplicated Feature Refused Data Long Large
code envy bequest class method class

Data type Data source % n % n % n % n % n % n

Subjective
data

Student opinion 4 1 18 2 0 0 14 1 33 2 0 0

Professional
opinion

0 0 0 0 0 0 0 0 0 0 0 0

Combination 0 0 0 0 0 0 0 0 0 0 0 0
Objective
data

Self-constructed
project

4 1 18 2 13 1 0 0 33 2 0 0

Academic
project

13 3 9 1 13 1 0 0 0 0 0 0

Commercial
project

26 6 18 2 25 2 29 2 0 0 0 0

Student project 4 1 0 0 0 0 14 1 0 0 0 0
Open source
project

48 11 36 4 50 4 43 3 33 2 100 3

unclear 0 0 0 0 0 0 0 0 0 0 0 0

Table XIII. Empirical events of impacts of Code Bad Smells.

Support Fowler et al. Against Fowler et al.
Code Bad Smells suggested impact suggested impact

Duplicated Code Reducing software maintainability (SLR 24) Some Duplicated Code increases
software reliability (SLR 24)
Non-trivial number of Duplicated Code
can be categorized as good (SLR 9)

Large Class Statistically associated with software faults
(SLR 13, SLR 28)

Long Method Statistically associated with software faults
(SLR 13, SLR 28)

Shotgun Surgery Statistically associated with software faults
(SLR 13, SLR 28)

Data Class No significant relationship with software
faults (SLR 13, SLR 28)

Refused Bequest No significant relationship with software
faults (SLR 13, SLR 28)

Feature Envy No significant relationship with software
faults (SLR 13, SLR 28)

3.4. RQ 4: What evidence is there that Code Bad Smells indicate problems in code?

We investigate the evidence for Fowler et al.’s [1] claimed impact of Code Bad Smells. Only
five out of the total 39 papers investigated the impact of Fowler et al.’s Code Bad Smells. The
other 34 papers either investigate methods/tools to detect Code Bad Smells, to refactor Code Bad
Smells or investigate other aspects of Code Bad Smells. We summarize the results of papers that
investigate the impact of Code Bad Smells in Table XIII.

Overall these five papers examine seven out of the 22 Fowler et al.’s [1] Code Bad Smells.
Two of these papers are from Shatnawi and Li’s research group. Li and Shatnawi’s (SLR 13)
paper is an extension of Shatnawi and Li (SLR 28) paper, hence we treated these as one study.
Furthermore, Srivisut and Muenchaisri’s (SLR 29) paper only theoretically identifies the impact
of Fowler et al.’s Code Bad Smells, and they do not provide any empirical evidence to support
their results, as a consequence, we will not analyse this paper in detail.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:179–202
DOI: 10.1002/smr



190 M. ZHANG, T. HALL AND N. BADDOO

Monden et al. (SLR 24) investigated the impact of the Duplicated Code Bad Smell on software
maintainability and reliability. They used maintenance data from an industrial legacy system that
has been maintained for 20 years as their research data. Their results show that the Duplicated Code
Bad Smell reduces the maintainability of software. This finding supports Fowler and Beck’s claim
for Code Bad Smells. However Monden et al. [3] also found that, in some situations, Duplicated
Code can increase the reliability of software. This is an addition to Fowler et al.’s claimed impacts.

Kapser and Godfrey (SLR 9) investigated how different types of Duplicated Code Bad Smells
affect the quality of software. They identified 11 Duplicated Code patterns in open source projects:
Apache and Gnumeric. They invited academic experts to judge whether they considered each piece
of Duplicated Code harmful to software. This paper reports that non-trivial amounts of Duplicated
Code are a good form of cloning in both the Apache and in Gnumeric projects. As a consequence,
the authors suggest that not all Duplicated Code require refactoring. In some situations, the effect
of the costs of refactoring, such as effects on program comprehension and exposure to risk, should
be measured against the expected gain in maintainability or extendibility of the system. This result
indicates that Fowler et al.’s claim for Code Bad Smells deserves further investigation.

