
CodeMonkey; a GUI Driven Platform for Swift
Synthesis of Evolutionary Algorithms in Java

Reza Etemadi, Nawwaf Kharma, and Peter Grogono

Electrical and Computer Engineering Department, Concordia University, Montreal
(QC), Canada H3G 1M8

{r_etemad@encs,kharma@ece,grogono@cse}.concordia.ca

Abstract. CodeMonkey is a GUI driven software development platform
that allows non-experts and experts alike to turn an evolutionary al-
gorithm design into a working Java program, with a minimal amount
of manual code entry. This paper describes the concepts behind Code-
Monkey, its internal architecture and manner of use. It concludes with
a simple application that exhibits its utilization for multi-dimensional
function optimization. CodeMonkey is provided free of charge, for non-
commercial users, as a plug-in for the Eclipse platform.

Keywords: Evolutionary Algorithm, Java Language, Eclipse Platform,
GUI Application

1 Introduction

CodeMonkey is a GUI-driven software platform that allows non-expert users to
generate an executable Java implementation of a custom-designed Evolutionary
Algorithm, meant for a particular optimization or design application.

1.1 Review

There are many types of Evolutionary Algorithms (EA) including Genetic Al-
gorithms (GA), Genetic Programming (GP), Evolutionary Strategies (ES) and
Evolutionary Programming (EP). Software platforms differ in: scope (some are
more generic while others are specialized to certain domains); performance and
scalability (based on the language or platform they employ); usability (whether
it is just a library, framework, application or platform). A few widely-used EA
development aides follow.

GEATbx [1] (Genetic and Evolutionary Algorithm Toolbox) is a Matlab tool,
and one of the few packages that cover the four main flavors of EA. It allows
users to define homogeneous genotypical representations (i.e., lists of one type
of variable); it has limited support for heterogeneous genotypes (with different
types in the same structure) [2]. It offers a GUI for novice users. It has a limited



2 CodeMonkey; a GUI Driven Platform for Synthesis of EA

selection of genetic variation operations. It is a proprietary package and is not
extendable by third parties.

Evolving Objects (EO) [3] is a template-based C++ open-source framework
for writing stochastic optimization programs. It supports homogeneous genotyp-
ical representations (but not integers). It does not offer readily usable hetero-
geneous genotypes. Many selection mechanisms are provided. It does not allow
GUI based customization. It is open-source and free to use under GPLv2. It is
extendable by third-parties.

DREAM (Distributed Resource Evolutionary Algorithms Machine) [4][5] soft-
ware framework (called Java Evolving Object) defines many genotypes together
with matching variation operations. It does not provide heterogeneous geno-
types. It has a GUI for non-programmers for both I/O interaction and problem
definition. It is open-source and is offered under a GPL license. The platform
has a distributed architecture, and the framework has an API that facilitates
distributed implementations.

Watchmaker Framework for Evolutionary Computation [6] is a framework for
implementing evolutionary algorithms in Java. It is used in the Apache Mahout
Project, and some specialized frameworks, such as GEP4J. It does not provide
predefined genotypes. There is a GUI for monitoring progress, but it does not
offer a GUI for non-experts to generate code. There are a limited number of vari-
ation operators. It is open-source and available under Apache software license,
and it is easily extendable.

Table 1. Camparative Summary of Common EA Platforms

Name GEATbx Evolving Objects DREAM Watchmaker JGAP

Programming
Language

Matlab C++ EASEA
/Java

Java Java

Type Library Framework Platform Framework Framework

Homogeneous
Genotypes

Real, Integer,
Binary,
Permutation

Real, Binary,
Permutation

Real,
Integer,
Binary, Tree

None Real, Integer,
Binary,
String & more

Heterogeneous
Genotypes

None None None None None

Selection
Types

4 9 (more
pluggable)

11 (more
pluggable)

6 (more
pluggable)

4 (more
pluggable)

