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1 GETTING STARTED 1

1 Getting Started

Although this course will cover programming practices in general, the focus will be on C++. Why
not Java?

• C++ is more complex than Java. If you can write good programs in C++ well, you can transfer
this skill to Java; the converse is not true.

• Although Java has achieved widespread popularity during the last ten years, there is still a
need for C++ programmers.1

• Many games and most software for the telecommunications industry is written in C++. Com-
panies that use C++ include (see also the course web page): Adobe products; Alias/Wavefront
products (e.g., Maya); Amazon; Google; JPL/NASA; and Microsoft.

• There are many Java jobs and many Java programmers. There are not quite so many C++

jobs and there are very few good unemployed C++ programmers. Strong C++ programmers
can find interesting and well-paid jobs.

It is a cliché to say that software is becoming ubiquitous. However, it is noteworthy that programs
are getting larger:

Entity Lines of code

Cell phone: 2 × 106

Car: 20 × 106

Telephone exchange: 100 × 106

Civil aircraft: 109

Military aircraft: 6 × 109

The crucial problem for all aspects of software development is scalability. Approaches and tech-
niques that do not work for millions of lines of code are not useful. C++ scales well.

1.1 Hello, world!

C++ is the result of a long hisory of developing programming languages: 2

1965: BCPL (Martin Richards)

1968: B (Ken Thompson @ Bell Labs)
(8K × 18b PDP/7)

1969: C (Ken Thompson and Dennis Ritchie)
(64K × 12b PDP/11)

1979: C with classes (Bjarne Stroustrup)

1983: C++ named
1It is hard to obtain reliable data, but once recent article said that current software development is 45% Java,

40% C++, and 15% other.
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1990: templates and exceptions

1992: Microsoft C++ compiler

1993: RTTI, namespaces

1994: ANSI/ISO Draft Standard

1995: Java

The diagram on the following page gives a more detailed history of the development of C++ and
related programming languages.

C++ has strengths: 3

• Low-level systems programming

• High-level systems programming

• Embedded code

• Numeric/scientific computation

• Games programming

• General application programming

and weaknesses:

• Legacy of C

• Insecurities

• Complexity

• No standard GUI library

Even the lead designer of C++, Bjarne Stroustrup, does not claim that C++ is the dieal programming
language: 4

C makes it easy to shoot yourself in the foot.

C++ makes it harder, but when you do, it blows away your whole leg.

The C Programming Language (Kernighan and Ritchie 1978), the “classic” text for C, appeared
in 1978. Its first example program has set the standard for all successors: 5

main()
{

printf("hello, world\n");
}
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#include <iostream>

int main()
{

std::cout << "Hello, world!" << std::endl;
return 0;

}

Figure 1: Hello.1

Since then, C has evolved considerably: it has even changed its name, to C++. The recommended
text book for this course, Accelerated C++, begins with the version of the “hello, world” program
shown in Figure 1 (Koenig and Moo 2000, page 1).

A modern C++ compiler should compile both programs, because C++ is an extension of C.2 To
be more precise, it was originally the intention that C++ and C should be compatible, but that
goal was abandoned when it became clear that C++ would suffer if it was followed rigorously: it
is possible to write programs that are legal C but not legal C++. An unfortunate side-effect of
this compatibility is that there is now a mixture of C and C++ programming styles, ranging from
“classic C” style to “modern C++” style. In this course, we will emphasize the modern style.

The important features of Figure 1 are:

• #include <iostream> informs the compiler that the program uses components from the
stream library to perform input and output. (#include is similar to Java’s import.)

• int main() introduces a function that is usually called the main program. Compilers are
quite flexible about the declaration of this function. We will see later, for example, that main
may take arguments. The initial int is important, however: it indicates that the function
will return an integer that the operating system may use to choose the next action.

• std::cout is the new version of the old “printf” (or System.out.print in Java). The
first part, std, refers to a namespace in which cout and other names are declared. cout
(pronounced “see-out”) is the name of the standard output stream; when a program runs,
text written to cout appears on the console window. The :: is a scoping operator that
says, in effect, “find the name cout in the namespace std”.

• << is an operator, analogous to + or ×. In this case, its right operand consists of stuff to
be written to standard output.

• std::endl is the new version of \n: it is short for “end line” and outputs a return character.
(We can still use \n, however.)

• return 0 sends zero back to the operating system, indicating that the program terminated
successfully.

In general, we also note that:
2Stroustrup claims that “every example in The C Programming Language (2nd Edition) (Kernighan and Ritchie

1978) is also a C++ program.”. Of course, this does not imply that every program that a C compiler compiles will
also be accepted by a C++ compiler.
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• Statements in C++ are terminated with a semicolon (“;”).

• Blocks of code are delimited by braces (“{” and “}”).

C has a reputation for being cryptic. The following code for copying a string (Kernighan and
Ritchie 1978, page 101) is often quoted: 6

char *s;
char *t;
....
while (*s++ = *t++)

;

This works for several rather subtle reasons: the post-increment operator ++ has an effect and also
returns a value; the assignment operator = returns a value; C strings are terminated by the special
value ’\0’ (also known as the “null character”); and the null character, interpreted as a boolean,
represents false. The loop terminates because a C string, by convention, is terminated with a null
character (’\0’).

This style of programming was fine for the time. Ritchie and Thompson designed C for systems
programming on minicomputers of the early 1970s. They did most of their work on a DEC PDP/11
with 64 Kb of RAM and they wanted a small and simple compiler. The while statement above
can be compiled into efficient code without any further optimization.

By way of contrast, here is the string copy implemented in “C-for-dummies” style. Note the explicit
termination test, comparing s[i] to ’\0’. The do-while loop is used because the terminator must
be copied to the output string.

int i = 0;
do
{

s[i] = t[i];
i = i + 1;

} while (s[i] != ’\0’);

An experienced C programmer would probably prefer the library call strcpy(s, t) to either of
these versions.

From a modern perspective, however, the while statement is unnecessarily cryptic and potentially
inefficient because it places unnecessary constraints on what the compiler can do. Accurately
implementing what the programmer has written requires the use of two registers, separately incre-
mented, and each containing a pointer. At each cycle, the code must test for a null character.

In contrast, a C++ programmer would write something like this: 7

std::string s;
std::string t;
....
s = t;
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In this version, strings are instances of a standard class string rather than “pointers to characters”.
The copying operation is performed by the library function that implements assignment (“=”).
This function can be written to be optimal for the architecture for which the library is written: for
example, it might use “block moves” rather than copying characters one at a time. It might even
avoid copying altogether (see Figure 2). The code does not depend on any particular representation
for strings. For example, it does not require a null terminating character. In general, a C++

programmer will tend to work at a higher level of abstraction than a traditional C programmer. 8

Figure 2 shows the time required to copy a 44-character string3 in the four different ways described
above. All times are in microseconds. The results are surprising: strcpy is 34 times faster
than string assignment with VC++, but 27 times slower with gcc. Perhaps Microsoft have not
implemented the new libraries very well! It seems likely that gcc avoids copying the string until it
becomes necessary (i.e., it uses the “copy on write” pattern). The standard class string is widely
considered to be an inefficient mess, so perhaps we should not worry too much about these results.

Operation VC++ 7.1 gcc 3.2.3

char *s, *t; ... strcpy(s, t) 0.025 4.30

char *s, *t; ... while(*s++ = *t++); 0.191 2.99

C-for-dummies 0.200 4.30

string s, t; ... s = t; 0.856 0.16

Figure 2: Timing comparisons for string copying

Here is another, much more advanced, example of modern C++. Suppose we want to parse strings
according to the following grammar: 9

expr = term ‘+’ expr

| term ‘-’ expr

| term

term = factor ‘*’ term

| factor ‘/’ term

| factor

factor = integer

| ‘(’ expr ‘)’

Using the Boost Spirit library (Abrahams and Gurtovy 2005), we can write code corresponding
to these productions as shown in Figure 3 follows (some additional surrounding code is needed to
make everything work). Notice how close the C++ code is to the original grammar. 10

That C++ is compatible with C is both good and bad. It is good because at Bell Labs, where
C++ was developed, a new language that could not compile existing code would almost certainly
have not been accepted. It is bad because C is an old language with many features that would
now be considered undesirable; compatibility meant that C++ had to incorporate most of these

3"the quick brown fox jumped over the lazy dog".
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expr =
( term[expr.val = _1] >> ’+’ >> expr[expr.val += _1] )

| ( term[expr.val = _1] >> ’-’ >> expr[expr.val -= _1] )
| term[expr.val = _1]
;

term =
( factor[term.val = _1] >> ’*’ >> term[term.val *= _1] )

| ( factor[term.val = _1] >> ’/’ >> term[term.val /= _1] )
| factor[term.val = _1]
;

factor =
integer[factor.val = _1]

| ( ’(’ >> expr[factor.val = _1] >> ’)’ )
;

Figure 3: Parsing with Boost/Spirit

undesirable features, even though it does quite a good job of covering them up. A well-trained
and conscientious programmer can write secure and efficient programs in C++; an inexperienced
programmer can create a real mess.

Figure 3 illustrates another aspect of modern C++. All competent C programmers are essentially
equal: they all have a good understanding of the entire language and its standard libraries. With
C++, however, a wide gulf separates programmers who can use the Spirit parser components —
which is straightforward — from the programmers who can create the Spirit components; these
programmers form a small minority of C++ programmers. (Parser generators are constructed by
template metaprogramming, which few C++ programmers understand, let alone use.)

1.2 Compiling C++

Old compilers, and even some new compilers, are not able to compile modern C++ programs.
Figure 4 lists compilers that work in the left column and compilers that may not work in the 11
right column. In particular, Microsoft VC++ 7.0 or later is fine for this course, but you may have
problems with VC++ 6.

1.2.1 The compilation process

Compiling a program consists of a number of steps. Errors may occur at any step, and it is
important to distinguish the different kinds of error. The compiler processes the program as a
number of compilation units. Each compilation unit corresponds to a source code file together
with any other files #included with it.

1. The compiler parses each compilation unit. This may produce syntax errors.

If we omit a semicolon in Figure 1, writing
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Good compilers Bad compilers

Name Version Name Version

Comeau 4.3.3 Borland 5.5.1

gcc 3.2.2 Borland 5.6.4

gcc 3.3.1 gcc 2.95.3

Intel 7.1 Microsoft Visual 6.0 SP 5

Intel 8.0 Microsoft Visual 7.0

Metrowerks CodeWarrior 8.3 HP aCC 03.55

Metrowerks CodeWarrior 9.2 Sun 5.6

Microsoft Visual 7.1

Figure 4: Compilers for modern C++

cout << "Hello, world!" << endl

the compiler issues a syntax error:4 12

f:\Courses\COMP6441\src\Hello\hello.cpp(32):
error C2143: syntax error : missing ’;’ before ’}’

The “32” is the number of the line on which the error is detected; in this case, it is the line
containing }, the line following the line with the error. However, the error message itself is
quite helpful: it actually tells you what is wrong with your program.

2. The compiler checks the semantic correctness of the program. For example, it checks that each
function is called with arguments of an appropriate type. A program may have semantic
errors.

If we omit the “l” from “endl”, the compiler issues two semantic errors: 13

f:\Courses\COMP6441\src\Hello\hello.cpp(31):
error C2065: ’end’ : undeclared identifier

f:\Courses\COMP6441\src\Hello\hello.cpp(31):
error C2593: ’operator <<’ is ambiguous

Syntax errors and semantic errors are collectively call compile-time errors.

3. The compiler generates object code for the compilation unit.

4. When each compilation unit has been controlled, the linker is invoked. The linker attempts
to link all of the object code modules together to form an executable (or, occasionally, a
library). This may produce link-time errors.

Suppose that we declare and use a function f but forget to define it. The compiler expects
that f will be defined somewhere else and so does not generate a semantic error. We do not
get an error until the linker discovers that there is no definition: 14

4The error messages were produced by VC++. Other compilers produce similar, but not identical, diagnostics.
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Hello error LNK2019:
unresolved external symbol "void __cdecl f(int)"
(?f@@YAXH@Z) referenced in function _main

The mysterious string ?f@@YAXH@Z is the name that the compiler has given to the function f.
The conversion from f to ?f@@YAXH@Z is called name mangling.

5. When the program has been linked, it can be executed or, more simply, run. It may run
correctly or it may generate run-time errors.

If you write cout twice by mistake, the compiler accepts the program without any fuss:

cout << cout << "Hello, world!" << endl;

However, when the program runs, it displays: 15

0045768CHello, world!

Output like this can be disconcerting for beginners: the program has displayed the address
of the object cout in hexadecimal!

Although you don’t really want any errors at all, you should prefer compile-time and link-time
errors to run-time errors, if only because your customers will never see them. Fortunately, C++

compilers perform thorough syntactic and semantic checking (much better than C compilers) and
will catch many of your errors. 16

An event that occurs during compilation is called static. An
event that occurs during execution is called dynamic.

1.2.2 Compiling in practice

There are a number of platforms available for C++ development. The following are provided on
university lab computers:

Windows: Microsoft Visual Studio 6.0: The version of C++ provided by VS6 is obsolete. In
particular, templates are not implemented correctly. You can use VS6 for simple program-
ming tasks, but it is not adequate for this course.

Windows: Microsoft Visual Studio .NET Professional 2003: VS 2003 provides a better
version of C++ (V7) that is usable for this course. It is not the most recent version of VS.NET
and versions are not compatible.

For example, suppose that you have V8 at home. You will not be able to run programs
developed at home on school machines — when you try do do so, Windows reports “This
application has failed to start because the application configuration is incorrect. Reinstalling
the application may fix this problem”. If you develop something at school under V7 and take
it home, VS will tell you that the project must be converted to V8 — meaning that you can’t
work on it and then take it back to school!

A further problem with all versions of VS is that clutter your project with large quantities
of Microsoft code that you probably don’t understand, don’t want, and don’t need in you
project. Appendix C (page 272 of these notes) explains how to prevent this.
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Linux: gcc (Gnu C Compiler) is a command-line compiler, not an IDE. For simple programs with
all of the source code in one file, just use “gcc” (defaults to C) or “g++” (defaults to C++)
as a command. For more complex programs, it’s best to write a make file.

Linux also provides a variety of tools that are useful for C++ development, including: cvs (for
version control); Doxygen (for documentation); and wxGTK, an “easy-to-use API for writing
GUI applications on multiple platforms”.

If you are working on your home computer, you have various options.

Visual Studio: You can buy the educational version of Visual C++ for a moderate price.5

Alternatively, you can download the free “Express” version from Microsoft. The Express
edition is limited in various ways but is good enough for this course.

An advantage of VS is that many libraries are provided in pre-compiled form for it. To install
them, you just download the package and store various files in appropriate places.

Code::Blocks is a free IDE for C++ that can be used with various compilers. The standard
download package includes MinGW, which is the GNU compiler for Windows.

Code::Blocks is a more friendly and easy-to-use IDE than VS. Its main disadvantage is
libraries: it comes with the standard C++ libraries but, if you want to use any other libarries,
you will have to compile them and install them yourself.

See the course web page for links to these and other free products.

1.3 Hello, world! — The Details

Here is the first C++ example program again: 17

#include <iostream>

int main()
{

std::cout << "Hello, world!" << std::endl;
return 0;

}

“#include” is a compiler directive. Strictly speaking, it is not part of the program, but instead
is an instruction telling the compiler what to do. In this case, the directive tells the compiler to
make the part of the standard library that deals with streams accessible to the program.

Streams are one of the media that C++ programs used to communicate. The communication is
usually external — data is read to or from a device such as a keyboard, screen disk, or network —
but may also be internal to the program (that is, to or from memory). A stream is not the same
as a file, although a file may be read or written with a stream.