Shatnawi and Li’s (SLR 13, SLR 28) studies examine the association between Code Bad Smells
and software faults. They also investigated Code Bad Smells’ association with different severity
levels of software faults. In these two studies, they use data from an open source project, Eclipse.
Their results indicate that the Large Class, Large Method and Shotgun Surgery Bad Smells show
significant association with all severity levels of software faults. This supports Fowler et al.’s
claimed impacts of Code Bad Smells. However Shatnawi et al. also found that the other Code Bad
Smells, Data Class, Refused Bequest and Feature Envy Bad Smells are not associated significantly
with software faults or particular severity levels of software faults. The results of these studies
imply that some Code Bad Smells may not lead to faults in software. As a consequence, Fowler
et al.’s claim for Code Bad Smells deserves further scrutiny.

4. DISCUSSION

In this section we address our research questions and discuss our results in terms of the overall
landscape of current Code Bad Smell knowledge. We also discuss the implications of our research
for individual Code Bad Smells. In particular, we look at the maturity of the current knowledge
about each Code Bad Smell as indicated by our analysis of the literature.

4.1. RQ1: Which Code Bad Smells have attracted the most research attention?

Our results indicate that the Duplicated Code Bad Smell has attracted the most research attention
in the period between 2000 and June 2009. This supports Fowler et al.’s [1] view that Duplicated
Code is the ‘Number One’ of all Code Bad Smells. Moreover, our results also suggest that the
Duplicated Code Bad Smell tends to be studied alone. We think that the reason for this could be
that research on Duplicated Code has been carried out for longer than for other Code Bad Smells.
Indeed a lot of Duplicated Code research was published before the identification of Fowler et al.’s
[1] Code Bad Smells. Consequently, it is not surprising to see that the investigation of Duplicated
Code has a unique profile, but it is difficult to know whether this research focus on Duplicated
Code means that it is a very important Code Bad Smell in terms of its negative impact on code or
whether duplicated code is easy to understand and therefore to study.

However, many Code Bad Smells have received very little research attention. This may be because
they are ofmarginal interest, but it is not clear how common some of these smells are in code.Without
more research on these smells it is difficult to know how important they are and how they impact on
code. Research is needed even if only to dismiss someCode Bad Smells as not worth worrying about.

4.2. RQ2: What are the aims of studies on Code Bad Smells?

Our results indicate that studies on Code Bad Smells mainly aim to enhance the tools or methods
to detect Code Bad Smells. With only a third of studies aiming to improve the understanding
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of Code Bad Smells, very few studies look at Code Bad Smells in terms of refactoring. This is
surprising because it has been largely argued that refactoring is the main reason for using Code
Bad Smells [1, 2]. The overall aim profile of studies suggests that less than expected is known
about the impact of Code Bad Smells and their use in refactoring. Instead most of the effort has
gone in developing tools and methods to identify Code Bad Smells. Such tools are, of course, a
pre-requisite to the research aimed at studying the impact of Code Bad Smells. Thus it may be
that this profile of studies will change as tools are developed and made available to researchers
wanting to look in more detail at Code Bad Smells. Although given we show that studies on Code
Bad Smells have been tailing off in the recent years, it is not obvious that there is a resurgence of
research reporting empirical evidence of the impacts of Code Bad Smells.

The aim profile of studies on individual Code Bad Smells varies considerably. For example
Duplicated Code has a profile of aims focused on the presentation of methods and tools. Only
25% of studies on Duplicated Code improve the understanding of this smell. Given Duplicated
Code is a smell that was recognized before Fowler et al.’s work in 1999, it may be that studies
improving the understanding of Duplicated Code were carried out before this review. However, it
may be that the impact of Duplicated Code is still not properly understood. But that many tools
and methods have been developed despite Duplicated Code not being well understood.

Feature Envy, Refused Bequest and Data Class all have a reasonably balanced division of studies
aiming to develop methods/tools and to improve understanding. Each has between 40 and 57%
of studies focused on improving understanding. This suggests that there is now a basic level of
understanding of these smells and that tools and methods are starting to be available to identify
them in code. Long Method and Large Class both have all of their studies focused on improving
the understanding of these smells. However, there have only been a small number of studies of each
of these smells (3 each). This suggests that there is still a long way to go in terms of understanding
these smells better and being able to identify them using tools.