GUI for
Novice users

Yes No Yes No No

Open Source No Yes Yes Yes Yes

Extendable No Yes Limited Yes Yes

Licencing
/Pricing

Multi-tier
/Not-free [8]

GPLv2
/Free

GPL
/Free

Apache v2.0
/Free

LGPL,Mozilla
/Free

JGAP (Java Genetic Algorithms Package) [7] is a GA and GP component
provided as a Java framework. It provides basic genetic mechanisms that can be



CodeMonkey; a GUI Driven Platform for EA in Java 3

used to apply evolutionary principles to problem solutions. It has many ready-to-
use genotypes defined, but does not offer heterogeneous genotypes. It also does
not provide a GUI for end-users to generate code; only expert users, who must
learn the framework and have prior knowledge of GA or GP, can make use of
JGAP. It is, however, an open-source resource, free and extendable under LGPL
and Mozilla licenses. Table 1 provides a brief comparison of the EA platforms
outlined in this section.

The comparison table demonstrates that only GEATbx and DREAM offer
a customization GUI for non-expert users. None of them attempts to provide
support for heterogeneous genotypes. In contrast, we provide an easy-to-learn
and use GUI-driven platform for the generation of EAs of different flavors and for
many target application. It supports both homo- and heterogeneous genotypes
with appropriately defined variation operators. It also offers a great degree of
flexibility in both offspring generation and survivor selection; a full description
of its internal design and manners of use follows. The paper concludes with a
simple use example.

2 Design & Implementation

CodeMonkey (CM) is a project that takes advantage of modern features of the
Java language, such as Generics and Annotation, and combines that with the
power and ease of use of the Eclipse platform, to provide both a framework
for expert users and an Eclipse plug-in application for non-expert developers of
Evolutionary Algorithms.

The framework aspect of CM is not unique, but Eclipse integration and its
step by step GUI wizard allow users with little knowledge of programming to
generate serious EA programs that are readily executable.

2.1 Concept

This section offers a description of CMs main configuration steps. This is inter-
leaved with explanations of the main conceptual innovations that were employed
in order to make CM as generic as it is.

Genotype Representation: CM divides genotype representations into two cat-
egories: homogeneous and heterogeneous. A homogeneous genotype is a collec-
tion of genes with identical types (e.g., Boolean, integer or real) while a hetero-
geneous genotype is a collection of homogeneous genes of different types. CM
supports basic homogeneous genotypes and allows easy definition of heteroge-
neous genotypes.

Termination Criteria: CM places the termination conditions which can be
combined under three categories: (a) the Goal Achieved category, which means
that an acceptable level of fitness has been attained by at least one individual
in the population; (b) the Stagnation Reached category, which means that the
improvement in fitness over a preset number of generations is too low to justify
continuation; (c) the Resources Exhausted category, which means that a preset



4 CodeMonkey; a GUI Driven Platform for Synthesis of EA

limit on a computational resource, such as processing time, has been reached or
breached.

Parent Selection: there is a wide spectrum of algorithms for parent selection
[9], from fully deterministic (such as Truncation) to fully probabilistic (such as
Random), which are typically applied to two individuals. Prior to the actual
application of any selection method, the raw fitness of an individual can be
transformed (e.g., via ranking) into a different value: it is this new value that
is used by the selection method. Regarding selection methods, a unique contri-
bution of CM is the way it unifies many different parent selection mechanisms
into one window-based selection generic algorithm. This algorithm employs a
selection window, which can be as large as the population size or as small as two
individuals. Within a window of a certain size, the picking of an individual from
the population can occur on a deterministic or probabilistic basis. The result is a
parent, which is deposited into the parent pool. For example, binary tournament
selection can be viewed as deterministic selection of the fittest individual from
a window of size two. While proportional selection can be seen as probabilistic
selection from a window that includes the whole population.