5Recent (Dec 06) prices at the university computer store were $69 for VS 2005 Standard and $145 for VS 2005
Pro.
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An output stream typically allows the program to send data to an external device, such as a
window. An input stream typically allows the program to receive data from an external device,
such as a keyboard. The library component iostream provides both: “i” for input and “o” for
output.

The program itself consists of a single function definition. The function’s name is main and
its return type is int. The word int is a keyword of C++, meaning that we cannot use it for
anything other than its intended application. In fact, int is a type — the type of signed integers.
A value i of type int is typically represented using 32 bits and satisfies −231 ≤ i < 231 − 1. A few
modern C++ systems provide 64-bit ints.

The body of the function consists of a sequence of statements (two in this example) enclosed in
braces ({ ... }). The last character of each statement is a semi-colon (;).

The return type of the function (int) is related to its last statement: return 0. The program
behaves as if the function main is invoked by the operating system, executes its two statements,
and returns the integer 0 as its result. The operating system interprets 0 as “normal termination”.
We can return other values if we want to tell the operating system that something went wrong.

The only thing left to discuss is the line beginning with std::cout. This illustrates an important
general principle of C++. The text

std::cout << "Hello, world!" << std::endl

is an expression that yields a value. By putting a semicolon at the end of this expression, we
discard the value and turn the expression into a statement.

Expressions consist of operands and operators. For example, x + 5 is an expression with two
operands (x and 5) and one operator, +. We say that + is a binary operator because it takes
two operands: x is its left operand and 5 is its right operand. An expression can be evaluated

to yield a result. If x has the value 2, then evaluating x + 5 yields 7.

In C++, << is a binary operator, usually called “insert”. Its left operand is an output stream; its
right operand may be a string, a manipulator, and various other things. Its result is a stream.
When an expression contains more than one insertion operator, they are evaluated fom left to
right. The first step in evaluating

std::cout << "Hello, world!" << std::endl

is to evaluate

std::cout << "Hello, world!"

This has the effect of appending the string "Hello, world!" to the standard output stream and
yields the updated output stream, say uos. The next step is to evaluate

uos << std::endl

which has the effect of appending a new line to the standard output stream (and a bit more,
discussed below) and yields the updated output stream. In the program, this expression is followed
by a semicolon, which throws away the final value. cout is a persistent object, however, and it still
exists in its updated state.

There is a small, but significant, difference between the statements



1 GETTING STARTED 12

std::cout << "Hello, world!" << std::endl;

and

std::cout << "Hello, world!" << "\n";

which could also be written as

std::cout << "Hello, world!\n";

The difference is that std::endl writes the \n and also flushes the output buffer. What does
this mean?

It would be inefficient for a program to go through all of the operations of transferring data for
every character in a stream. To save time, the program stores characters in a temporary area
called a buffer and performs the actual transfers only when the buffer is full. If the program is
writing data to a file, this behaviour is undetectable to the user. But, if the program is writing to
a window, buffering makes a lot of difference. If we use \n, a significant amount of output may be
generated by the program before we actually see it displayed. Using std::endl ensures that each
line of output will be displayed as soon as it has been computed.

Here is yet another way of writing “Hello, world” followed by end-of-line:

std::cout << "Hello, world!"
"\n";

When C++ sees a quote (") at the end of a string, followed by white space (blanks, tabs, and line
breaks), followed by a quote at the beginning of a string, it erases quotes and the white space and
treats the result as a single string. This is useful for writing long strings or strings that run over
several lines.

1.4 Namespaces

As we noted above, we write std::cout to tell the compiler that the name cout comes from the
namespace std. The name cout is a simple name (or just a name), std::cout is a qualified

name, and std:: is a qualifier. “::” is called the scope operator.

We can use this convention but, as programs get longer and more complex, the frequent appearance
of “std::” becomes irritating, as well as being tedious to type. An alternative is to say to the
compiler “When I write cout, I mean std::cout”. This is the purpose of the using directive, as
shown in Figure 5. In general, we write one using directive at the beginning of the source file for 18
each name that we intend to use.

We can go further, saying to the compiler “When I write any name that belongs to std, take it
from there”. The form of the using directive that does this is shown in Figure 6. Note that, in 19
both Figure 5 and Figure 6, we use cout and endl without the qualifier std::.

Some people will tell you that the point of namespaces is to make the source of names explicit; they
will tell you that Figure 1 is the best way to write programs, Figure 5 is acceptable, and Figure 6
is bad — the kind of code produced by lazy programmers who should be fired. This attitude is
wrong. The actual situation is more complex.
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#include <iostream>

using std::cout;
using std::endl;

int main()
{

cout << "Hello, world!" << endl;
}

Figure 5: Hello.2

#include <iostream>

using namespace std;

int main()
{

cout << "Hello, world!" << endl;
}

Figure 6: Hello.3

Namespaces were introduced into C++ to prevent name clashes in programs that use more than
one library. Suppose that you are writing a program that uses a library Cowboy and another
library Artist. Both libraries provide a function called draw. When you try to use draw, the
compiler complains that it cannot tell which library to take it from. To avoid this problem, the
libraries wrap their names in namespaces — perhaps namespace cowboy and namespace artist.
The programmer can then write cowboy::draw or artist::draw, depending on which function is
needed.

Most of the time, however, name clashes do not occur. In particular, it is very unlikely that a
library writer would use a well-known name such as cout. Consequently, it is quite acceptable
to use the form of Figure 6, while being aware that it may one day be necessary to use explicit
qualification when a name clash actually occurs.

1.5 Strings
20

Figure 7 (Koenig and Moo 2000, page 9) shows a program that asks for the user’s name and then
greets the user. Running it produces a dialogue like this: 21

What is your name? Nebuchadnezzar
Hi, Nebuchadnezzar!

Much of this program should already be familiar because it is similar to Hello, world!. The new
features are the class string and the input stream cin.

The directive #include <string> informs the compiler that we will be using class string. Since
the names provided by string are included in the namespace std, we can write simply “string”
in the program rather than “std::string”.
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#include <iostream>
#include <string>

using namespace std;

int main()
{

cout << "What is your name? ";
string name;
cin >> name;
cout << "Hi, " << name << "!" << endl;
return 0;

}

Figure 7: Greeting.1

The second statement of the main program,

string name;

is both a declaration and a definition. (We will discuss the distinction between declarations and
definitions in detail later. For now, note that all definitions are also declarations, but a declaration
is not necessarily a definition.) It introduces a new variable, name, into the program. The type of
name is string. We could also say that name is a new object, and an instance of class string.

The value of a string object is a string of characters, such as "Hello, world!". After the
declaration, the value of name is actually the empty string, written "".

There are various ways of putting characters into a string. In this program, the statement

cin >> name;

reads data from the standard input stream, cin (pronounced “see-in”). By default, cin gets
data from the keyboard. In other words, whatever text you enter in response to the prompt
"What is your name?" gets stored in the variable name.

Actually, this description is not quite accurate: cin reads only until it encounters white space (a
blank, tab, or enter) and then stops. This explains the following dialogue:

What is your name? King Kong
Hi, King!

After the program has stored a value in name, it can use this value, as in the second cout statement.

There is a subtlety in Figure 7 that is worth noting. On the basis of the discussion at the end of
Section 1.3, you would be right to wonder why the statement

cout << "What is your name? ";
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produces any output at all. Why is the data not left in the buffer until endl is output in the second
cout statement? The answer is that the streams cin and cout are linked. Any use of cin causes
the buffer for cout to be flushed. This ensures that programs that implement a dialog in which
the user must respond to displayed text will work as expected.

Memory management is an important aspect of C++ programming. In Figure 7, memory for
the string name is allocated on the run-time stack when the definition string name is evaluated.
The class string manages memory when characters are put into the string (e.g., by cin) or the
string is changed in other ways. At the final closing brace (“}”) of the program, any memory used
by name is de-allocated.

A definition, of a variable or other named entity, occurs within a scope. The scope consists either
of the closest enclosing braces or, if there are no enclosing braces, the entire source file. In the
latter case, we say that the definition is “at file scope”. Uses of the name must follow its definition.
In other words, we cannot refer to a variable earlier in the program text than its definition: this is
called the “definition before use rule”. The name ceases to be accessible at the end of its scope.

The definition of a name must textually precede its use.

In many cases, there are actions connected with the definition and the end of the scope. In Figure 7,
which is typical, the object name is constructed at the point of its definition and destroyed at
the end of the program. What actually happens is this: when an object definition is processed,
a constructor for the object is called and, at the end of a scope, the destructors for all stack-
allocated objects are called.

Some C++ programmers (and books) use the abbreviations “ctor” and “dtor” for constructor and
destructor, respectively.

1.6 A Pretty Frame

The greeting produced by Figure 7 is dull and boring. The next version, in Figure 8 (Koenig and
Moo 2000, page 12), produces dialogues like this: 22

Please enter your first name: Ferdinand

************************
* *
* Hi there, Ferdinand! *
* *
************************ 23

24The new feature in this program is const string. There are four definitions of the form

const string 〈name〉 .... ;

The keyword const tells the compiler that the values of the names are not going to change. We
cannot declare name as const because its initial value ("") gets changed when we use cin to copy
characters into it.

When we introduce a const name, we must provide a value for it in the same declaration. The
value can be a simple value, as in this example:
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#include <iostream>
#include <string>

using namespace std;

int main()
{
cout << "Please enter your first name: ";
string name;
cin >> name;

const string greeting = "Hi there, " + name + "!";
const string spaces(greeting.size(), ’ ’);
const string second = "* " + spaces + " *";
const string first(second.size(), ’*’);

cout << endl;
cout << first << endl;
cout << second << endl;
cout << "* " << greeting << " *" << endl;
cout << second << endl;
cout << first << endl;

return 0;
}

Figure 8: Greeting.2

const string WELCOME = "Welcome to COMP 6441!";

Figure 8 shows several other ways of providing an initial value using features of class string:

• greeting = "Hi there, " + name + "!"

The operator + concatenates strings (i.e., joins them together). After name has received the
value "Ferdinand", the definition gives greeting the value "Hi there, Ferdinand!".

Although greeting is const and name is not const, we can use name as part of the value of
greeting. The const qualifier says that greeting will not be changed later; it does not say
that the value is known at compile-time.

• spaces(greeting.size(), ’ ’)

The expression greeting.size() makes use of a member function of class string. Mem-
ber functions are called with the “dot notation”:

〈object name〉 . 〈function name〉 ( 〈parameters〉 )

In this case, the function name is size and it returns the size of (i.e., the number of characters
in) the object greeting. Thus greeting.size() is a number (in this case, it is 20).
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Class string has a constructor which expects two arguments: an numeric value (type int)
and a character value (type char). By writing spaces(n, ’ ’) we are saying: construct an
instance of class string with name spaces that contains n characters where each character
is ’ ’ (that is, a blank).

Thus the effect of this particular definition is to define a constant string object spaces with
value "                    ". ( denotes a blank.)

• second = "* " + spaces + " *"

The definition of second uses the definition of spaces and the concatenation operator, +.

• first(second.size(), ’*’)

The definition of first is similar to that of spaces. It has the same number of characters
as second, but each character is an asterisk, ’*’. Note that C++ distinguishes between
strings, which have zero or more characters between double quotes ("....") and characters
(instances of type char), which have exactly one character between single quotes (’.’).

Having defined the strings greeting, spaces, second, and first, the program uses them to
generate the desired output.

Although this program is trivial, it illustrates two important points about programming in gen-
eral:

Avoid unnecessary assumptions.

The program is not written for people with five-letter names but for people with names of any
(reasonable!) length.

Make the program do the work.

The strings needed for the display are computed (as much as possible). This makes it easy to
generate a display whose size matches the name of the user.

It is not necessary to call cout once for each line of output. The six calls of cout in Figure 8 could
be replaced by a single call:

cout <<
endl <<
first << endl <<
second << endl <<
"* " << greeting << " *" << endl <<
second << endl <<
first << endl;

25
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2 Testing and Looping

The control flow of a program is determined by tests and loops. In this section, we review the
main C++ structures for branching and looping and discuss some aspects of loop design.

Engineering is the application of theory (mathematics, physics, etc.) to practice. Programming
has not yet reached the maturity of engineering because we do not yet have adequate theories. We
can prove that trivial programs satisfy a specification, but the techniques do not scale.

Nevertheless, we should do what we can. It is feasible, for example, to use systematic techniques,
rather than guesswork, to code loops, and these techniques are introduced in Section 2.3.

2.1 Conditions

A condition is an expression whose value is either true or false. (This assumes a two-valued
logic. There are other logics with more than two values. For example, the value of a formula in a
three-valued logic might be true, false, or unknown.)

C++ has a standard type, bool, with exactly two values, true and false. Type bool also provides
operators, as shown in this table: 26

Operation Logic Symbol C++ operator

conjunction ∧ &&

disjunction ∨ ||

negation ¬ !

C++ also has operators that work on all of the individual bits of their operands in parallel, shown
in the next table. Do not confuse these with the boolean operators!

Operation C++ operator

complement ∼
shift left <<

shift right >>

and &

exclusive or ˆ

inclusive or |

The Boolean operators && and || are lazy ; this means that they do not evaluate their right
operands unless they need to. In detail, p && q is evaluated like this:

1. Evaluate p. If it is false, yield false.

2. Otherwise, evaluate q and yield the result.

Similarly, p || q is evaluated like this:
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1. Evaluate p. If it is true, yield true.

2. Otherwise, evaluate q and yield the result.

Lazy evaluation has both good and bad consequences:

• It is more efficient, because the right operand is not evaluated unnecessarily.

• It enables us to write tests such as 27

if (y != 0 && x / y <= MAX_RATIO)
....

• In C++, conjunction (and) and disjunction (or) are not commutative! That is, p && q is not
always equivalent to q && p. However, they cannot yield different truth values: at worst,
one would succeed and the other would fail.

C++ also provides comparison operators, which compare two operands and yield a boolean
value. They are < (less than), <= (less than or equal to), == (equal to), != (not equal to),
> (greater than), and >= (greater than or equal to. Do not confuse == with = (the assignment
operator). These work with operands of most types but may not always make sense.

How to read C++:

x == y ≡ “X equals Y ”
a = b ≡ “A gets B” or “A becomes B” or “A is assigned B”

In addition to the type bool, C++ inherits some baggage from C. In C, and therefore in C++:

• 0 is considered false

• Any non-zero value is considered true

This convention has several consequences:

• A condition such as counter != 0 , in which counter is an integer, has the same truth-
value as counter. Many C++ programmers therefore use the simpler form, counter, in a
context where a truth value is expected.

• Expressions that are true, when considered as truth values, are not necessarily equal. For
example, suppose we want to express the fact that two counters are either both zero or both
non-zero. We could express this condition as

(counter1 == 0) == (counter2 == 0)

or, equivalently, as
(counter1 != 0) == (counter2 != 0)

Using the abbreviation above, we might be tempted to simplify this to

counter1 == counter2

But this expression has a different meaning!
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Write conditions carefully. Prefer complete expressions to abbreviations.

The convention also suggests the question: what is zero in C++? The answer is that there are
many things that are considered to be zero — and are therefore also considered to be false in a
condition:

• Integers of type short, int, and long, with value 0

• Floating point numbers of type float, double, and long double, with value 0.0

• The character ’\0’

• Any null pointer (we will discuss pointers later)

• The first element of an enumeration

• The bool value false

• And perhaps others . . . .

2.2 Conditional Expressions

A conditional expression is an expression with a boolean value. Conditional expressions are
often called tests, for short.