4.3. RQ 3: What methods have been used to study Code Bad Smells?

Our findings suggest that nearly all studies on Code Bad Smells are empirical and a high proportion
of these are experiments or case studies. Relatively few studies are questionnaires or surveys. This
suggests that the focus has been on objective studies with few subjective studies. Although this
could be considered a strength in studies, Cushman and Rosenberg [13] suggest that a combination
of objective methods and subjective methods are ideally used in studies, as subjective methods
provide insights that are not captured by objective methods alone, for example, some software
properties cannot be quantified, as a consequence, these properties cannot be captured by using
objective methods. This is a gap in the current research of Code Bad Smells.

Our results on the source of research data suggest that commercial projects and open source
projects are the two main sources of objective data used in studies of Code Bad Smells. This
suggests that, because commercial projects and open source projects exist in the ‘real world’,
findings from these studies are relevant to real projects and are a strength of the work done to date
on Code Bad Smells.

Data used to study individual Code Bad Smells vary. Studies on Duplicated Code focus on
using open source project data and commercial project data. This suggests that the results of these
studies are highly relevant to real-world situations. Similarly, studies on Feature Envy, Refused
Bequest and Data Class also predominately use real world open source and commercial project
data. Feature Envy and Data Class Bad Smells also have studies using some student opinion data.
These subjective data add another dimension to the current knowledge of these smells. Although
these data are student based rather than practitioner based, studies on the Long Method Bad Smell
use three types of research data: student opinion data, self-constructed project data and open source
project data. Given the lack of commercial data current knowledge of this Code Bad Smell is
likely to be immature. Studies on the Large Class Bad Smell only use open source project data.
Although this is real-world data it is a narrow focus for all studies and reveals another gap in the
existing knowledge.
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4.4. RQ 4: What evidence is there that Code Bad Smells indicate problems in code?

Mens and Tourwe [2] conclude that Code Bad Smells are the most widely used method of
identifying refactoring opportunities. However, only five papers in our sample investigate the impact
of using Code Bad Smells, and only four of these provide empirical evidence of Fowler et al.’s
[1] claimed impact of Code Bad Smells. This indicates that the impact of Code Bad Smells is not
empirically understood. However, the reasons for this lack of evidence are hard to explain. It may
be because Fowler et al.’s [1] claims about the impact of Code Bad Smells are common sense
and researchers do not believe there is any value in collecting evidence. Consequently, researchers
concentrate on investigating how to identify Code Bad Smells rather than examining their empirical
impact. It is also difficult to investigate the impact of Code Bad Smells without mature tools to
identify Bad Smells in code. Thus there is a dependency on tools to study the impact and those
tools may not be available.

The results of the four papers (SLR 9, SLR 13, SLR 24, SLR 28) investigating the impact of
Fowler et al.’s [1] Code Bad Smells indicate that not all Code Bad Smells lead to a negative impact
on software, e.g., Duplicated Code can increase the reliability of software, and Data Class, Refused
Bequest and Feature Envy Bad Smells are not associated significantly with software faults or the
particular severity level of software faults, but the reason for this is still unclear. Consequently,
further examination of the impact of using Code Bad Smells is necessary.

5. CONCLUSION

In this paper, a systematic literature review has been conducted to investigate the current status
of knowledge about Code Bad Smells. Our results indicate that the current level of knowledge
for different Code Bad Smells varies. Our findings show that the Duplicated Code Bad Smell has
attracted the most attention. This may mean that the Duplicated Code Bad Smell is one of the most
important Code Bad Smells and it needs this intensity of investigation. Alternatively, it may be
that Duplicated Code has been over-studied as it is easy to understand and therefore to investigate.
Duplicated Code also has a research profile different from other Code Bad Smells, in particular
it has a smaller proportion of studies that aim to improve the understanding of that smell. Again
this could mean that Duplicated Code is easy to understand and needs fewer studies to improve
understanding, or alternatively that we know less about Duplicated Code than we should.

Some Code Bad Smells have attracted very few studies, for example, the Message Chains Bad
Smell, and consequently, we know very little about these Code Bad Smells. This suggests that
our knowledge of some Code Bad Smells remains insufficient and that there is a lack of evidence
available on which developers can decide whether to use Code Bad Smells to direct refactoring.