Variation Operations: there are crossover and mutation operations suited to
different genetic representations. In CM, different operations are defined for dif-
ferent homogeneous and heterogeneous genotypes. Another contribution of CM
is that any number of variation operations can be used with different probabili-
ties and in different sequences along one or more paths linking the parent pool
to the offspring pool. This allows users of CM to define a GA-like single sequence
of variation operations of say crossover followed by mutation, or alternatively
define a GP-style tree of variation operations, with crossover working in parallel
with mutation to generate offspring.

Survivor Selection: it allows the generation of the next population using indi-
viduals from the current population and/or offspring pool. In CM, all selection
mechanisms used for parent selection are available to survivor selection. The
difference is that we can apply the selection window to any one or both of the
current population and the offspring pool. In addition, CM allows the use of
elitism and injection.

2.2 The Framework

To explore CodeMonkeys framework, we start by describing its architecture and
data model. The class diagram in figure 1 presents the core package of the
framework, which includes the main classes described below.

Class Phenotype represents an individual solution. In the core package this
is an abstract class that has two other elements, Genotype and Fitness (mapped
through generics). In any implementation, a subclass of this class will be needed
for representing individuals.

Class Genotype is the class that represents the genetic encoding of Pheno-
type. It is a Java interface that extends Java Collection interface. For Boolean,
integer and real types, the framework provides implementation. Several varia-
tion operators are available in the framework for each genotype implementation.



CodeMonkey; a GUI Driven Platform for EA in Java 5

Fig. 1. CodeMonkeys Class Diagram.

These classes are also used for building homogeneous and heterogeneous geno-
types in the CM application.

Class Fitness represents the suitability of the phenotype as a solution in
comparison to other phenotypes. This is also defined as a Java interface in the
framework that extends Java Comparable interface. This interface uses Java
generics to accept any subclasses of the Java Number class that implements the
Comparable interface.

Class Population represents a collection of Phenotypes. This class (or its
subtypes) can be registered to represent the initial population, the parent pool,
the offspring pool as well as the next generation. This class has many utility
methods for random selection and sorting as well as calculating various statistics
of the population (based on fitness and other attributes).

Class TerminationStrategy is an abstract class that represents the termina-
tion criteria in the framework. All possible criteria that are used in the CM
application are provided in this class. Any concrete subclass can be registered in
an implementation. It is invoked periodically to see if the evolutionary process
should terminate.

Class ParentSelectionStrategy is the class that realizes the unitary parent
selection approach described above. There are three subclasses of this class: one
for Truncation selection, one for Proportional selection and a third for Random



6 CodeMonkey; a GUI Driven Platform for Synthesis of EA

selection. Any concrete subclass of ParentSelectionStrategy that is registered
will be invoked to create the parent pool.

Class VariationStrategy is the abstract class of all variation operations in
the framework. Any concrete subclass will invoke the variation method that is
implemented in the Genotype with the desired probability and sequence. The
class must be registered before it can be invoked to create the offspring pool
from the parent pool.

Class SurvivalSelectionStrategy is the abstract class for the survivor selection
process in the framework. It internally relies on the ParentSelectionStrategy. A
concrete subclass will need to define what percentage of the next population
comes from what available population and based on which selection mechanism.
The subclass must be registered before it is invoked to create the next generation
from the current population and/or the offspring pool.

Finally, class Evolution is the orchestrator of the evolutionary process: the
general logic of evolution is implemented here. Any implementation based on the
framework will create a concrete subclass of this class and include a main method,
so it can be called as a Java application. All above-mentioned registrations of
data types, strategies and pool sizes need to be defined in the concrete subclass.
Once all necessary elements are registered, the class can be executed to launch
the evolutionary process.

2.3 Plug-in Application

The CodeMonkey application is built on top of the Eclipse platform. It uses
Eclipses plug-in architecture [10] to create a GUI-based application. The user of
CM employs a GUI to provide customizing inputs reflecting a specific EA flavor
and target application. Hence, the CM application uses the Eclipse JDT (Java
Development Tools) API to create the necessary code, which in turn completes
the CM framework. The user can then launch the generated Java program in
Eclipse.