Programs typically evaluate conditions using if statements, which have one of two forms 28

if ( 〈condition〉 )
〈statement〉

if ( 〈condition〉 )
〈statement〉

else
〈statement〉

and work as you would expect them to.

The 〈statement〉s in an if statement can be simple or compound. This example illustrates both
possibilities: 29

if (angle < PI)
{

cout << "Still going round ...";
angle += 0.01;

}
else
{

angle = 0;
}
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The braces around the final assignment, angle = 0, are not essential. We could alternatively have
written

....
else

angle = 0;

Whether you include the braces or not is a matter of taste and preference. Including them adds
two lines to the code (or one line if you put the left brace on the same line as else). But including
them makes it easy to add another line later — which is often necessary — and avoids the error
of adding a line but forgetting to add the braces.

2.3 Loops

C++ provides three looping constructs. In the order in which you should consider using them, they
are: for; while; and do/while.

The while loop has this structure 30

while ( 〈condition〉 )
〈statement〉

and it works like this:

�� ��〈condition〉 〈statement〉true

false

?

?

-

�

An important feature of the while loop is that the loop body may not be executed at all. This is
a very useful feature and, when writing a while loop, you should always check that its behaviour
when the condition is initially false is correct.

A loop of this form 31

〈initialize〉
while ( 〈condition〉 )
{

〈action〉
〈step〉

}

should usually be written more concisely in this (almost) equivalent form:
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for ( 〈initialize〉 ; 〈condition〉 ; 〈step〉 )
{

〈action〉
}

For example, instead of writing 32

int i = 0;
while ( i < MAX )
{

doSomething(i);
++i;

}

write this:

for (int i = 0; i < MAX; ++i)
{

doSomething(i);
}

It is a good idea to get into the habit of using pre-increment (++i) rather than post-increment
(i++). For integers, it doesn’t make much difference, but ++ and -- are overloaded for other types
for which the difference is more significant. The reason for preferring pre-increment is that i++
may force the compiler to generate a temporary variable, whereas ++i does not.

The do/while loop is used only when you want to evaluate condition after performing the loop
body: 33

do
〈statement〉

while ( 〈condition〉 )

2.4 Example: Computing the Frame

The program in Figure 9 uses if, while, and for statements. Figure 10 shows an example of its 34

35use. The outer loop, formatting the rows of the display, is a for loop, because exactly one row is
processed during each iteration. This pattern does not work for the inner loop, because progress
is not always one column at a time. The if statements make decisions about what text to output,
and they all have complex conditions with && and || operators.

This program is easier to modify than Figure 8: to change the size of the frame, all we have to do
is change numbers in the const declarations. In fact, just changing the value of pad will change
the spacing all around the greeting.

Design programs so that a few easily changed parameters
change the behaviour of the program in a consistent way.
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#include <iostream>
#include <string>

using namespace std;

int main()
{

cout << "Please enter your first name: ";
string name;
cin >> name;
const string greeting = "Hello, " + name + "!";
const int pad = 1;
const int rows = pad * 2 + 3;
const string::size_type cols = greeting.size() + pad * 2 + 2;
cout << endl;
for (int r = 0; r != rows; ++r)
{

string::size_type c = 0;
while (c != cols)
{

if (r == pad + 1 && c == pad + 1)
{

// We are positioned for the greeting.
cout << greeting;
c += greeting.size();

}
else
{

if (r == 0 || r == rows - 1 ||
c == 0 || c == cols - 1)

// We are on a border.
cout << "*";

else
cout << " ";

++c;
}

}
cout << endl;

}
return 0;

}

Figure 9: Greeting.3
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Please enter your first name: Wilberforce

***********************
* *
* Hello, Wilberforce! *
* *
***********************

Figure 10: A dialogue with Greeting.3

The original program (Koenig and Moo 2000, page 29) contains a number of comments: 36

// say what standard-library names we use
using std::cin; using std::endl;
....
// ask for the person’s name
cout << "Please enter your first name: ";
....
// read the name
string name;
cin >> name;

These comments are acceptable, but only because this program appears in an introductory text
book. In general, comments like this should not be written unless:

• They provide information that is not obvious from the code

• They make the code more readable without adding noise to it

There is one comment in this program which might serve a purpose:

// the number of blanks surrounding the greeting
const int pad = 1;

Without the comment, the meaning of pad would not be obvious, although it is not hard to guess
its meaning by reading the next few lines of code. But any comment that is provided to explain
the role of a variable raises an immediate question: could we eliminate the need for the comment
by choosing a better name?

In this case, we could replace pad by spaceAroundGreeting, or some such name. Then the
comment would be unnecessary.

Of course, it takes longer to type spaceAroundGreeting than pad. But the time programmers
take to type a name a few times (five times for this program) is negligible compared to the time
maintainers take to figure out what they meant.

Another problem with Figure 9 is the mysterious numbers 2 and 3: 37

const int rows = pad * 2 + 3;
const string::size_type cols = greeting.size() + pad * 2 + 2;
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Although there is a comment explaining the meaning of pad, there is no comment explaining
the formulas pad * 2 + 3 and pad * 2 + 2. Again, we can excuse the authors in this case,
because the explanation appears in the book (Koenig and Moo 2000, page 18–22). In production
code, however, these numbers should be accompanied by explanatory comments or even defined as
constants.

We could write the definitions in a way that shows how the values are obtained. This requires
more typing but should not make any difference to the compiled code:

const int rows = 1 + pad + 1 + pad + 1;
const string::size_type cols = 1 + pad + greeting.size() + pad + 1;

Why does the program use int as the type of rows — which seems quite natural — and the
curious expression string::size_type as the type of cols? This type is used because it is the
type returned by the function string::size(). It is an integer type, but we don’t know which
one (probably unsigned long but possibly something else). If we declare “const int cols”, the
compiler issues a warning: 38

frame.cpp(15) : warning C4267: ’initializing’ :
conversion from ’size_t’ to ’const int’, possible loss of data

We don’t want warning messages when we compile, and one way to get rid of this message is to
use the correct type.

If the compiler issues warning errors, revise your code until they disappear.

It is not always easy to eliminate warnings, but the effort is worthwhile. If it doesn’t save your
time now, it may save a maintainer’s time later.

2.5 Counting

In everyday life, if we have N objects and want to identify them by numbers, we assign the numbers
1, 2, 3, . . . , N to them. Another way to look at this is to say that the set of numbers forms a closed

interval which we can write as either 1 ≤ i ≤ N or [1, N ].

Programmers are different. Given N objects, they number them 0, 1, 2, . . . , N − 1. This set of
numbers forms a semi-closed (or semi-open interval which we can write as either 0 ≤ i < N or
[0, N). The advantages of semi-closed intervals include:

• They reduce the risk of “off-by-one” or “fencepost” errors.

To see why off-by-one errors are called “fencepost errors”, consider the length of a fence with
N posts spaced 10 feet apart. The length of the fence is 10(N − 1) feet: see Figure 11. 39

• The closed interval [M, N ] has N − M + 1 elements; the semi-closed interval [M, N) has
N − M elements, which is easier to remember and calculate.

• In particular, the closed interval [M, N ] is empty if M > N , which many people find counter-
intuitive. The semi-closed interval [M, N) is empty if M = N , which is easier to remember
and check.
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0
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6

Figure 11: Fencepost numbering

• Semi-closed intervals are easier to join together. Compare

[A, B), [B, C), [C, D), . . .

to
[A, B − 1], [B, C − 1], [C, D − 1], . . .

• The index of the first element of an array A in C++ is 0. The address of the I ’th element of
the array is &A + sI where &A is the address of the array and s is the size of one element.

Typical C++ loops do not have the form

for (int i = M; i <= N; ++i) ....

in which M is often 1. Instead, they have the form

for (int i = M; i < N; ++i) ....

in which M is often zero. Note that, in the first case, N is the last element processed but, in the
second case, N is the first element not processed. In fact, we will see later that there are good
reasons for writing the termination condition as != rather than <=:

for (int i = M; i != N; ++i) ....

Start a range with the index of the first item to be processed; end the range with
the index of the first item not processed. The first index of a range is often 0.

2.6 Loop Design

We discuss the design of loops with the assumption that they are going to be while loops. If they
later turn out to have the appropriate pattern, we can convert them to for loops. With experience,
we learn to recognize loops that have the for-loop pattern in advance and avoid the conversion
step.

We design while loops using the following schema (the numbers are for reference, not part of the
code): 40
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1 〈initialize〉
2 // I

3 while (C)
4 {
5 // I ∧ C
6 〈body〉
7 // I
8 }
9 // I ∧ ¬ C

• The comment on line 2 says that, after initialization, the condition I is true. I is the
invariant of the loop.

• The comment on line 5 says that, at the start of the body of the loop, the loop invariant I
and the loop condition C are both true. This provides an assumption that we can use in
coding the loop.

• The comment on line 7 says that, after the body of the loop has been executed, the invariant
I is still true (this is what being an invariant means).

• The comment on line 9 says that, when the loop exits, the invariant I is true but the loop
condition C is false.

Good programmers instinctively know what the invariant should be in a while loop.
— Joel Spolsky, Joel on Software, page 164.

2.6.1 Counting Lines

As a simple example of loop design, we consider the problem of writing rows lines of output, as in
Figure 9. We use a counter r to count the number of lines written and, following the convention
for initializing counter, we will initialize it to zero. We will make the minor change of writing ROWS
rather than rows, to indicate that ROWS is a constant and to improve readability.

Here is a suitable invariant: r lines have been written . Note that initializing r to zero makes the
invariant true, because we haven’t written any lines yet.

If we have printed ROWS lines, there is no more to do. Consequently, the condition for the while
loop is r != ROWS and the code begins: 41

1 int r = 0;
2 // r lines have been written
3 while (r != ROWS)
4 {
5 // r lines have been written and r != ROWS

The body of the loop must generate one line of output. We don’t care (for this exercise) what
that output will be, so we will just write a cout statement. The body must also count the lines
produced. Thus the code continues:
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6 cout << .... << endl;
6.1 // r+1 lines have been written
6.2 ++r;
7 // r lines have been written
8 }
9 // r lines have been written and not (r != ROWS)

Line 6 generates one line of output. This invalidates the invariant, as the comment on line 6.1
shows. Incrementing r makes the invariant valid again. We note that an invariant is not always

true, but is true at certain well-defined points in the program. Also, whenever we perform an
action that invalidates the invariant, we must perform another action (++r in this case) that makes
it valid again.

Line 9 can be simplified as follows: 42

r lines have been written and not (r != ROWS)

⇒ r lines have been written and r == ROWS

⇒ ROWS lines have been written

which is exactly what we needed.

Additional points:

• If we had written the while condition as r < ROWS, this reasoning would lead to a different
conclusion:

r lines have been written and not (r < ROWS)

⇒ r lines have been written and r >= ROWS

That is, we could claim only that the code generates at least ROWS lines of output. This is
correct, but it is less precise than the original conclusion, which is that the code generates
exactly ROWS lines of output. One advantage of != over < as a while condition is that it
gives us a more precise conclusion. (This advantage was first pointed out by Dijkstra (1976,
page 56n). We will discuss other advantages later, in connection with the STL.)

• This is an example of the situation mentioned above: the final code matches the pattern of
the for statement and we can write the solution with a for loop. The invariant still applies: 43

for (int r = 0; r != ROWS; ++r)
// r lines have been written
cout << .... endl;

// ROWS lines have been written

• In addition to the invariant, which expresses something that does not change, we need some-
thing in the loop body that does change. Otherwise, the loop condition would never be
satisfied and the loop would never terminate. In this example, the thing that changes is
obviously the row counter; in other cases, it might not be so obvious.

• Suppose that we start counting from 1. A plausible invariant is: “r is the next line to be
written”, but this turns out not to be an invariant, because it is not true after we have
written the last line. An invariant that works is “r-1 lines have been written”, which yields
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1 int r = 1;
2 // r-1 lines have been written
3 while (r <= ROWS)
4 {
5 // r-1 lines have been written and r <= ROWS
6 cout << .... << endl;
6.1 // r lines have been written
6.2 ++r;
7 // r-1 lines have been written
8 }
9 // r-1 lines have been written and not (r <= ROWS)

Figure 12: Starting from 1

the following code in Figure 12. The code is correct, but it is more complicated and error- 44
prone than the solution that counts from zero. As previously mentioned, the last line implies
only that at least ROWS lines have been written rather than exactly ROWS lines have been
written.

2.6.2 Finding Roots by Bisection

Suppose that f is a continuous real-valued function, A < B, and f(A) ≤ 0 and f(B) > 0. Then
a fundamental theorem of real analysis says that there must be a value of x such that f(x) = 0
and A ≤ x < B; that is, a root (or zero) of f . Using the bisection method, we find a sequence
of approximations to x by halving the interval [A, B) yielding smaller intervals [a, b). Figure 13 45
illustrates the process.

Part of the invariant is f(a) ≤ 0 ∧ f(b) > 0. This ensures that there is a root of f in [a, b). To be
complete, we will also require a < b. We cannot expect to find the root exactly, so we will stop
when the interval is sufficiently small; specifically, when b − a < ε. This suggests that the loop
condition should be ¬(b− a < ε), which is equivalent to b − a ≥ ε. Thus we have: 46

double a = A;
double b = B;
// I ≡ f(a) ≤ 0 ∧ f(b) > 0 ∧ a < b
while (b - a >= eps)

....

// I ∧ b − a < ε

Note that the final comment, obtained by and’ing the invariant and the negation of the while
condition, is what we need: there is a root within a small interval.

To complete the loop body, we find the midpoint of the interval [a, b), which is at m = (b − a)/2.
If f(m) > 0, there must be a root between a and m. If f(m) ≤ 0, there must be a root between m
and b. We can write the code below. Note carefully how the if statement maintains the invariant. 47
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y = 0

y = f(x)

a0

b0b1

a1

b2b3

Intervals: [a0, b0), [a0, b1), [a1, b1), [a1, b2), [a1, b3).

Figure 13: Finding zeroes by bisection

double a = A;
double b = B;
// I ≡ f(a) ≤ 0 ∧ f(b) > 0 ∧ a < b
while (b - a >= tol)
{

double m = 0.5 * (a + b);
if (f(m) > 0)

b = m;
else

a = m;
// I

}
// I ∧ b − a < ε

48

49Figure 14 on page 31 expands this idea into a complete function and a test program. The assert
statement is discussed in Section 2.7. When this program is run, it displays: 50

pi = 3.14159
e = 2.71828
Assertion failed: a < b && f(a) <= 0 && f(b) > 0 &&

"solve: precondition violation",
file f:\courses\comp6441\src\bisect\bisect.cpp, line 13
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#include <iostream>
#include <cassert>
#include <cmath>

using namespace std;

double bisect(
double f(double),
double a,
double b,
double tol = 1e-6 )

{
if (a > b)

return bisect(f, b, a, tol);

assert(a < b && f(a) <= 0 && f(b) > 0 &&
"bisect: precondition violation");

while (b - a > tol)
{

// a < b && f(a) <= 0 && f(b) > 0
double m = 0.5 * (a + b);
if (f(m) > 0)

b = m; // f(b) > 0
else

a = m; // f(a) <= 0
}
return 0.5 * (a + b);

}

double logm(double x)
{

return log(x) - 1;
}

int main()
{

cout << "pi = " << 0.5 * bisect(sin, 4, 8) << endl;
cout << "e = " << bisect(logm, 0.5, 3) << endl;
cout << "e = " << bisect(logm, 3, 3) << endl;

}

Figure 14: Finding zeroes by bisection
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2.6.3 Maximum Subsequence

The following problem arises in pattern recognition: find the maximum contiguous subvector of a
one-dimensional vector (see (Bentley 1986, pp. 69–80)). The problem is trivial if all of the values
in the vector are positive, because the maximum subvector is just the whole vector. If some of the
values are negative, the problem is interesting. For example, given the vector 51

31 − 41 59 26 − 53 58 97 − 93 − 23 84

our algorithm should find the subvector

59 26 − 53 58 97

We assume that an empty subvector has sum 0. This implies that the maximum subvector can
never be negative because, if we had a negative subvector, we could always replace it with the
(larger) adjacent empty subvector.