Our results show that we have knowledge based on different types of research data for different
Code Bad Smells. Studies are based mainly on open source project data and commercial project
data. Other data, such as expert opinion, are rarely used. This suggests that the current studies
of Code Bad Smells mainly focus on objective data, and subjective data are rarely used. Since
subjective methods provide insights that are not captured by objective methods alone, a more
balanced use of objective and subjective data are needed in future studies of Code Bad Smells.

Our results suggest that only a few empirical studies have been conducted to examine the impact
of Code Bad Smells. This suggests that the impact of Code Bad Smells remains far from being
fully understood. Only five previous studies have directly investigated the impact of Code Bad
Smells. Only seven Code Bad Smells were included in these five studies. More studies are needed
to investigate the impact of Code Bad Smells, especially for those Smells whose impact has not
been previously explored at all.

Overall, our review suggests that very little work has been reported investigating Fowler et al.’s
claims about the impact of Code Bad Smells. Consequently, there is little evidence currently
available justifying the effective and efficient use of Code Bad Smells to direct refactoring. At the
moment it is largely unclear what impact smells really have on code and whether it is worth the
effort of refactoring to eliminate them. This is an important omission from the current research
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as we do not know whether the elimination of some Code Bad Smells would lead to improved
software quality. At the moment developers have very little evidence on which to effectively target
their refactoring effort.

6. LIMITATIONS

There are several limitations in our literature review:

• Only the papers published by IEEE and six leading software engineering journals were
investigated in this literature review. These papers may not include all types of studies on
Code Bad Smells.

• The search term used in this systematic literature review is limited. Papers only indirectly
related to Code Bad Smells are not included in this review. For example, papers about ‘Code
Clones’ may relate to ‘Duplicated Code’, and ‘God Class’ studies could also be related to
work on ‘Large Classes’. However, because we investigate all 22 of Fowler et al.’s Code
Bad Smells in this systematic literature review, if we consider all possible synonyms of each
individual Code Bad Smell, the search space will be huge. It is only practical to investigate
papers which address Code Bad Smells directly in this study.

• Some Code Bad Smells were investigated individually before Fowler et al. identified Code
Bad Smells, such as the Duplicated Code Bad Smell and the Long Method Bad Smell.
Because of the limitation of resources, in this literature review only papers after Fowler et al.’s
identification of Code Bad Smells are investigated; as a result some studies on particular Code
Bad Smells may be missed by this study.

• Some differences between Code Bad Smells may just be coincidental. In particular, in this
study, the objective data and self-constructed project data may be overrepresented in the
studies on Feature Envy and the Long Method Code Bad Smells. This is because we found that
objective data and self-constructed project data samples actually are from a single research
paper. Thus these results may not represent the common phenomena.

APPENDIX A: A SUMMARY OF DEFINITIONS OF CODE BAD SMELLS

• Duplicated Code

Same code structure happens in more than one place.

• Long Method

A method is too long.

• Large Class

A class is trying to do too much, it often shows up as too many instance variables.

• Long Parameter List

A method needs passing too many parameters.

• Divergent Change

Divergent change occurs when one class is commonly changed in different ways for different
reasons.

• Shotgun Surgery

Shotgun surgery is similar to divergent change but is the opposite. Every time you make a kind
of change, you have to make a lot of little changes to a lot of different classes.

• Feature Envy
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The whole point of objects is that they are a technique to package data with the processes used
on that data. A Feature Envy is a method that seems more interested in a class other than the one
it actually is in.

• Data Clumps

Some data items together in lots of places: fields in a couple of classes, parameters in many
method signatures.

• Primitive Obsession

Primitive types are overused in software. Small classes should be used in place of primitive
types in some situations.

• Switch Statements

Switch statements often lead to duplication. Most times you see a switch statement which you
should consider as polymorphism.

• Parallel Inheritance Hierarchies

Parallel inheritance hierarchies is really a special case of shotgun surgery. In this case, every
time you make a subclass of one class, you also have to make a subclass of another. You can
recognize this smell because the prefixes of the class names in one hierarchy are the same as the
prefixes in another hierarchy.

• Lazy Class

Each class you create costs money to maintain and understand. A class that is not doing enough
to pay for itself should be eliminated.

• Speculative Generality

If a machinery was being used, it would be worth it. But if it is not, it is not. The machinery
just gets in the way, so get rid of it.

• Temporary Field

Sometimes you see an object in which an instance variable is set only in certain circumstances.
Such code is difficult to understand, because you expect an object to need all of its variables.