Two types of users can use CM to customize and generate an EA in Java:
novice and expert. Expert users can directly work with the framework by us-
ing existing functionalities or extending them and adding new implementations.
Novice users are asked to provide the CM with customizing inputs, which al-
lows CM to generate a Java program that implements a specific EA flavor for
a specific EA application. The only part of CM that necessitates the provision
of either (1) actual code or (2) a link to an external program or function is the
fitness function.

As shown, once the CM plug-in application is launched, the first step is defin-
ing the genotype, followed by configuring initialization. Hence, the user defines
how fitness will be calculated. This is the only step that necessitates manual code
entry or external communications. The next step is defining the termination cri-
teria. This is followed by customizing parent selection. The remaining two steps
are defining how variation operations are applied and how the next generation
is created. Once those steps are completed, the generated code is compiled and
can be run.



CodeMonkey; a GUI Driven Platform for EA in Java 7

Fig. 2. Activity Diagram of CM Plug-in Application.

2.4 Program Execution

Whether the code is generated by the CM application or directly entered into the
generated program, the execution of the resulting program follows the process
exhibited in figure 3.

Fig. 3. Activity Diagram of Code Execution.

First comes initialization of the first generation, followed by fitness calcula-
tion. Hence, the termination criteria are evaluated. As long as the termination
criteria are not satisfied the process goes through parent selection, application of
variation operations (to generate offspring), evaluating the fitness of the offspring
and hence, generating the next population.

3 Example

In this section, we demonstrate how an end-user can use CM to implement an
EA solution to a specific multi-dimensional optimization problem.

The Ackley problem [11] is a n-dimensional minimization problem. The goal
is to find x = [x1, x2, ..., xn] within xi ∈ {−32.768, 32.768} that minimizes the
function:

F (x) = −20. exp

−0.2

√√√√ 1

n

n∑
i=1

x2i

− exp

(
1

n
.

n∑
i=1

cos(2π.xi)

)
+ 20 + e (1)



8 CodeMonkey; a GUI Driven Platform for Synthesis of EA

3.1 Solution

To outline the solution we start by defining the genotype. In this case it will
be a list of real-valued numbers, one per dimension. The dimensions can be
initialized randomly to values from a limited range. The fitness function is the
formula itself. The termination criteria are a combination of goal achieved, evo-
lutionary stagnation and resource exhaustion. For parent selection and survivor
selection many types of deterministic and probabilistic selection methods can be
selected. To generate offspring, a number of crossover and mutation operators
can be used. We configured CM three different ways, with details of the first
(reference) configuration presented in Table 2; the difference between the other
configurations and the reference is described as well.

3.2 Implementation

The following table presents a comprehensive summary of the parameters and
their selected settings for CMs reference configuration C1.

Table 2. List of Parameters and Their Values for the First Configuration (C1) of CM

Genotype
Definition

Length 10

Type Real
Lower Bound Value -32.0 (the same for all genes)
Upper Bound Value 32.0 (the same for all genes)
Selected Variation Oper-
ators

(Discrete Recombination, Continuous
Recombination, Convex Recombination,
Local Crossover, One-Position Muta-
tion, Creep Mutation)

Population
Initialization

Population Size 300

Random Generator Uniform

Fitness Calculation Mechanism Internal (formula entered manually)
Type Minimization
Target Fitness 0.0

Termination Criteria Goal Achieved Stops if Target Fitness is reached
Stagnation Reached Stops if no progress over 1000 generation
Resource Exhausted Stops if generation reached 3000

Parent Selection Window Input Size 20
Window Output Size 15
Type of Selection Proportional (w. replacement)
Fitness Transformation Ranking
Parent Pool Size 150

Variation Operations Offspring Pool Size 150

Survivor Selection Selection Type Proportional (w.o. replacement)
Elitism (%) 5%
Re-initialization (%) 5%



CodeMonkey; a GUI Driven Platform for EA in Java 9

C2 alters population size to 100 and offspring pool size to 50; C3 makes
parent selection deterministic instead of the original probabilistic mode in C1.