There is an obvious solution: we can simply sum all possible subvectors and note which one has
the largest sum. We assume that the given vector has N elements. We need three nested loops:
one to choose the first element of the subvector, one to choose the last element, and one to sum
the elements in between. Figure 15 shows a solution based on this idea. It uses max, a standard 52
C++ library function that returns the greater of its two arguments.

int maxSoFar = 0;
for (int i = 0; i < N; ++i)
{

for (int k = i; k < N; ++k)
{

int sum = 0;
for (int j = i; j <= k; ++j)

sum += v[j];
maxSoFar = max(maxSoFar, sum);

}
}

Figure 15: Maximum subvector: first attempt

The algorithm of Figure 15 has complexity O(N3).6 It is not efficient and, by inspecting it carefully,
we can see how to do better. During each cycle of the outer loop, we can use a single loop to sum
all subvectors starting at that point. This gives the second version of the algorithm, with two
nested loops and complexity O(N2), shown in Figure 16. 53

Many, perhaps most, programmers would give up at this point and simply assume that quadratic
complexity is the best that can be achieved. But, being more persistent, we will seek a better
solution using invariants.

Here is a useful, general technique for solving problems with one-dimensional vectors: process
the vector one element at a time, maintaining and updating as much information as is needed to
proceed to the next step. Specifically, suppose we are about to process element i. What useful
information can we obtain?

6Section 2.8 explains the notation O(N3).
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int maxSoFar = 0;
for (int i = 0; i < N; ++i)
{

int sum = 0;
for (int j = i; j < N; ++j)
{

sum += v[j];
maxSoFar = max(maxSoFar, sum);

}
}

Figure 16: Maximum subvector: second attempt

The first point to notice is that if we have a subvector “ending here”, we can update it simply by
adding v[i] to it. This will give us a new subvector “ending here” that we can keep if it is bigger
than anything we have already seen.

The second point to notice is that we can remember the value of the largest subvector seen “so far”
(this corresponds to what “we have already seen” in the previous sentence). The invariant that we
need is:

maxEndingHere = the largest subvector that ends here
maxSoFar ≡ the largest subvector we have seen so far

To make the invariant true initially, we set both variables to zero. When we examine v[i], we
note that maxEndingHere will not get smaller if v[i] > 0. Figure 17 shows the final version of 54
the algorithm. This version requires time proportional to the length of the sequence. This is much
better than the first version, which required time proportional to the cube of the length of the
sequence.

int maxSoFar = 0;
int maxEndingHere = 0;
for (int i = 0; i < N; ++i)
{

maxEndingHere = max(maxEndingHere + v[i], 0);
maxSoFar = max(maxSoFar, maxEndingHere);

}

Figure 17: Maximum subvector: an efficient solution

2.7 Assertions

The program in Figure 14 contains an assertion: 55

assert(a < b && f(a) <= 0 && f(b) > 0 &&
"bisect: precondition violation");

As with most programming constructs, there are three things that are useful to know about asser-
tions: syntax (what do we write?); semantics (what happens?); and pragmatics (when and why do
we use assertions?).
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Syntax Any code unit that uses assertions must contain either the (preferred) new-style directive

#include <cassert>

or the old-style directive

#include <assert.h>

The assert statement itself has the form

assert( 〈condition〉 );

Semantics

• When the program executes, the 〈condition〉 is evaluated.

• If the 〈condition〉 yields true, or anything equivalent to true, the assert statement has no

effect.

• If the 〈condition〉 yields false, or anything equivalent to false (i.e., any kind of zero), the
program is terminated with an error message.

The precise form of the error message depends on the compiler. In general, it will contain the text
of the 〈condition〉, the name of the file in which the assert statement occurs, and the line number
of the statement within the file.

Pragmatics Here is a reliable guide to the use of assertions:

If an assertion fails, there is a logical error in the program.

Think of assert(C) as saying “I (the programmer) believe that C should always be true at this
point in the program”. Then the failure of an assertion implies that the programmer’s belief was
mistaken, which further implies that there was something wrong with the reasoning and therefore
something wrong with the program.

Assertions are useful for expressing preconditions, postconditions, and invariants. 56

• A precondition is a condition that should be true on entry to a function. It imposes an
obligation on the caller to ensure that the arguments passed to the function are appropriate.
The assertion in Figure 14 is of this form.

• A postcondition is a condition that should be true when a function returns. It is a promise
by the function to the caller that the function has done its job correctly.

• An invariant is a condition that should be true at certain, well-defined points in the program.
For example, a loop invariant.
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A useful trick for assertions is to append “&& 〈string〉” to the condition, in which 〈string〉 describes
what has gone wrong. This does not change the value of the condition, because any string is
considered to be non-zero and therefore true, but it may improve the diagnostic issued by the
compiler.

For example, when the assertion 57

assert( a < b && f(a) <= 0 && f(b) > 0 &&
"bisect: precondition violation");

in the program of Figure 14, the run-time system displays

Assertion failed: a < b && f(a) <= 0 && f(b) > 0 &&
"solve: precondition violation",

file f:\courses\comp6441\src\bisect\bisect.cpp, line 13

Assertions can be disabled by writing “#define NDEBUG” before “#include <cassert>”. If the
assertions were not failing, the only effect of this will be to save a few nanoseconds of execution
time. Since conditions that were evaluated with NDEBUG undefined are no longer evaluated with
NDEBUG defined, it is important that:

Asserted conditions must not have side-effects.

Exceptions provide another way of recovering from errors; we will discuss them later in the course
(Section 9.2).

2.8 Oh Notation

It is useful to have a concise way of describing how long a program or algorithm takes to run. The
conventional way of doing this is to use “big-oh” notation.

The time taken to compute something usually depends on the size of the input. We will use n to
stand, in a general way, for this size. For example, n might be the number of characters to be read,
or the number of nodes of a graph to be processed. If the time required is independent of n, we
say that the time complexity is O(1). If the time required increases linearly with n, we say that
the complexity is O(n).

Formally, O(·) defines a set of functions: 58

g(n) ∈ O(f(n))

if and only if there are constants A and M such that, for all N > M , g(N) < A f(N).

Big-oh notation does two things: it singles out the dominant term of a complicated expression,
and it ignores constant factors. For example,

n2 ∈ O(n2)
and 1000000n2 ∈ O(n2)
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because we can chose A = 1000001 in the definition above. Also

n3 + 100000n2 + 100000n + 100000 ∈ O(n3)

because, for large enough n, the first term dominates the others. By similar reasoning

n + 10−10n2 ∈ O(n2)

even though the second term looks very small.

Informally, we don’t say “is a member of O(n2)” but, less precisely, “the complexity is O(n2)” (or
whatever the complexity actually is). 59

Figure 18 shows a small part of the complexity hierarchy. Each lines defines a set of functions
that is a proper subset of the set defined on the next line. So, for example, O(n) ⊂ O(n logn) (all
linear functions are log-linear), and so on.

Very few algorithms are O(1). We use this set to describe operations that have a constant time
bound. For example, “reading a character” is (or at least should be) O(1). Logarithmic and linear
algorithms are good. Log-linear algorithms are acceptable: sorting, for example, is log-linear7.
Polynomial algorithms, O(nk) with k > 2, tend to be useful only for small sizes of problem.

Exponential and factorial algorithms are useless except for very small problems. A problem whose
best known solution has exponential or factorial complexity is called intractable. Such problems
must be solved by looking for approximations rather than exact results. One of the the best-
known intractable problems is TSP: the “travelling salesperson problem”. A salesperson must
make a certain number of visits and the problem is to find an ordering of the visits that minimizes
some quantity, such as cost or distance. The only known way to find an exact solution is to try all
possible routes and note the minimal route. If n visits are required, the number of possible paths
is O(n!), making the exact solution infeasible if n is in the hundreds or even thousands.

Note that TSP is typical of problem descriptions. We are not really interested at all in travelling
salespersons and, in any case, their actual problems (which might involve 20 visits at most) are
easily solved. But TSP represents the generic problem of finding a minimal path in a weighted
graph, and many practical problems can be put into this abstract form. One example is: find the
quickest path for a drilling machine that has to drill several thousand holes in a printed-circuit
board. 60

Figure 19 shows the progress that has been made in solving three-dimensional elliptic partial differ-
ential equations. Equations of this kind must be solved for VLSI simulation, oil prediction, reactor
simulation, airfoil simulation, and other significant problems. The difference between O(N7) and
O(N3) corresponds to a factor of N4, or a million times for a problem for which N = 100.

It is often claimed that hardware has improved more rapidly than software. For some problems,
however, the improvements in software have been just as dramatic as those for hardware. Putting
the two together, a modern supercomputer can solve differential equations more than a trillion
(106 × 106 = 1012) times faster than was possible in 1945.

7Provided that you don’t use bubblesort.
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Function Condition Description

O(1) constant
O(log n) logarithmic
O(

√
n) square-root

O(n) linear
O(n logn) log-linear
O(n2) quadratic
O(n3) cubic
O(nk) k > 1 polynomial
O(an) a > 1 exponential
O(n!) factorial

Figure 18: Part of the complexity hierarchy

Method Year Complexity

Gaussian elimination 1945 O(N7)
SOR iteration (suboptimal parameters) 1954 O(N5)
SOR iteration (optimal parameters) 1960 O(N4 logN)
Cyclic reduction 1970 O(N3 logN)
Multigrid 1978 O(N3)

Figure 19: Solving three-dimensional elliptic partial differential equations (adapted from Numer-

ical Methods, Software, and Analysis, by John Rice (McGraw-Hill, 1983))
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3 Batches of Data

This section covers roughly the same material as Chapter 3 of (Koenig and Moo 2000). However, the
ordering of topics is different and some of the examples are abstracted (for example, we discuss the
mean/median of a general set of numbers rather than student marks) and there is some additional
material (for example, reading from streams other than cin).

3.1 Lvalues and Rvalues

The names “Lvalue” and “Rvalue” are derived from the assignment statement 61

v = e;

Although the assignment looks symmetrical, it is not. When it is executed, the right side, e, must
yield a value and the left side, v, must yield a memory address in which the value of e can be
stored.

Anything which can appear on the left of = (that is, any-
thing that can represent an address) is called an Lvalue.

Anything which can appear on the right of = (that is,

anything that can yield a value) is called an Rvalue.

“Lvalue” and “Rvalue” are quite often written without capitals, as “lvalue” and “rvalue”. We use
initial capitals in these notes for clarity and emphasis.

All Lvalues are Rvalues because, having obtained an address, we can find the Rvalue stored at that
address. The operation of obtaining an Rvalue from an Lvalue is called dereferencing. But there
are Rvalues that are not Lvalues. Lvalues include: simple variables (x); array components (a[i]);
fields of objects (o.f); and a few other more exotic things. Rvalues that are not Lvalues include
literals (for example, 67, "this is a string", true) and expressions.

3.2 Passing Arguments

In the function definition

double sqr(double x) { return x * x; }

the list (double x) is a parameter list and x is a parameter. When we call the function, as in

cout << sqr(2.71828) << endl;

the expression 2.71828 is an argument that is passed to the function.

Some authors say “formal parameter” instead of “parameter” and “actual parameter” instead
of “argument”. We will use the shorter (and more correct) terms parameter and argument.
(“Parameter” can be roughly translated from Greek as “unknown quantity”. When we write sqr
above, we don’t know the value of x, so it is reasonable to call x a parameter.)
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Functions have parameters. When a func-
tion is called, arguments are passed to it.

There are a number of ways of passing arguments in C++. Three of them suffice for most appli-
cations. The program in Figure 20 includes examples of these three. When run, it produces the 62

63

64

following output:8

Pass by value: 65
Pass by reference: 66
Pass by constant reference: 55

Pass by value: the parameter is unqualified. For example, double x. When the function is
called, the run-time system makes a copy of the argument and passes the copy to the function.
The function can change the value of its parameter but these changes have no effect in the
calling environment. This explains the output “65”: the function increments its parameter
k, but the argument pbv remains unchanged.

Pass by reference: the parameter is qualified by &, which is read as “reference to”. When the
function is called, the run-time system passes a reference to the argument to the function.
Pass by reference is usually implemented by passing an address. When the parameter is used
in the function body, it is effectively a synonym for the argument. Any change made to
the parameter is also made to the argument. This explains the output “66”: the function
increments its parameter k, and the argument pbr is also incremented.

An argument to be passed by reference must be an Lvalue. The call passByReference(5)
does not compile because 5 is not an Lvalue.

Pass by constant reference: the parameter is qualified by const &, which is read “const refer-
ence to”. The run-time system passes an address, but the compiler ensures that this address
is used only as an Rvalue. Changing the value of the parameter in the function body is not
allowed.

Use the following rules when deciding how to pass an argument: 65

1. Pass small arguments by value.

Addresses are used for passing by reference. An address is 4 bytes or, on some modern
machines, 8 bytes. If an argument is smaller, or not much bigger, than an address, it is
usually passed by value. In practice, this means that the standard types (bool, char, short,
int, float, double, etc.) are usually passed by value, and user-defined types (that is,
instances of classes) are usually passed by reference.

2. Pass large objects by constant reference.

“Constant reference” is usually considered to be the “default” mode for C++. (Default is in
quotes because constant reference is not the compiler’s default: it must be selected explicitly
by the user.) It should be used for large objects, including instances of user-defined classes,
except when there is a good reason not to use it.

8These modes are sometimes referred to as “call by value”, “ call by reference”, etc. They mean the same thing
but “pass” seems more precise than “call”.
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#include <iostream>

using namespace std;

void passByValue(int k)
{

++k;
cout << k;

}

void passByReference(int & k)
{

++k;
cout << k;

}

void passByConstantReference(const int & k)
{
// ++k; Not allowed!

cout << k;
}

int main()
{

cout << "Pass by value: ";
int pbv = 5;
passByValue(pbv);
cout << pbv;

cout << endl << "Pass by reference: ";
int pbr = 5;
passByReference(pbr);
cout << pbr;

// passByReference(5); Not allowed!

cout << endl << "Pass by constant reference: ";
int pbcr = 5;
passByConstantReference(pbcr);
cout << pbcr << endl;

}

Figure 20: Passing arguments



3 BATCHES OF DATA 41

3. Pass by reference.

Pass by reference should be used only when changes made by the function must be passed
back to the caller. The usual way of returning results is to use a return statement. However,
return can return only one value and it is sometimes necessary to return more than one
value. In these and similar situations, reference parameters may be used to return several
items of information.

int main()
{

cout << "Enter observations, terminate with ^D:" << endl;
int obsCount = 0;
double sum = 0;
double observation;
while (cin >> observation)
{

sum += observation;
++obsCount;

}
cout <<

"The mean of " << obsCount <<
" observations is " << sum / obsCount <<
endl;

return 0;
}

Figure 21: Finding the mean

3.3 Reading Data
66

Figure 21 shows a program that reads a list of numbers, computes their mean, and displays it.
This is what the console window looks like after running this program: 67

Enter observations, terminate with ^Z:
2.6 9.32 5.67 2.1 6.78 5.1 ^Z
The mean of 6 observations is 5.26167

The character ^Z (Ctrl–Z on the keyboard) is used to indicate the end of an input stream reading
from the keyboard (i.e., cin).