• Message Chains

You see message chains when a client asks one object for another object, which the client then
asks for yet another object, which the client then asks for yet another object, and so on. Navigating
in this way means that the client is coupled to the structure of the navigation. Any change to the
intermediate relationships causes the client to have to change.

• Middle Man

You look at a class’s interface and find that half the methods are delegating to this other class.
It may mean problems.

• Inappropriate Intimacy

Sometimes classes become far too intimate and spend too much time delving in each others’
private parts.

• Alternative Classes with Different Interfaces

Classes are doing similar things but with different signatures.

• Incomplete Library Class

Library classes should be used carefully, especially we do not know whether a library is
completed.

• Data Class
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These are classes that have fields, getting and setting methods for the fields, and nothing else.
Such classes are dumb data holders and are almost certainly being manipulated in far too much
detail by other classes.

• Refused Bequest

Subclasses get to inherit the methods and data of their parents, but they just use a few of them.

• Comments

Do not write comments when it is unnecessary. When you feel the need to write a comment,
first try to refactor the code so that any comment becomes superfluous.

APPENDIX B: SEARCH TERMS

(‘code bad smell’ OR ‘code smell’ OR ‘bad smell’ OR ‘duplicated code’ OR ‘long method’
OR ‘large class’ OR ‘long parameter list’ OR ‘divergent change’ OR ‘shotgun surgery’ OR
‘feature envy’ OR ‘data clumps’ OR ‘primitive obsession’ OR ‘switch statements’ OR ‘parallel
inheritance hierarchies’ OR ‘lazy class’ OR ‘speculative generality’ OR ‘temporary field’ OR
‘message chains’ OR ‘middle man’ OR ‘inappropriate intimacy’ OR ‘alternative classes with
different interfaces’ OR ‘incomplete library class’ OR ‘data class’ OR ‘refused bequest’ OR
‘comments’ IN Title/Abstract)
AND
(‘software’ IN All Meta Data)
AND
(‘education’ OR ‘hardware’ NOT IN All Meta Data)
AND
(‘comments on’ OR ‘reply to’ NOT IN Title)

APPENDIX C: KAPPA INTER-RATER RELIABILITY TEST FOR PHASE ONE
ESTIMATION OF INCLUDED PAPERS

Estimation agreement tables between Researchers 1 and 2 and Researchers 1 and 3 are given in
Tables CI and CII.

Table CI. Estimation agreement table between Researcher 1 and Researcher 2.

Researcher 1

Accept Reject Not sure

Researcher 2 Accept 2 0 0
Reject 0 6 1
Not sure 1 0 0

Kappa value=0.608.

Table CII. Estimation agreement table between Researcher 1 and Researcher 3.

Researcher 1

Accept Reject Not sure

Researcher 3 Accept 1 0 0
Reject 1 6 0
Not sure 1 0 1

Kappa value=0.623.
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APPENDIX D: A LIST OF CONSIDERED JOURNALS AND CONFERENCE PROCEEDINGS

Number of
investigated

Index Name of journals/conference proceedings papers

IEEE journals/conference proceedings
1 IEEE/ACM International Conference on Automated Software

Engineering
4

2 International Conference on BioMedical Engineering and Informatics 0
3 International Symposium on Code Generation and Optimization 0
4 IEEE/ACIS International Conference on Computer and Information

Science
1

5 Annual IEEE International Computer Software and Applications
Conference

1

6 Mediterranean Conference on Control and Automation 0
7 International Symposium on Empirical Software Engineering 1
8 IEEE Congress on Evolutionary Computation 0
9 International Conference on Information Technology 1
10 IEEE Instrumentation and Measurement Magazine 0
11 International Conference on Machine Learning and Cybernetics 0
12 IEEE International Workshop on Mining Software Repositories 1
13 IEEE International Symposium on Modern Computing 0
14 IEEE Transactions on Neural Networks 0
15 IEEE International Conference on Program Comprehension 1
16 International Conference on Research Challenges in Information

Science
0

17 Working Conference on Reverse Engineering 4
18 IEEE International Conference on Software Engineering 1
19 IEEE Transactions on Software Engineering 0
20 International Workshop on Principles of Software Evolution 3
21 International IEEE Workshop on Software Evolvability 0
22 European Conference on Software Maintenance and Reengineering 6
23 IEEE International Conference on Software Maintenance 5
24 IEEE International Symposium on Software Metrics 2
25 International Conference on Software Testing Verification and