3.3 Results

The best result (owing to configurations C1 and C2) was a fitness value of 8.88×
10−16, which is practically zero. The genotype of the best individual is {4.9 ×
10−324, 4.9× 10−324, 4.9× 10−324, 4.9× 10−324, 4.9× 10−324, 4.9× 10−324, 4.9×
10−324, 4.9×10−324, 4.9×10−324, 4.9×10−324}, which is vector 0. This individual
was found at generation 511 (in case of C1) and at generation 4421 (in case
of C2). Configuration C3 failed to return an optimal solution even after 7000
generations (which was set as a stop condition). A time course for the evolution
of best fitness for the three configurations is presented in figure 4.

Fig. 4. The History of Evolution of Best Fitness Over 530 Generations.

The flexibility of the framework allows the user to go back to any of the steps
and change the settings for that particular part of the evolutionary process. A re-
run of the code will incorporate the changes and affect the results. The following
table shows the results of the three different configurations: C1, C2 and C3.

Table 3. Results for Different Configurations

C1 C2 C3

Best Fitness @ Gen. 500 1.3860 2.4721 1.6011

Best Achieved Fitness
(& When)

8.88 × 10−16

(@ Gen. 511)
8.88 × 10−16

(@ Gen. 4421)
2.79 × 10−1

(@ Gen.7000)



10 CodeMonkey; a GUI Driven Platform for Synthesis of EA

The first row presents the best fitness achieved by a particular configuration
at generation 500. The second row contains the best fitness achieved after 7000
generations or less- that is if the optimal solution is found early.

The second column has the results of reference configuration C1. The results
of C2 as shown in the third column of Table 3 demonstrate that a reduction of
both the population size and offspring pool by 2/3 lead to an 8 fold increase,
compared to C1, of the time necessary to reach the optimal solution. The final
configuration (C3) has the same population size and offspring pool size as C1,
but it employs deterministic instead of C1s probabilistic parent selection. As a
result, C3 achieves a higher best fitness than C2 does initially, but eventually
returns a worse best fitness value than both C1 and C2.

In all cases, the manner in which evolution progressed over time was typ-
ical and the way in which the results differed was explainable (e.g., a strictly
deterministic selection method performing badly on highly multi-modal fitness
landscapes).

4 Conclusion

CodeMonkey provides a flexible and easy way to customize and complete (with
a fitness function) a generic evolutionary algorithm, to generate a customized
Evolutionary Algorithm that reflects the users target application as well as his
preferred EA style and configuration. The combination of feature-rich Java and
Eclipses popularity make CodeMonkey a handy tool for both expert and non-
expert developers of EA applications.

References

1. Genetic and Evolutionary Algorithm Toolbox for Matlab http://www.geatbx.com

2. Geatbx Parameter Optimization http://www.geatbx.com/docu/algindex-09.

html#P1058_123869

3. Evolving Objects (EO) http://eodev.sourceforge.net

4. Back, T., Schoenauer, M., Sebag,M., Eiben, A., Merelo, J., Fogarty, T.: A Dis-
tributed Resource Evolutionary Algorithm Machine (DREAM). In: IEEE Transac-
tion on Evolutionary Computation, vol. 2, pp. 951–958. (2000)

5. DREAM http://www.soc.napier.ac.uk/~benp/dream/dream.htm

6. Watchmaker Framework http://watchmaker.uncommons.org

7. Java Genetic Algorithm Package http://jgap.sourceforge.net

8. Geatbx Pricing http://www.geatbx.com/prices.html

9. Dumitrescu, D., Lazzerini, B., Jain, L., Dumitrescu, A.: Evolutionary Computation,
ch. 3–5, 2000

10. Notes on the Eclipse Plug-in Architecture http://www.eclipse.org/articles/

Article-Plug-in-architecture/plugin_architecture.html

11. Bck, T.: Ackley’s Function, in Evolutionary algorithms in theory and practice.
Oxford University Press, pp. 142–143. (1996)