The important new feature of this program is the loop controlled by

while (cin >> observation)

The condition raises two questions: first, why does it work? Second, why do other, seemingly more
natural constructions, not work?

Here is why it works:
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1. The expression cin >> observation returns an updated value of cin. Note that this is not
a boolean value (true or false). Consequently,

if (cin >> observation) ....

is equivalent to

cin >> observation;
if (cin) ....

2. When cin appears in a condition context, the compiler attempts to convert it into something
that can be considered boolean. By means of a technical trick, this boolean value is true if
the stream is in a “good” state and false if the stream is in a “bad” state.

3. If the stream is in a good state, then the operation cin >> observation must have suc-
ceeded and a value for observation was read successfully.

4. If the stream is in a bad state, the operation failed and the value of observation is undefined.

5. Looking at the way in which while (cin >> observation) is used in the program
above, we see that everything works out nicely: the program either successfully reads a
value and processes it or does not manage to read a value and terminates the loop.

The “technical trick” mentioned in step 2, in case you are interested, is as follows. Since the
compiler cannot interpret an instance of istream (the class of cin) as a boolean, it looks for a
conversion that would enable it to do so. Class istream provides a conversion from istream to
void*, the type of pointers that point to nothing in particular. If the stream is in a good state,
the result of this conversion is a non-null pointer (probably, but not necessarily, the address of the
stream object), which is considered true. If the stream is in a bad state, the conversion yields a
null pointer, which is zero, and is therefore considered false.

There are several reasons why a stream can get into a bad state. The most likely reason, and
the one we expect here, is that the program has reached the end of the stream (indicated, in this
example, by the ^Z key). Another reason is that a disk has failed, although obviously this does not
apply to cin.

void v1()
{

vector<int> v;
int k;
while (cin >> k)
{

v.push_back(k);
}
for (vector<int>::const_iterator it = v.begin(); it != v.end(); ++it)

cout << *it << ’ ’;
cout << endl;

}

Figure 22: Testing end-of-file
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The second question we have to answer is: why do other approaches not work? Problems arise
because the normal input mode skips blanks to find the next datum. We will use the program in
Figure 22 to explore the potential problems:

This program works correctly whether or not there is white space between the last dsatum and the
end of the file. In this example and subsequent examples, end-of-file is indicated by ^Z. Note the
blank after 4 in the second example.

1 2 3 4^Z
1 2 3 4

1 2 3 4 ^Z
1 2 3 4

Class stream provides a function eof (“end-of-file”) that yields false except at the end of the
stream, where it returns true. A function that returns a boolean value is called a predicate; eof
is therefore a predicate. We can test for end-of-file before attempting to read the input: 68

while (!cin.eof())
{

cin >> k;
v.push_back(k);

}

This is what happens:

1 2 3 4^Z
1 2 3 4

1 2 3 4 ^Z
1 2 3 4 4

If there is no white space after the last datum, this code works correctly. If there is a blank, the
following sequence of events occurs:

• The stream reads the last datum, 4, correctly.

• Since the next character is a blank, cin.eof() is false.

• The stream reads the blank, finds no integer, and puts the stream into a “bad” state. The
value of k is not changed.

• The value in k, which is still 4, is stored in the vector again.

Another possibility is to test for end-of-file after reading: 69

while (true)
{

cin >> k;
if (cin.eof())

break;
v.push_back(k);

}
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This code gives the following results:

1 2 3 4^Z
1 2 3

1 2 3 4 ^Z
1 2 3 4

If there is no blank after 4 then, after this datum has been read, cin.eof() is true. The loop
terminates and 4 is not stored in the vector. When there is a blank, the program works correctly.

3.4 Reading from a file

#include <iostream>
#include <fstream>
#include <string>

int main()
{

cout << "Enter file name: ";
string fileName;
cin >> fileName;
ifstream fin(fileName.c_str());

int obsCount = 0;
double sum = 0;
double observation;
while (fin >> observation)
{

sum += observation;
++obsCount;

}
fin.close();
cout <<

"The mean of " << obsCount <<
" observations is " << sum / obsCount <<
endl;

}

Figure 23: Finding the mean from a file of numbers

One of the nice features of C++ stream is that they make most kinds of input and output look
the same to the programmer. The program in Figure 23 asks the user for a file name, reads a list 70

71of numbers from the file, and displays the mean. Note the similarities between this program and
Figure 21. Other points of note include:

• The directive “#include <fstream>” is required for any program that uses input or output
files.
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• The type ifstream is the type of input streams. The variable fin is an instance of this type.

• The constructor for ifstream needs a file name. Curiously, it cannot accept the file name as
a string; instead, it requires a C style string, of type const char*. Consequently, we have
to use the conversion function c_str to convert the string to a const char*. Calling
the constructor with a file name has the effect of opening the file.

• After the file has been opened, we use fin in exactly the same way that we used cin in
Figure 21.

• When the program has finished reading data from the file, it calls fin.close() to close the
stream. This step is not strictly necessary, because the destructor, called at the end of the
scope, would close the stream if it was still open. Nevertheless, it is good practice to explicitly
close a stream that is no longer required by the program.

• The operations of constructing and opening a file can be separated. Instead of 72

ifstream fin(fileName.c_str());

we could have written:

ifstream fin;
// ....
fin.open(fileName.c_str());

• Whenever a program tries to open a file for input, there is a possibility that the file does not
exist. As above, we can use the stream object as a boolean to check whether the stream was
opened successfully:

ifstream fin;
fin.open(fileName.c_str());
if (!fin)
{

cerr << "Failed to open " << fileName << endl;
return;

}

• Another possibility would be to trigger an assertion failure when a file cannot be opened:

ifstream fin;
fin.open(fileName.c_str());
assert(fin);

However, this would go against the recommendations of Section 2.7. There are many reasons
why opening a file might fail, and the failure does not imply that there is a logical fault in
the program.

3.4.1 Writing to a file

Writing is very similar to reading. The class for output files is ofstream. We use the insert operator
<< to write data to the file. The methods open and close work in the same way as they do for

input files. Figure 24 shows a very simple program that writes to an output file. 73
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int main()
{

ofstream fout("randomnumbers.txt");
for (int n = 0; n < 50; ++n)

fout << rand() << ’\n’;
fout.close();
return 0;

}

Figure 24: Writing random numbers to a file

3.4.2 Stream States

In general, the states of an input stream are good, bad, and end-of-file. These are not mutually
exclusive. If the state is good, it cannot also be either bad or end-of-file. However, if the state
is bad, it may or may not be end-of-file. The input statement cin >> n, where n is an integer,
for example, will put the stream into a bad state if the next character in the stream is not a digit
or “−”. But reading can continue after calling cin.clear() to clear the bad state.

This section provides a brief overview of stream states. For details, consult a reference work, such
as (Langer and Kreft 1999, pages 31–35).

The state of the stream is represented by four bits; Figure 25 shows their names and meanings. 74
Here are some examples of how the bits can get set:

• The program wants to read an integer and the next character in the stream is ’x’. After the
input operation, failbit is set and the stream position is unchanged.

• The program wants to read an integer. The only characters remaining in the file are “white
space” (blanks, tabs, and newlines). After the input operation, failbit and eofbit are both
set and the stream is positioned at end-of-file.

• The program wants to read an integer. The only characters remaining in the file are digits.
After the input operation, eofbit is set and the stream is positioned at end-of-file.

• The program wants to read data from a disk file but the hardware (or operating system)
reports that the disk is unreadble. After the operation, badbit is set and the stream cannot
be used again.

Name Meaning

goodbit The stream is in a “good” state — nothing’s wrong

eofbit The stream is positioned at end-of-file — no more data can be read

failbit An operation failed but recovery is possible

badbit The stream has “lost integrity” and cannot be used any more

Figure 25: Stream bits and their meanings
75
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Figure 26 shows how to test the stream bits. These functions are members of the stream classes.
For example, if fin is an input file stream, then fin.bad() tests its badbit. There are several
things to note about theses functions:

• The first five return bool values — that is, true or false.

• fail() returns true if failbit is set or if badbit is set.

• operator!() is called by writing ! before the stream name, as in

if (!fin)
// failbit is set or badbit is set

else
// file is OK

• operator void*() is called by writing the stream name in a context where an expression is
expected. For example:

if (fin)
// file is OK

else
// failbit is set or badbit is set

• operator void*() is also called when we write, for example

if (fin >> data)

Function Value/Effect

bool good() None of the error flags are set

bool eof() eofbit is set

bool fail() failbit is set or badbit is set

bool bad() badbit is set

bool operator!() failbit is set or badbit is set

operator void*() Null pointer if fail() and non-null pointer otherwise

void clear() Set goodbit and clear the error bits

Figure 26: Reading and setting the stream bits

Output streams use the same state bits, but it is not often necessary to use them. An output
stream is always positioned at end-of-file, ready for the next write. Output operations fail only
when something unsual happens, such as a disk filling up with data.
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3.4.3 Summary of file streams

The stream class hierarchy is quite large. For practical purposes, there are four useful kinds of
stream: 76

ifstream: input file stream

ofstream: output file stream

istringstream: input string stream

ostringstream: output string stream

We will discuss string streams later. For each of these kinds of stream, there is another with “w”
in front (for example, wifstream). These are streams of “wide” (16–bit or Unicode) characters.

File streams are opened by providing a file or path name. The name can be passed to the constructor
or to the open method. When a file is no longer needed, the close method should be called to
close it.

The extract operator >> reads date from an input file. The insert operator << writes data to an
output file. The right operand of an extractor must be a Lvalue. The right operand of an inserter
is an Rvalue.

The right operand of an extractor or inserter may also be a manipulator. Manipulators may
extract or insert data, but they are usually used to control the state of the stream. We have
already seen endl, which writes a new line and then flushes the buffer of an output stream.

Although endl is defined in iostream, most other manipulators are not. They are defined in
iomanip and so we have to write #include <iomanip> in order to use them. Here is a selection
of commonly used manipulators for output streams:

left: Start left-justifying output data (appropriate for strings) 77

right: Start right-justifying output data (appropriate for numbers)

setprecision(n): Put n digits after the decimal point for float and double data

setw(n): Write the next field using at least n character positions 78

fixed: Use fixed-point format for float and double data (for example, 3.1415926535)

scientific: Use “scientific” format for float and double data (for example, 1.3e12)

For example, the program shown is Figure 27 displays: 79

80
Alice 41 1169699.780
Boris 6500 3014133.560
Ching 1478 7915503.960
Daoust 4464 1605672.250
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#include <iostream>
#include <iomanip>
#include <string>
#include <vector>
#include <cstdlib>

using namespace std;

int main()
{

vector<string> names;
names.push_back("Alice");
names.push_back("Boris");
names.push_back("Ching");
names.push_back("Daoust");

for ( vector<string>::const_iterator it = names.begin();
it != names.end();
++it)

{
cout << left << setw(8) << *it;
cout << right << setw(10) << rand() % 10000;
cout << fixed << setprecision(3) << setw(15) <<

rand() * (rand() / 100.0);
cout << endl;

}
return 0;

}

Figure 27: Output manipulators

3.5 Storing Data: STL Containers

For a few applications, such as computing an average, it is sufficient to read values; we do not have
to store them. For most applications, it is useful or necessary to store values as we read them. The
program in Figure 28 shows one way of doing this. 81

The new feature in this program is

vector<double> observations;

This declaration introduces observations as an instance of the class vector<double>. The tem-

plate class vector is one of the containers provided by the Standard Template Library (STL).
A template class is generic — it stands for many possible classes — and must be instantiated by
providing a type. In this case, the type is double, giving us a vector of doubles. When we use a
vector, we must also write

#include <vector>
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int main()
{

cout << "Enter file name: ";
string fileName;
cin >> fileName;
ifstream fin(fileName.c_str());

vector<double> observations;
double obs;

while (fin >> obs)
{

observations.push_back(obs);
}
fin.close();

for ( vector<double>::size_type i = 0;
i != observations.size();
++i )

cout << observations[i] << ’\n’;
}

Figure 28: Storing values in a vector

The relation between a generic class and an instantiated class is analogous to the relation between
a function and a function application: 82

Generic Application

Function log log x

Class vector vector<double>

There are various things we can do with a vector. The operation v.push_back(x) inserts the value
x at the back end of the vector v. We do not have to specify the initial size of the vector, and we
do not have to worry about how much stuff we put into it; storage is allocated automatically as
the vector grows to the required size.

The argument for push_back is passed by value. This means that the vector gets its own copy of
the argument, which is usually what we want.

The method size returns the number of elements in the vector. As with string, the type of the
size is not int but vector<double>::size_type. This is the type that we use for the controlled
variable i in the final for loop of the program.

A vector can be subscripted, like an array. If v is a vector, v[i] is the i’th element. In the program,
observations[i] gives the i’th element of the vector of observations.

Vector indexes are not checked!
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This means that, when we write observations[20], for example, there is no check that this
element exists. If it doesn’t exist, the result will be garbage. Even worse, if we use this expression
on the left of an assignment, we can write into any part of memory!

<sermon> This is an astonishing oversight. Here is Tony Hoare (1981):

. . . . we asked our customers whether they wished us to provide an option to switch off
these [array index] checks in the interests of efficiency on production runs. Unanimously,
they urged us not to — they already know how frequently subscript errors occur on
production runs where failure to detect them could be disastrous. I note with fear and
horror that even in 1980, language designers and users have not learned this lesson. In
any respectable branch of engineering, failure to observe such elementary precautions
would have long ago been against the law.

In this example, the language was Algol 60 and the computer was an Elliott 503. The 503 weighed
several tons, had 8K words of memory, and needed 7 µsec to add two numbers.9

Another 25 years have passed, and it is more than 40 years since Hoare’s customers wanted subscript
checking. Today’s computers are around 10,000 times faster than the 503, and programmers are
still concerned about the time taken to check subscripts. A high proportion of viruses, worms,
phishers, and other kinds of malicious software exploit precisely this loophole.
</sermon>

Fortunately, there are safer ways of accessing the elements of a vector than using subscripting. One
way is to use the function at. The call array.at(i) has the same effect as array[i] but checks
that the index is within range and throws an exception otherwise.

Iterators are another alternative to subscripts and, in many cases, a better one. An iterator is an
object that keeps track of the objects in a container and provides facilities for accessing them. The
type of the iterator that we need is

vector<double>::const_iterator

Two of its values are observations.begin(), which refers to the first element of the vector
observations, and observations.end(), which refers to the first element not in the vector
— that is, one past the end. Iterators have increment (++) and decrement (--) operators. Iterators
also have pointer-like behaviour: dereferencing an iterator yields an element of the container.

Putting all these things together, we can write the following loop to access the elements in the
vector observations: 83

for ( vector<double>::const_iterator i = observations.begin();
i != observations.end();
++i )

cout << *i << ’\n’;

This code has two significant advantages over the original version:

• Using the iterator and, specifically, the function end, ensures that we access exactly the
elements that are stored.