Validation
0

26 IEEE Software 0
27 IEEE International Workshop on Source Code Analysis and

Manipulation
1

28 International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing

1

29 Testing: Academic and Industrial Conference—Practice And Research
Techniques

1

30 IEEE Symposium on Visual Languages and Human Centric Computing 1

Other journals
31 Journal of Systems and Software 1
32 Empirical Software Engineering Journal 3
33 Information and Software Technology Journal 0
34 Journal of Software Maintenance and Evolution: Research and Practice 0
35 ACM Transactions on Software Engineering Methodology 0
36 Software: Practice and Experience Journal 0
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APPENDIX E: A LIST OF INCLUDED PAPERS AFTER THE PHASE TWO REFINEMENT
OF INCLUDED PAPERS

Code Bad Source of
Ref Paper reference Smells Aims Study method research data Impacts

SLR 1 Arevalo G, Ducasse S and
Nierstrasz O. Discovering
unanticipated dependency schemas
in class hierarchies. Ninth
European Conference on Software
Maintenance and Reengineering
(CSMR 2005), 2005; 62–71.

Refused
Bequest,
others

DC Case study x1 Commercial
project x1

N

SLR 2 Casazza G, Antoniol G, Villano U,
Merlo E and Di Penta M.
Identifying clones in the Linux
kernel. Proceedings First IEEE
International Workshop on Source
Code Analysis and Manipulation,
2001; 90–97.

Duplicated
Code

IC Case study x1 Open
source x1

N

SLR 3 Counsell S, Hierons RM, Najjar
R, Loizou G and Hassoun Y. The
effectiveness of refactoring, based
on a compatibility testing
taxonomy and a dependency
graph. Proceedings of Testing:
Academic and Industrial
Conference—Practice and
Research Techniques (TAIC PART
2006), 2006; 181–192.

All RC Non-empirical
x1

N/A N

SLR 4 Eichberg M, Haupt M, Mezini M
and Schafer T. Comprehensive
software understanding with
SEXTANT. Proceedings 21st
IEEE International Conference on
Software Maintenance (ICSM’05),
2005; 315–324.

Others DC Case study x1 Academic
project x1,
unclear x1

N

SLR 5 Elssamadisy A and Schalliol G.
Recognizing and responding
to ‘bad smells’ in extreme
programming. Proceedings of the
24th International Conference on
Software Engineering (ICSE
2002), 2002; 617–622.

Others IC Case study x1 Commercial
project x1

N

SLR 6 van Emden E and Moonen L. Java
quality assurance by detecting
code smells. Proceedings of the
Ninth Working Conference on
Reverse Engineering, 2002;
97–106.

Others RC Case study x1 Commercial
project x1

N

SLR 7 Fokaefs M, Tsantalis N and
Chatzigeorgiou A. JDeodorant:
identification and removal of
feature envy Bad Smells. IEEE
International Conference on
Software Maintenance (ICSM
2007), 2007; 519–520.

Feature
Envy

RC Experiment
x1

Open
source x1

N

SLR 8 Hill R and Rideout J. Automatic
method completion. Proceedings
of the 19th International
Conference on Automated Software
Engineering, 2004; 228-235.

Duplicated
Code

DC Case study x1 Commercial
project x1,
open source
x1

N
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SLR 9 Kapser C and Godfrey M. ‘Cloning
considered harmful’ considered
harmful: patterns of cloning in
software. Empirical Software
Engineering 2008; 13(6):645–692.

Duplicated
Code

IC Case study x1 Open
source x1

Y

SLR 10 Kapser C and Godfrey MW. Aiding
comprehension of cloning through
categorization. Proceedings of the
Seventh International Workshop on
Principles of Software Evolution,
2004; 85–94.

Duplicated
Code

DC Case study x1 Open
source x1

N

SLR 11 Kapser C and Godfrey MW.
‘Cloning Considered Harmful’
considered harmful. 13th Working
Conference on Reverse Engineering
(WCRE ’06), 2006; 19–28.