9http://members.iinet.net.au/∼daveb/history.html.
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f:\Courses\COMP6441\src\means\means.cpp(148): error C2784:
’bool std::operator <(const

std::basic_string<_Elem,_Traits,_Alloc> &,const _Elem *)’ :
could not deduce template argument for
’const std::basic_string<_Elem,_Traits,_Ax> &’ from
’std::list<_Ty>::const_iterator’

with
[

_Ty=double
]

f:\Courses\COMP6441\src\means\means.cpp(148): error C2784:
’bool std::operator <(const

std::list<_Ty,_Alloc> &,const std::list<_Ty,_Alloc> &)’ :
could not deduce template argument for
’const std::list<_Ty,_Ax> &’ from
’std::list<_Ty>::const_iterator’

with
[

_Ty=double
]

f:\Courses\COMP6441\src\means\means.cpp(148): error C2784:
’bool std::operator <(const

std::list<_Ty,_Alloc> &,const std::list<_Ty,_Alloc> &)’ :
could not deduce template argument for
’const std::list<_Ty,_Ax> &’ from
’std::list<_Ty>::const_iterator’

with
[

_Ty=double
]

Figure 29: Complaints from the compiler

• This code can be used with other kinds of container.

For example, if we replace each occurrence of vector by list:

list<double> observations;
....
for ( list<double>::const_iterator i = observations.begin();

i != observations.end();
++i )

cout << *i << ’\n’;

the program compiles and runs with exactly the same effect.

However, if we replace != in by < , the compiler complains — see Figure 29.10 The problem is 84
that list iterators, unlike vector iterators, provide equality (== and !=) but not ordering (<, etc.).

In this case, the compiler diagnostic starts with bool std::operator < and, since introducing <
was the only change we made to the program, it is not hard to figure out that it is this operator

10The compiler actually produces 22 messages of this form; only the first three are shown here.
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that caused the problem. Unfortunately, the STL can produce even worse error messages that can
be very hard to interpret.11

Sorting the vector of observations is very easy. Only one extra line of code is required: 85

sort(observations.begin(), observations.end());

However, sort is not a part of vector; it is one of the algorithms provided by the STL. Conse-
quently, we also need the directive

#include <algorithm>

3.5.1 Summary of STL

The STL provides containers, iterators, algorithms, function objects, and adaptors.

Containers are data structures used to store collections of data of a particular type. The opera-
tions available for a container, and the efficiency of the operations, depend on the underlying
data structure. For example, vector provides array-like behaviour: elements can be accessed
randomly, but inserting or deleting elements may be expensive. In contrast, a list can be
accessed sequentially but not randomly, and provides efficient insertion and deletion.

The containers also include set for unordered data and map for key/value pairs without
duplicates. The containers multiset and multimap are similar but allow duplicates.

Iterators provide access to the elements stored in containers. They are used to traverse con-
tainers (i.e., visit each element in turn) and to specify ranges (i.e., groups of consecutive
elements in a container).

Algorithms provide standard operations on containers. There are algorithms for finding, search-
ing, copying, swapping, sorting, and many other applications.

Function objects are objects that behave as functions. Function objects are needed in the STL
because the compiler can sometimes select an appropriate object in a context where it could
not select an appropriate function. However, there are also other uses of function objects.

Adaptors allow interface modification and increase the flexibility of the STL. Suppose we want a
stack. There are several ways to implement a stack: we could use a vector, or a list, or some
other type. The STL might provide a class for each combination (StackVector, StackList)
and perhaps Stack as a default.

In fact, the STL separates abstract data types (such as stack) and representations (such as
vector and list) and provides adaptors to fit them together. Thus we have: 86

stack<T>: stack of objects of type T with default implementation

stack<T, vector<T> >: stack of objects of type T with vector implementation

stack<T, list<T> >: stack of objects of type T with list implementation
11Some programmers write perl scripts to parse compiler diagnostics and pick out the key parts.
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Assuming that the STL provides M container classes and N algorithms, it is tempting to assume
that there are M ×N ways of using it, because we should be able to apply each algorithm to each
container. However, this is not in fact how the STL works. Instead:

• A container/algorithm combination works only if the algorithm is appropriate for the data
structure used by the container.

• If the combination does work, its performance is guaranteed in terms of a complexity class,
e.g., O(N).

We have already seen an example of this in Section 3.5. Suppose that i and j are iterators for a
container and that *i and *j are the corresponding elements. We would expect == and !=
to be defined for the iterators. It is also reasonable to expect ++, because iterators are supposed
to proved a way of stepping through the container. But what does i < j mean? Presumably,
something like “*i appears before *j in the container”. This is easy to evaluate if the container is
a vector, because vectors are indexed by integers (or perhaps pointers), which can be compared.
But evaluating i < j for a linked list is inefficient, because it requires traversing the list. This is
why the iterator for a vector provides < but the iterator for list does not.

It is important to check that the algorithm you want to use works with the container that you are
using. The penalty for not checking is weird error messages. For example, 87

void main()
{

std::vector<int> v;
std::stable_sort(v.begin(), v.end());

}

compiles correctly, but

void main()
{

std::list<int> v;
std::stable_sort(v.begin(), v.end());

}

produces the message 88

stl_algo.h: In function ‘void __merge_sort_loop<_List_iterator
<int,int &,int *>, int *, int>(_List_iterator<int,int &,int *>,
_List_iterator<int,int &,int *>, int *, int)’:

stl_algo.h:1448: instantiated from ‘__merge_sort_with_buffer
<_List_iterator<int,int &,int *>, int *, int>(
_List_iterator<int,int &,int *>, _List_iterator<int,int &,int *>, int *, int *)’

stl_algo.h:1485: instantiated from ‘__stable_sort_adaptive<
_List_iterator<int,int &,int *>, int *, int>(_List_iterator
<int,int &,int *>, _List_iterator<int,int &,int *>, int *, int)’

stl_algo.h:1524: instantiated from here
stl_algo.h:1377: no match for ‘_List_iterator<int,int &,int *> & -

_List_iterator<int,int &,int *> &’
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Why doesn’t the STL generate more useful diagnostics? The reason is that it is based on templates.
The compiler first expands all template applications and then tries to compile the resulting code.
If the code contains errors, the compiler cannot trace back to the origin of those errors, saying
perhaps “list does not provide stable_sort”, but can only report problems with the code that
it has.

Various objects and values associated with containers have types. These types may depend on
the type of the elements for the container. For example, the type of an iterator for vector<int>
may not be the same as the type of an iterator for vector<double>. Consequently, the con-
tainer classes must provide the types we need. In fact, we have already seen expressions such as
vector<double>::const_iterator, which is the type of const iterators for a vector of doubles.

These type names can get quite long. It is common practice to use typedef directives to abbreviate
them. A typedef has the form 89

typedef 〈type expression〉 〈identifier〉

and defines 〈identifier〉 to be a synonym for 〈type expression〉. For example, after

typedef vector<double>::const_iterator vci;

we can write vci instead of the longer expression.
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4 Application: Grading a class

The program developed in this section is similar, but not identical, to the grading program described
in Chapter 4 of (Koenig and Moo 2000).

4.1 Problem Statement

Here is a statement of the problem that it solves.
90

Problem Statement: The program reads a file of marks (e.g., Figure 30) and writes 91
a report of grades (e.g., Figure 31). Each line of the marks file consists of a name, a 92
mark for the midterm, a mark for the final, and marks for assignments. The number
of assignments is not fixed; students do as many as they want to. The name is a single
name with no embedded blanks.

A line of the output file is similar to a line of the input file, but the first number is
the total mark, computed as 20% of the midterm mark plus 60% of the final mark plus
the median of the assignments. The output is written twice, once sorted by name, and
once sorted by total mark.

Thomas 47 83 9 8 4 7 6 9 8
Georges 36 88 8 6 7 4 9 7 8 7
Tien 49 91 9 6 7 8 5 6 7
Lei 41 82 8 8 8 8
Oanh 45 76 9 9 8 9 9 8 8 9
Lazybones 31 45
Mohamad 39 99 8 6 7 9 5 6 9
Jane 36 64 7 5 8

Figure 30: Input for grading program

4.2 First version
93

94Figure 32 shows the main program. A goal of the design is to use an object to store a student
record and to put as much problem-specific information as possible into the corresponding class.

The first paragraph of the program asks the user for a file name and tries to open the file. The
second paragraph declares the principal data object of the program, a vector of Students. From
this paragraph, we can tell that the Student class must provide a reading capability (>>) and a
method process to compute the final mark.

It is important that the argument to push back is passed by value. If it was passed by reference,
each entry in the vector classData would refer to the same local variable, stud!

The last part of the program opens an output file and writes the data to it twice, first sorted by
name and then sorted by total marks. From this section, we deduce that the Student class must
provide two sorting functions, ltNames and ltMarks. We also need a free function showClass to
write the class list.
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Sorted by name:
Georges 67.5 36 88 8 6 7 4 9 7 8 7
Jane 52.6 36 64 7 5 8
Lazybones 33.2 31 45
Lei 65.4 41 82 8 8 8 8
Mohamad 74.2 39 99 8 6 7 9 5 6 9
Oanh 63.6 45 76 9 9 8 9 9 8 8 9
Thomas 67.2 47 83 9 8 4 7 6 9 8
Tien 71.4 49 91 9 6 7 8 5 6 7

Sorted by marks:
Lazybones 33.2 31 45
Jane 52.6 36 64 7 5 8
Oanh 63.6 45 76 9 9 8 9 9 8 8 9
Lei 65.4 41 82 8 8 8 8
Thomas 67.2 47 83 9 8 4 7 6 9 8
Georges 67.5 36 88 8 6 7 4 9 7 8 7
Tien 71.4 49 91 9 6 7 8 5 6 7
Mohamad 74.2 39 99 8 6 7 9 5 6 9

Figure 31: Output from grading program

The function showClass is straightforward; it is shown in Figure 33. The output stream os is 95
passed by reference because the function will change it when writing. The student data is passed
by constant reference because it will not be changed by the function. It uses an iterator to traverse
the vector of marks data. The statement

os << *it << endl;

requires class Student to provide an inserter (<<). 96

Figure 34 shows the declaration for class Student. There are several points to note:

• In C++, the declaration of a class and the definitions of its functions are separate. The
function definitions may be — and often are — in a different file.

• A class declaration may introduce functions as friends. Although these functions are not
member functions, they have access to the classes’ private data.

• The declarations public and private introduce a group of declarations with the given ac-
cessibility.

Some authors put the private declarations before the public declarations. This seems
backwards: the users of a class need to know about only the public attributes and these
should therefore appear first.12

12It would be even betetr if the private attributes could be hidden from users altogether. Although C++ does
not allow that, documentation tools such as Doxygen can provide the required effect.
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int main()
{

string classFileName;
cout << "Please enter class file name: ";
cin >> classFileName;
ifstream ifs(classFileName.c_str());
if (!ifs)
{

cerr << "Failed to open " << classFileName << endl;
return 1;

}

vector<Student> classData;
Student stud;
while (ifs >> stud)
{

stud.process();
classData.push_back(stud);

}

ofstream ofs("grades.txt");
sort(classData.begin(), classData.end(), ltNames);
ofs << "Sorted by name:\n";
showClass(ofs, classData);

sort(classData.begin(), classData.end(), ltMarks);
ofs << "\nSorted by marks:\n";
showClass(ofs, classData);

}

Figure 32: The main program

void showClass(ostream & os, const vector<Student> & classData)
{

for ( vector<Student>::const_iterator it = classData.begin();
it != classData.end();
++it )

os << *it << endl;
}

Figure 33: Function showClass
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class Student
{

friend ostream & operator<<(ostream & os, const Student & stud);
friend istream & operator>>(istream & is, Student & stud);
friend bool ltNames(const Student & left, const Student & right);
friend bool ltMarks(const Student & left, const Student & right);

public:
void process();

private:
static string::size_type maxNameLen;
string name;
int midterm;
int final;
vector<int> assignments;
double total;

};

Figure 34: Class Student

• Functions declared within a class are called member functions. Functions declared outside a
class are called free functions.13 Member functions can be called only with an object, as in
obj.fun(). Free functions are called without an object, as in fun().

• There is no constructor. We rely on the default constructor provided by the compiler; this
constructor allocates space for the object but performs no other initialization. When we
define a new instance of Student, we must ensure that all fields are correctly initialized.

• There is only one public method, process, which performs any necessary computation on
the data read from the marks file.

• The private data includes the information that is read from the marks file (name, midterm,
final, and assignments) and computed information, total.

• For formatting the output, we need to know the length of the longest name. This is an
attribute of the class, not the object, and so it is declared as a static data member.

• We need methods for input (>>) and output (<<); these are declared as friends.

• We need comparison functions that will be used for sorting: ltNames orders by student’s
names, and ltMarks orders by student’s total marks.

There is an important design choice here. The four friend functions cannot be member
functions, because of the way they are called. The alternatives are either to provide access
functions to private data in the class or to declare these functions as friends. Access functions
should be avoided if possible, especially functions with write access, as would be required
for >>. Although friend functions should be used only where necessary, they sometimes
provide better encapsulation, as in this case.14

13Strictly speaking, Java does not have free functions. However, classes such as Math provide static functions that
are effectively the same as free functions. In Java, you write Math.sqrt(x), in C++, you write sqrt(x).

14We will discuss the undesirability of access functions later in the cousre, when we address class design issues.
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The next step is to complete the implementation of class Student by providing definitions for
functions and initial values for static variables. The static data member must be initialized like
this:

string::size_type Student::maxNameLen = 0;

This is the only way to initialize a static data member. It has the form of a declaration rather than
an assignment (the type is included) and it appears at global scope, that is, outside any function.

The public function process has two tasks: it maintains the length of the longest name seen so
far and it calculates the total mark. Calculating the total mark requires finding the median of the
assignments. The median is meaningless for an empty vector, and the median function requires a
non-empty vector as its argument (see Figure 36). Thus process, shown in Figure 35, calls median 97
only if the student has done at least one assignment.

void Student::process()
{

if (maxNameLen < name.size())
maxNameLen = name.size();

total = 0.3 * midterm + 0.6 * final;
if (assignments.size() > 0)

total += median(assignments);
}

Figure 35: Function process for class Student

In general a function should not perform two unrelated tasks, as process does. The rationale
in this case is that process performs all of the processing that is needed for one student record.
There might be more tasks to perform than just these two. An alternative would be to define two
functions, one to update maxNameLen and the other to calculate total. These two functions would
always be called together, so it makes sense to combine them into a single function.

As a general principle, it should always be possible to explain the purpose of a function with a
one-line description. If you need three sentences to say what a function does, there’s probably
something wrong with it. We could describe the purpose of function process as “perform all
calculations needed to generate the marks file”.

Every function should have a complete, one-line description.

The median calculation is performed by the function in Figure 36. The main design issue for this 98
function is how to pass the vector of scores. Since we have to sort the vector in order to find the
median, we cannot pass it by constant reference. If we pass it by reference, the caller will get back
a sorted vector. Although this does not matter much for this program, a function should not in
general change the data it is given unless the caller needs the changed value. Consequently, we
choose to pass the vector by value, incurring the cost of copying it.

Finally, note that median has a precondition: it does not accept an empty vector. The only use of
median in this program is in the context
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if (assignments.size() > 0)
total += median(assignments);

It follows that, if the assertion fails, there is a logical error in the program.

Perhaps, after this program has been used for a few years, another programmer decides to extend
it. The function median is called from another location, without the check for an empty vector.
During testing, the assertion fails, and the programmer immediately sees the problem with the
extension.

// Requires: scores.size() > 0.
double median(vector<int> scores)
{

typedef vector<int>::size_type szt;
szt size = scores.size();
assert(size > 0);
sort(scores.begin(), scores.end());
szt mid = size / 2;
return size % 2 == 0 ?

0.5 * (scores[mid - 1] + scores[mid]) :
scores[mid];

}

Figure 36: Finding the median
99

Figure 37 shows the comparison functions that we need for sorting. The parameter lists of these
functions are determined by the requirements of the sort algorithm: there must be two parameters
of the same type, both passed by constant reference. Since we have declared these functions as
friends of Student, they have access to Student’s private data members. The type of name is
string and the type of total is double; both of these types provide the comparison operator <.

After sorting, the records will be arranged in increasing order for the keys. Names will be alpha-
betical: Anne, Bo, Colleen, Dingbat, etc. Records sorted by marks will go from lowest mark to
highest mark. To reverse this order, putting the students with highest marks at the “top” of the
class, all we have to do is change “<” to “>” in ltMarks. As a courtesy to readers, it would also
be a good idea to change the name to gtMarks.

bool ltNames(const Student & left, const Student & right)
{

return left.name < right.name;
}

bool ltMarks(const Student & left, const Student & right)
{

return left.total < right.total;
}

Figure 37: Comparison functions

The compiler has to perform a number of steps to determine that these functions are called by the
statements
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sort(classData.begin(), classData.end(), ltNames);
sort(classData.begin(), classData.end(), ltMarks);

The reasoning goes something like this:

1. The type of the argument classData.begin() is vector<Student>::const_iterator

2. The compiler infers from this that the elements to be sorted are of type Student

3. The comparison functions must therefore have parameters of type const & Student

4. There are functions ltNames and ltTypes with parameters of the correct type

istream & operator>>(istream & ifs, Student & stud)
{

if (ifs >> stud.name)
{

ifs >> stud.midterm >> stud.final;
int mark;
stud.assignments.clear();
while (ifs >> mark)

stud.assignments.push_back(mark);
ifs.clear();

}
return ifs;

}

Figure 38: Extractor for class Student
100

Figure 38 shows the extractor (>>) for class Student. It is a bit tricky, because we rely on the
failure management of input streams. The key problem is this: since students complete different
numbers of assignments, how do we know when we have read all the assignments? The method we
use depends on what follows the last assignment: it is either the name of the next student or the
end of the file. If we attempt to read assignments as numbers, either of these will cause reading to
fail. Consequently, we can use the following code to read the assignments:

while (ifs >> mark)
stud.assignments.push_back(mark);

However, we must not leave the stream in a bad state, because this would prevent anything else
being read. Therefore, when the loop terminates, we call

ifs.clear();

to reset the state of the input stream.

We assume that, if a student name can be read successfully, the rest of the record is also readable.
If the name is not read successfully, the function immediately returns the input stream in a bad
state, telling the user that we have encountered end of file.

What happens if there is a format error in the input? Some markers, although they are asked to
provide integer marks only, include fractions. Suppose that the input file contains this line:
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ostream & operator<<(ostream & os, const Student & stud)
{

os <<
left << setw(static_cast<streamsize>(Student::maxNameLen)) <<
stud.name << right <<
fixed << setprecision(1) << setw(6) << stud.total <<
setw(3) << stud.midterm <<
setw(3) << stud.final;

for ( vector<int>::const_iterator it = stud.assignments.begin();
it != stud.assignments.end();
++it )

os << setw(3) << *it;
return os;

}

Figure 39: Inserter for class Student

Joe 45 76 9 9 8.5 9 9 8 8 9

The corresponding output file contains these lines:

Joe 63.6 45 76 9 9 8
.5 15.2 9 9 8 8 9

We see that Joe has lost all his assignment marks after 8.5 and we have a new student named “.5”.
It is clear that, if this was a production program, we would have to do more input validation.

The inserter (<<) in Figure 39 does not have these complications. The main points to note are: 101

• The manipulators:

– left aligns text to the left

– right (the default) aligns text to the right

– fixed chooses fixed-point (as opposed to scientific) format for floating-point numbers

– setprecision(1) requests one decimal digit after the decimal point

– setw(n) requests a field width of N characters

• We use the longest name to align columns. The type of the variable Student::maxNameLen is
string::size_type but the type expected by setw is std::streamsize. To avoid warnings
from the compiler, we cast the type. Since the cast can be performed at compile time, we
use a static cast :

static_cast<streamsize>(Student::maxNameLen)

• We use an iterator to output the assignment marks.

All extractors and inserters follow the same pattern: 102
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istream & operator>>(istream & is, T & val)
{

// perform read operations for fields of T
return is;

}

ostream & operator<<(ostream & os, const T & val)
{

// perform write operations for fields of T
return os;

}

In both cases, the function is passed a reference to a stream and returns a reference to a stream.
In fact, of course, both references are to the same stream, but the state of the stream changes
during the operation. The second argument for the extractor is passed by reference, because its
value will be updated when the stream is read. The second argument for the inserter is passed
by constant reference, because the inserter should not change it. When writing inserters and
extractors, remember to return the updated stream.

Compiling this program requires the inclusions shown in Figure 40. The comments are not neces- 103
sary, because experienced C++ programmers are familiar with these names.

#include <algorithm> // sort
#include <cassert> // assertions
#include <fstream> // input and output file streams
#include <iomanip> // stream manipulators
#include <iostream> // input and output streams
#include <string> // STL string class
#include <vector> // STL vector class

Figure 40: Directives required for the grading program

4.3 Program Structure

A C++ program consists of header files and implementation files. The program is compiled as a
collection of translation units. A translation unit normally consists of a single implementation file
that may #include several header files.

Building a program is a process that consists of compiling each translation unit and linking the
resulting object files. A build is the result of building. Some companies have a policy such as
“daily build” to ensure that an application under development can always be compiled and passes
basic tests.

4.3.1 Header Files

Header files contain declarations but not definitions. This implies that the compiler:

1. does not generate any code while processing a header file
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2. may read a header more than once during a build

If a header file that contains a definition such as

int k;

is read more than once during a build, the linker will complain that k is redefined and will not link
the program. This is why it is important not to put definitions into header files.

Although a header file may be read more than once during a build, a header file should be read
once only during the compilation of a translation unit. Suppose that translation unit A includes
headers for translation units B and C, and these units both include utilities.h. To prevent the
compiler from reading utilities.h twice, we write it in the following way: 104

#ifndef UTILITIES_H
#define UTILITIES_H

// Declarations for utilities.h

#endif

This is the standard pattern for all header files. You do not have to use the exact name UTILITIES_H,
but it is important to choose a name that is unique and has some obvious connection to the name
of the header file. For example, Accelerated C++ uses GUARD_utilities_h.

Header files generated by VC++.NET contain the directive #pragma once, which has the same
effect.

In most cases, the guards are not logically necessary. Since header files contain only declarations,
reading them more than once should not cause errors. Some header files, however, cannot be read
twice, and these can cause problems if they don’t have guards. A more important reason for using
guards is efficiency: header files can be very long, and they may include other header files. Without
the guards, the compiler may be forced to read thousands of lines of declarations that it has seen
before.

Typically, a header file will contain declarations for types, constants, functions, and classes.

A header file should #include anything that the compiler needs in order to process it. For example,
if a class has a data member of type string, its header file must contain

#include <string>

It is not a good idea to include using declarations in header files. A header file may be included
in many translation units that may not want namespaces opened for them.

Do not write using declarations in header files.
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4.3.2 Implementation Files

Implementation files contain definitions for the objects declared in header files. An implementation
file is processed only once during a build. An implementation file should #include its own header
file and header files for anything else that it needs.

As a general rule, the first #include directive should name the header file corresponding to the
implementation file. For example, utilities.cpp would have the following structure: 105

#include "utilities.h"

// #includes for other components of this program

// #includes for library components

// definitions of the utilities

Header and implementation files create dependencies, which are discussed in Section 4.5 below. A
header file may depend on other header files and an implementation file may depend on one or
more header files. A file should never depend on an implementation file; in other words, you should
never write

#include "something.cpp"

Do not #include implementation files.

When an implementation file #includes header files, the compiler obviously reads all of the files.
Amongst other things, it checks that declarations in header files match definitions in implemen-
tation files. It is important to realize that the checking is not complete. For example, the header
file 106

#ifndef CONFLICT_H
#define CONFLICT_H

double mean(double values[]);

#endif

and the implementation file

#include "conflict.h"
#include <vector>

double mean(std::vector<double> values)
{

// ....
}

will not produce any error messages. Since C++ allows functions to be overloaded, it assumes
that the two versions of mean are different functions and that the vector version will be declared
somewhere else. If the program calls either version, the linker will produce an error message.
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4.4 Structuring the grading program

We split the grading program of Section 4.2 into three translation units: 107

1. class Student

2. function median

3. the main program

The translation unit for function median is rather small, but it demonstrates the idea of splitting
of generally useful functions in a larger application. For a small program such as this one, we could
have put Student and median into the same implementation file.

4.4.1 Translation unit Student
108

109Figure 41 shows the header file for class Student, student.h. There is an #include directive for
each library type mentioned in the class declaration. The class declaration is unchanged from the
original program.

Although function showClass is not a friend of class Student, it is closely related to the class;
consequently, we put its declaration in student.h.

Figures 42 and 43 show the implementation file for class Student, student.cpp. The first #include
directive includes student.h; this ensures that student.h does not depend on anything that it
does not mention (if it did, the compiler would fail while reading it). Then we include median.h
for this program, and finally the library types that we need. Since student.h includes iostream,
string, and vector, we need only include iomanip for the output statements.

The implementation file student.cpp, shown in Figures 42 and 43 implements the member func- 110

111

112

113

tion of Student, process, and the friend functions. It also initializes the static data member
maxNameLen.

4.4.2 Translation unit median

The header and implementation files for median are both short: see Figures Figure 44 and Figure 45. 114

115In a more typical application, other useful functions might be incorporated into a single translation
unit.

4.4.3 Translation unit for the main program

The last step is to write an implementation file for the main program, grader.cpp. We do not
need a header file (which would be called grader.h) because no other translation unit refers to
anything in the main program. It is a good idea in general to avoid dependencies on the main
program. See Figure 47. 116

117

118
This translation unit includes only the header files for other translation units that it needs —
student.h in this case — and any library types.
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#ifndef STUDENT_H
#define STUDENT_H

#include <iostream>
#include <string>
#include <vector>

class Student
{

friend std::ostream & operator<<(std::ostream & os,
const Student & stud);

friend std::istream & operator>>(std::istream & is,
Student & stud);

friend bool ltNames(const Student & left, const Student & right);
friend bool ltMarks(const Student & left, const Student & right);

public:
void process();

private:
// Data read from file
std::string name;
int midterm;
int final;
std::vector<int> assignments;

// Data computed by process
double total;
static std::string::size_type maxNameLen;

};

void showClass(std::ostream & os,
const std::vector<Student> & classData);

#endif

Figure 41: student.h: header file for class Student

4.5 Dependencies
119

Figure 46 shows the dependencies between the files of the grading program. Dependencies on
libraries are not shown. File X depends on file Y if the compiler must read Y in order to compile
X . In general:

• Implementation files depend on header files

• Header files may depend on other header files

• An implementation file never depends on another implementation file

• There must be no circular dependencies
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#include "student.h"
#include "median.h"

#include <iomanip>

using namespace std;

string::size_type Student::maxNameLen = 0;

void Student::process()
{

if (maxNameLen < name.size())
maxNameLen = name.size();

total = 0.3 * midterm + 0.6 * final;
if (assignments.size() > 0)

total += median(assignments);
}

ostream & operator<<(ostream & os, const Student & stud)
{

os <<
left << setw(static_cast<streamsize>(Student::maxNameLen)) <<
stud.name << right <<
fixed << setprecision(1) << setw(6) << stud.total <<
setw(3) << stud.midterm <<
setw(3) << stud.final;

for ( vector<int>::const_iterator it = stud.assignments.begin();
it != stud.assignments.end();
++it )

os << setw(3) << *it;
return os;

}

istream & operator>>(istream & ifs, Student & stud)
{

if (ifs >> stud.name)
{

ifs >> stud.midterm >> stud.final;
int mark;
stud.assignments.clear();
while (ifs >> mark)

stud.assignments.push_back(mark);
ifs.clear();

}
return ifs;

}

Figure 42: student.cpp: implementation file for class Student: first part
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bool ltNames(const Student & left, const Student & right)
{

return left.name < right.name;
}

bool ltMarks(const Student & left, const Student & right)
{

return left.total < right.total;
}

void showClass(ostream & os, const vector<Student> & classData)
{

for ( vector<Student>::const_iterator it = classData.begin();
it != classData.end();
++it )

os << *it << endl;
}

Figure 43: student.cpp: implementation file for class Student: second part

#ifndef MEDIAN_H
#define MEDIAN_H

#include <vector>

double median(std::vector<int> scores);

#endif

Figure 44: median.h: header file for function median

• Fewer dependencies are better (few dependencies = “low coupling”)

Dependencies have an important effect on compilation time. A file with a high in-degree will trigger
extensive recompilation when it is changed.

In Figure 46, a change to either median.h or student.h will cause two of the three implementation
files to be recompiled. If grader.cpp depended on median.h, changing median.h would cause all
three implementation files to be recompiled.

In a small program like the grader, the effect of dependencies on compilation is negligible. In large
programs, the effect can be significant. Large programs require hours or even days to compile.
Some header files are used by hundreds or even thousands of implementation files. A change to
one of the header files can trigger hours of recompilation time.

An important component of large-scale C++ design is to reduce the dependencies between source
files. We will discuss ways to do this as the course progresses.



4 APPLICATION: GRADING A CLASS 71

#include "median.h"

#include <algorithm>
#include <cassert>

using namespace std;

// Requires: scores.size() > 0.
double median(vector<int> scores)
{

typedef vector<int>::size_type szt;
szt size = scores.size();
assert(size > 0);
sort(scores.begin(), scores.end());
szt mid = size / 2;
return size % 2 == 0 ?

0.5 * (scores[mid - 1] + scores[mid]) :
scores[mid];

}

Figure 45: median.cpp: implementation file for function median

median.h

median.cpp

student.h

student.cpp grading.cpp

Figure 46: Dependencies in the grading program
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#include "student.h"

#include <algorithm>
#include <fstream>
#include <string>
#include <vector>

using namespace std;

int main()
{

// Attempt to open file provided by user
string classFileName;
cout << "Please enter class file name: ";
cin >> classFileName;
ifstream ifs(classFileName.c_str());
if (!ifs)
{

cerr << "Failed to open " << classFileName << endl;
return 1;

}

// Process the file
vector<Student> classData;
Student stud;
while (ifs >> stud)
{

stud.process();
classData.push_back(stud);

}

// Print reports
ofstream ofs("grades.txt");
sort(classData.begin(), classData.end(), ltNames);
ofs << "Sorted by name:\n";
showClass(ofs, classData);

sort(classData.begin(), classData.end(), ltMarks);
ofs << "\nSorted by marks:\n";
showClass(ofs, classData);

}

Figure 47: grader.cpp: implementation file for main program
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4.6 Strings and characters

Strings Class string provides a large number of functions in addition to those that we have
already seen. See http://www.cppreference.com/cppstring/all.html for a complete reference.

The following operators work for strings: 120

< <= == != >= > + << >> = []

Operator + concatenates strings. There are several overloads, allowing for all combinations of char,
C strings, and strings. Operator [] provides indexing for strings.

Strings function as containers for characters, working in a similar way to the type vector<char>.
Consequently, iterators, push_back, and similar functions work for strings. In particular, string
provides insert to insert characters into a string, erase to remove characters from a string, and
replace to replace a sequence of characters in a string.