Duplicated
Code

IC Case study x1 Open
source x1

N

SLR 12 Kiefer C, Bernstein A and Tappolet
J. Mining software repositories with
iSPAROL and a software evolution
ontology. Fourth International
Workshop on Mining Software
Repositories (ICSE Workshops MSR
’07), 2007; 10.

Long
Parameter
List, others

DC Case study x1 Open
source x1

N

SLR 13 Li W and Shatnawi R. An empirical
study of the bad smells and class
error probability in the post-release
object-oriented system evolution.
Journal of Systems and Software
2007; 80(7): 1120–1128.

Long
Method,
Large Class,
Shotgun
Surgery,
Feature Envy,
Data Class,
Refused
Bequest

IC Experiment
x1

Open
source x1

Y

SLR 14 Mantyla MV. An experiment on
subjective evolvability evaluation of
object-oriented software: explaining
factors and interrater agreement.
2005 International Symposium on
Empirical Software Engineering,
2005; 10.

Long method,
Long
Parameter
List, Feature
Envy

IC Questionnaires/
surveys x2

Student
opinion x2,
constructed
project x2

N

SLR 15 Mantyla, M and Lassenius, C.
Subjective evaluation of software
evolvability using code smells: an
empirical study. Empirical Software
Engineering 2006; 11(3):395–431.

All IC Questionnaires/
surveys x1

Professional
opinion x1

N

SLR 16 Mantyla MV, Vanhanen J and
Lassenius C. Bad smells—humans
as code critics. Proceedings 20th
IEEE International Conference on
Software Maintenance, 2004;
399–408.

All IC Experiment
x1,
questionnaires/
surveys x1

Professional
opinion x2,
commercial
project x1

N

SLR 17 Mantyla M, Vanhanen J and
Lassenius C. A taxonomy and an
initial empirical study of bad smells
in code. Proceedings of the
International Conference on
Software Maintenance (ICSM
2003), 2003; 381–384.

All IC Questionnaires/
surveys x1

Professional
opinion x1

N

SLR 18 Marcus A and Maletic JI.
Identification of high-level concept
clones in source code. Proceedings
of the 16th Annual International
Conference on Automated Software
Engineering (ASE 2001), 2001;
107–114.

Duplicated
Code,
comments

DC Experiment
x1

Constructed
project x1

N
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SLR 19 Marinescu C. Identification of
design roles for the assessment of
design quality in enterprise
applications. 14th IEEE
International Conference on
Program Comprehension (ICPC
2006), 2006; 169–180.

Feature
Envy, Data
Class

DC Experiment
x2

Commercial
project x2

N

SLR 20 Mens T, Tourwe T and Munoz F.
Beyond the refactoring browser:
advanced tool support for software
refactoring. Proceedings of the Sixth
International Workshop on
Principles of Software Evolution,
2003; 39–44.

Duplicated
Code,
Refused
Bequest,
others

DC Case study x1 Academic
project x1,
commercial
project x1,
open source x1

N

SLR 21 Merlo E, Antoniol G, Di Penta M
and Rollo VF. Linear complexity
object-oriented similarity for clone
detection and software evolution
analyses. Proceedings 20th IEEE
International Conference on
Software Maintenance, 2004;
412–416.

Duplicated
Code

DC Case study x1 Open source
x1

N

SLR 22 Mihancea PF and Marinescu R.
Towards the optimization of
automatic detection of design flaws
in object-oriented software systems.
Ninth European Conference on
Software Maintenance and
Reengineering (CSMR 2005), 2005;
92–101.

Data Class,
others

DC Experiment
x1

Student
opinion x1,
student project
x1

N

SLR 23 Moha N, Gueheneuc YG and Leduc
P. Automatic generation of detection
algorithms for design defects.
21st IEEE/ACM International
Conference on Automated Software
Engineering (ASE ’06), 2006;
297–300.

Others DC Case study x1 Open source
x1

N

SLR 24 Monden A, Nakae D, Kamiya
T, Sato S and Matsumoto K.
Software quality analysis by
code clones in industrial legacy
software. Proceedings Eighth IEEE
Symposium on Software Metrics,
2002; 87–94.

Duplicated
Code

IC Experiment
x1

Commercial
project x1

Y

SLR 25 Munro MJ. Product metrics
for automatic identification of
‘bad smell’ design problems in
Java source-code. 11th IEEE
International Symposium on
Software Metrics, 2005; 9.

Lazy Class,
Temporary
Field

DC Case study x1 Commercial
project x1

N

SLR 26 Rapu D, Ducasse S, Girba T and
Marinescu R. Using history
information to improve design flaws
detection. Proceedings of the Eighth
European Conference on Software
Maintenance and Reengineering
(CSMR 2004), 2004; 223–232.

Data Class,
others

DC Case study x1 Open source
x1

N

SLR 27 Rieger M, Ducasse S and Lanza M.
Insights into system-wide code
duplication. Proceedings of the11th
Working Conference on Reverse
Engineering, 2004; 100–109.

Duplicated
Code

RC Case study x1 Academic
project x1,
commercial
project x1,
student project
x1 open source
x1

N
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SLR 28 Shatnawi R and Wei L. An
investigation of Bad Smells in
object-oriented design. Third
International Conference on
Information Technology: New
Generations (ITNG 2006), 2006;
161–165.

Long Method,
Large Class,
Shotgun Surgery,
Feature Envy,
Data Class,
Refused Bequest

IC Experiment
x1

Open
source x1

Y

SLR 29 Srivisut K and Muenchaisri
P. Bad-Smell metrics for
aspect-oriented software. Sixth
IEEE/ACIS International
Conference on Computer and
Information Science (ICIS 2007),
2007; 1060–1065.

Duplicated
Code, Feature
Envy, others

DC Case study x1 Academic
project x1

Y

SLR 30 Srivisut K and Muenchaisri P.
Defining and detecting Bad Smells
of aspect-oriented software. 31st
Annual International Computer
Software and Applications
Conference (COMPSAC 2007),
2007; 65–70.

Others IC Experiment
x1

Open
source x1

N

SLR 31 Tairas R and Gray J. An
information retrieval process to aid
in the analysis of code clones.
Empirical Software Engineering
2009; 14(1):33–56.

Duplicated Code DC Case study x1 Commercial
project x1

N

SLR 32 Toomim M, Begel A and Graham
SL. Managing duplicated code
with linked editing. 2004 IEEE
Symposium on Visual Languages
and Human Centric Computing,
2004; 173–180.

Duplicated Code RC Experiment
x1

Student
opinion x1

N

SLR 33 Tourwe T and Mens T. Identifying
refactoring opportunities using
logic meta programming.
Proceedings of the Seventh
European Conference on Software
Maintenance and Reengineering,
2003; 91–100.

Refused
Bequest, others

DC Case study x1 Constructed
project x1

N

SLR 34 Trifu A and Marinescu R.
Diagnosing design problems in
object oriented systems. 12th
Working Conference on Reverse
Engineering, 2005; 10.

Large Class,
Feature Envy,
Refused
Bequest, others

IC Case study x1 Open
source x1

N

SLR 35 Trifu A and Reupke U. Towards
automated restructuring of
object oriented systems. 11th
European Conference on Software
Maintenance and Reengineering
(CSMR ’07), 2007; 39–48.

All RC Experiment
x1

Open
source x1

N

SLR 36 Tsantalis N, Chaikalis T and
Chatzigeorgiou A. JDeodorant:
identification and removal of
type-checking bad smells. 12th
European Conference on Software
Maintenance and Reengineering
(CSMR 2008), 2008; 329–331.

Switch
statements

DC Experiment
x1

Open
source x1

N

SLR 37 Van Rysselberghe F and Demeyer
S. Evaluating clone detection
techniques from a refactoring
perspective. Proceedings of the
19th International Conference on
Automated Software Engineering,
2004; 336–339.

Duplicated Code DC Experiment
x1

Commercial
project x1,
open source
x1

N
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SLR 38 Van Rysselberghe F and Demeyer
S. Reconstruction of successful
software evolution using clone
detection. Proceedings of the Sixth
International Workshop on
Principles of Software Evolution,
2003; 126–130.

Duplicated
Code

OT Case study x1 Open
source x1

N

SLR 39 Wettel R and Marinescu R.
Archeology of code duplication:
recovering duplication chains from
small duplication fragments. Seventh
International Symposium on
Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC
2005), 2005; 8.

Duplicated
Code

DC Case study x1 Open
source x1

N
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