There several functions for finding characters or substrings in strings. For example:
find find_first_of find_first_not_of find_last_of find_last_not_of

Characters The library cctype provides the same functionality as the C header file ctype.h.
Although many of these functions should now be considered obsolete (e.g., strcpy and friends),
others are still useful. In particular: 121

isalpha(c) returns true if c is a letter

isdigit(c) returns true if c is a digit

isspace(c) returns true if c is a blank, tab, or linebreak

tolower(c) returns the lower case equivalent of an upper case character and leaves other characters
unchanged

toupper(c) returns the upper case equivalent of an lower case character and leaves other characters
unchanged
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5 Pointers and Iterators

5.1 Pointers and Dynamic Allocation

An important difference between C++ and Java is that, in C++, dynamic memory allocation and

deallocation is explicit (done by code written by programmers) whereas in Java it is implicit (done

by built-in system code). It is not quite true to say “Java does not have pointers”, but it is true to

say “Java does not allow direct access to pointers”.

A pointer is a variable that contains the address of another variable.

Like all variables in C++, a pointer has a type. The type depends on the object addressed by the

pointer. For example, a pointer that points to an int has type “pointer to int”, written int*.

For every type T , there is a type T∗ or pointer to T .

To assign a value to a pointer, we need a way of obtaining addresses. There are two common ways,

and we define the unimportant one first. The operator &, applied to a variable, yields the address

of that variable. The address can be stored as a pointer. The following code defines two pointers,

pk1 and pk2, both pointing to the integer k.

int k = 42;

int *pk1 = &k;

int *pk2 = &k;

If we have a pointer to an object, we can obtain the object itself by applying the prefix operator *.

In the example above, *pk1 is an integer variable (it is actually, of course, the integer k).

The declaration int *pk1 is a kind of pun. We can read it as (int *)pk1 (“ pk1 has type

int *”) or as int (*pk1) (“*pk1 has type int”). The forms with parentheses are illegal, but

the C++ compiler is not fussy about spaces: we can write any of

int *pk1 = &k;

int* pk2 = &k;

int * pk3 = &k;

Some programmers prefer the first form and some the second; few use the third, although it is

legal. There is one syntactic trap that you should be aware of. The statement

int *p, q;

declares p to be a pointer to int, but q is just a plain int.

Using pointers can have strange results — although they are not all that strange if you think about

them carefully. For example, the code
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int k = 42;

int *pk1 = &k;

int *pk2 = &k;

++(*pk1);

cout << k << ’ ’ << *pk2 << endl;

displays 43 43. Since both pointers point to the same integer, any change to its value will be seen

by all pointers.

C++ provides arithmetic operations (+ and −) on pointers. However, the arithmetic is rather special.

If p1 and p2 are pointers and i is an integer, then:

p1 + i is a pointer

p1 - i is a pointer

p1 - p2 is a signed integer (p1 and p2 must have the same type)

These operations would be utterly meaningless if it were not for the fact that C++ uses the size

of the object pointed to when doing arithmetic. For example, suppose that an instance of type T

occupies 20 bytes and that we write:

T t;

T *pt = &t;

Then pt+1 is an address 20 bytes greater than pt.

This kind of arithmetic is esactly what we need for arrays. In fact, subscript operations in C++ are

defined in terms of pointer arithmetic. The declaration

double a[6];

introduces a as an array of 6 doubles. C++ treats a as a const pointer. We have:

a[0] ≡ ∗a
a[1] ≡ ∗(a+ 1)

a[2] ≡ ∗(a+ 2)

. . .

a[i] ≡ ∗(a+ i) for any integer i

5.1.1 Stack Allocation

Most data in C++, and all the data we have seen so far in this course, is allocated on the run-time

stack.

The run-time stack, “stack” for short, is initially empty. When execution starts, global data is

pushed onto th stack. On entry to a function, the local data associated with the function (including

its arguments) are pushed onto the stack. When the function returns, the local data is popped off

the stack. Thus the stack varies in size as the program runs.
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When a function has returned, its local data no longer exists.11 Normally, this is not a problem, be-

cause the function’s local variables are no longer accessible. Playing tricks with pointers, however,

can cause problems. Consider the code shown in Figure 45.

int * f()

{

int k = 42;

int *pk = &k;

return pk;

}

int main()

{

int *p;

p = f();

return 0;

}

Figure 45: Dangerous tricks

This program compiles because there are no syntactic or semantic errors. The final assignment,

p = f(), makes p a pointer to k. But k no longer exists, having been popped off the stack when

f returns. Any attempt to use p will have unpredictable results.

char *read()

{

char buffer[20];

cin >> buffer;

return buffer;

}

int main()

{

char *pc = read();

cout << pc << endl;

return 0;

}

Figure 46: Subtler dangerous tricks

Figure 45 shows a more subtle version of the same problem. The function read has result type

char* but actually returns an array of characters: this works because the compiler treats these

types as the same. Similarly, the main function treats function read as having type char*.

The reason that this is a bad program is that the array buffer is allocated on the stack. It is

destroyed when the function returns. The pointer pc is undefined and cannot be used safely.

11Actually, it’s still there, on the stack, but will be overwritten when the next function is called. Consequently, we
must assume that it no longer exists.
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The compiler12 actually recognizes the mistake and issues a warning message:

f:\Courses\COMP446\src\Pointers\pointers.cpp(24) :

warning C4172: returning address of local variable or temporary

This provides another reason for paying attention to warnings from the compiler!

Problems like this tend to occur when we use “old-style” C++ code. No problems arise if we use the

STL class string instead of an array of characters.

5.1.2 Heap Allocation

Stack allocation works because function calls and returns match the “last-in-first-out” (LIFO) disci-

pline of a stack. Sometimes this is not good enough. For example, we might want to allocate data

within a function, use that data for a while after the function has returned, and then deallocate the

data. We can do this by allocating the data on the heap, an area of memory that does not obey any

particular discipline such as LIFO or FIFO. The heap is used like this:

T *p = new T();

....

delete p;

The operator new requires a call to a constructor on its right. The value returned by new is a

pointer to the constructed object. We can use this pointer to perform operations on the object.

When we have finished with the object, we apply delete to the pointer to destroy the object and

deallocate the heap memory it was using.

Suppose class T provides a public function f. To call f using the pointer p, we must first derefer-

ence p and the use the “dot” operator to call f. Thus we write (*p).f(). (The parentheses are

necessary, because the compiler reads *p.f() as *(p.f(), which is wrong.) Since this construc-

tion occurs often, there is an abbreviation for it:

p->f() ≡ (*p).f()

Figure 47 provides a simple example of heap allocation and deallocation. The function maketest

constructs a new instance of class Test on the heap, calls its function f, and returns a pointer to

it. The function killTest deletes the object. The program displays the following output:

makeTest

Constructor

Function

killTest

Destructor

12VC++ 7.1
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class Test

{

public:

Test() { cout << "Constructor\n"; }

~Test() { cout << "Destructor\n"; }

void f() { cout << "Function\n"; }

};

Test *makeTest()

{

cout << "makeTest\n";

Test *pt = new Test();

pt->f();

return pt;

}

void killTest(Test *p)

{

cout << "killTest\n";

delete p;

}

int main()

{

Test *p = makeTest();

killTest(p);

return 0;

}

Figure 47: Heap allocation and deallocation

5.1.3 A note on null pointers

The careful reader will have observed that null pointers are represented by 0, rather than NULL, in

the code for the traversal program. This is because NULL presents a problem for C++ programmers.

In C, NULL was #defined by a preprocessor statement something like

#define NULL 0

This is compatible with the spirit of C’s rather loose approach to types, but is not consistent with

C++’s safer typing. Improvements such as

#define NULL (int) 0

#define NULL (void*) 0
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do not help, because the first version does not work for pointers and the second version requires

an ugly-looking cast whenever we use NULL for a pointer type other than void*.

In C++, #defines are deprecated, and we are supposed to use constant declarations instead.

Unfortunately, any reasonable declaration of NULL has the same problems as the attempts to

#define NULL:

const int NULL = 0;

const void * NULL = 0;

The simplest solution seems to be:

Forget about NULL — just use 0.

Problems with zero arise in overloading. We might declare

void f(int n); // first overload

void f(char *p); // second overload

and call f(NULL) thinking that the compiler would say to itself: “The programmer has used NULL,

which suggests a pointer, and I will therefore pass (char*)NULL to the second overload”.

However, the compiler does not reason like this. Instead, it says: “NULL is 0 and 0 is an int, and I

will therefore pass 0 to the first overload”.

As Meyers (1992, pages 87–89) explains, this is an unusual case because people tend to think that

there is an ambiguity but the compiler does not. (Usually, people think their meaning is perfectly

obvious and are annoyed when the compiler calls it ambiguous.) The morale is:

Prefer not to overload a function with integer types and pointer types.

5.2 Iterators

Iterators are one of the keys to the flexibility of the STL. We have seen that the STL provides con-

tainers and algorithms. Iterators provide the glue that allows us to attach one to the other:

• Each container specifies the iterators that it provides

• Each algorithm specifies the iterators that it needs

For example, vector<T> provides the kind of iterators that sort requires; it follows that we can

sort vectors.

A pair of iterators specifies a range of container elements. The range typically defines a semi-closed

interval: the first iterator of a range accesses the first element of the range, and the last iterator

accesses the first element not in the range. In this typical loop
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Property Input Output Forward Bidirectional Random Access Insert

Assign (=)
√ √ √ √ √ √

Compare (==, !=)
√ √ √ √ √ √

Read (*it)
√ √ √ √

Write (*it)
√ √ √ √ √

Order (<, <=, >, >=)
√

Increment (++)
√ √ √

Decrement (--)
√ √

Arithmetic (±i, +=, -=)
√

Figure 48: Properties of iterators

for (〈iterator〉 it = first; it != last; ++it)

.... *it ....

〈iterator〉 stands for some iterator type, and we see that the iterator must provide the operations:

• first != last (and therefore first == last): equality comparison

• ++it: increment, or step to next element

• *it: deference to provide access to the container element

C++ programmers will recognize that all of these operations are provided by pointers. In fact, we

can use raw pointers as iterators:

const int MAX = 20;

double values[MAX] = .... ;

sort(&values[0], &values[MAX]);

5.2.1 Kinds of iterator

There are several ways of classifying iterators. Below, we define individual properties; most itera-

tors possess several of these properties. In each of the following cases, we use it to stand for an

iterator with the given property. Figure 48 summarizes the properties that various kinds of iterator

provide.

• All iterators implement the operators = (assignment), == and != (comparison).

• An input iterator can be used to read elements from a container but does not provide write

access. That is, *it is an rvalue.
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• An output iterator can be used to update elements in a container but may not provide read

access. That is, *it is a lvalue.

• A forward iterator is an input and output iterator that can traverse the container in one

direction. A forward iterator must implement ++.

• A bidirectional iterator is an input and output iterator that can traverse the container forwards

and backwards. A bidirectional iterator must implement ++ and --.

There are no “backwards only” iterators; an iterator is either forward or bidirectional.

• A random access iterator must allow “jumps” in access as well as traversal. The principal

operation that a random access must provide is indexing: it[n]. Random access iterators

also provide:

– Addition and subtraction of integers: it + n and it - n

– Assignment operators: it += n and it -= n

– Subtraction: it1 - it2 yields a signed integer

– Comparisons: the operators <, <=, >=, and >

• An insert iterator is an output iterator that puts new values into a container rather than just

updating the values that are already there.

All of the STL containers provide bidirectional iterators. It follows that they all provide input, out-

put, and forward iterators. These categories are useful because we can construct special iterators

that may not have all of the properties.

The only container classes that provide random access iterators are deque, string, and vector.

This is because these containers are required to store elements in consecutive locations, which

means that random access is a simple address calculation.13

We have often mentioned that a range is specified by an iterator accessing the first element of the

range and another iterator accessing the element following the last element of the range — which,

in most cases, does not even exist. Here are some reasons for this choice:

1. Two equal iterators specify an empty range.

2. We can use == and != to test for an empty range and for end of range — we do not need <

and friends.

3. We have an easy way to indicate “out of range”, namely, the last iterator of the range.

A function can return an iterator for a valid element to indicate success or an iterator for an

invalid element to indicate failure. This avoids the need for special values, flags, etc.

An iterator with type iterator is allowed to change the contents of its associated container.

An iterator with type const_iterator (called a constant iterator) is not allowed to change the

contents of its associated container. It is best to use constant iterators whenever possible.

13The address of c[i] is &c + s × i, where &c is the address of the container and s is the size of an element.
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5.2.2 Using iterators

Suppose that we want to divide the students of the grading program into two groups, according as

to whether they passed or failed the course. The first thing we will need is a criterion for deciding

whether a student has passed. We add the following member function to class Student:

bool passed() const { return total > 50; }

There are two things to note about this function:

• Its definition appears within the class declaration. This is allowed, and a consequence is that

the compiler may inline calls to the function.

• The const indicates that the function does not change the state of the object. The signifi-

cance of this will emerge shortly.

Let us first consider a straightforward approach, in which we create two empty vectors for passed

and failed students, and iterate through the class assigning each student to one or the other vector:

see Figure 49. In this code, note that it->passed() is an abbreviation for (*it).passed().

vector<Student> passes;

vector<Student> failures;

for ( vector<Student>::const_iterator it = data.begin();

it != data.end();

++it )

if (it->passed())

passes.push_back(*it);

else

failures.push_back(*it);

Figure 49: Separating passes and failures: first version

If we omit the const in the declaration of passed, this code will not compile: see Figure 50. This

is because a const_iterator can only be used with a constant container. Although passed

does not alter the state of a student, the compiler cannot tell this, and will reject Figure 49. By

stating explicitly that passed is a const function, we inform the compiler that the container will

not change and we can use a const_iterator.

The code in Figure 49 would also work if we omitted const from passed and from the iterator

declaration. However, it is good practice to use const wherever it applies, and so Figure 49 is

preferable to code without consts.

After executing the code in Figure 49, we now have three vectors and two copies of each student

record, one in the original vector and the other in either passes or failures. It would be more

efficient in terms of space to move the failed students into a new vector and remove them from

the original vector. Vectors provide the function erase to remove elements from a container. The

code in Figure 51 does this.
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f:\....\grader.cpp(111):

error C2662: ’Student::passed’ :

cannot convert ’this’ pointer from

’const std::allocator<_Ty>::value_type’

to ’Student &’

with

[

_Ty=Student

]

Figure 50: Compiler error caused by omitting cosnt

vector<Student> failures;

vector<Student>::iterator it = data.begin();

while (it != data.end())

{

if (it->passed())

++it;

else

{

failures.push_back(*it);

it = data.erase(it);

}

}

Figure 51: Separating passes and failures: second version

The first point to note is that we have to use a while loop rather than a for loop, because the

loop step is not necessarily ++it. However, for students that pass the course, ++it is all we have

to do.

When a student fails, the corresponding record is stored in failures. In order to remove the

record from the class data vector, we write

it = data.erase(it);

The effect of data.erase(it) is to remove the element indicated by it from the vector data.

After this has been done, the iterator is invalid because it accesses an element that no longer exists.

The function erase returns an iterator that accesses the next element of the vector.

It is important to use the iterator returned by erase and not to assume that it is just ++it. A

iterator operation that invalidates an iterator may do other things as well, even including moving

the underlying data. When an iterator operation invalidates an iterator, it potentially invalidates all

iterators.

For example, calling erase in Figure 51 invalidates the iterator for the end of the vector, because

removing one component forces the remaining components to move. It would therefore be a serious

mistake to attempt to “optimize” Figure 51 like this:
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vector<Student> failures;

vector<Student>::iterator it = data.begin();

vector<Student>::iterator last = data.end(); // Save final iterator

while (it != last)

....

Check whether an operation invalidates iterators before using it.

The solution we have developed works correctly, but is inefficient. The inefficiency is negligible for

a class of sixty students but could be a problem if we used the same strategy for very large vectors.

To understand the reason for the inefficiency, suppose that an entire class of 50 students fails. The

program would execute as follows:

Remove first record, move remaining 49 records

Remove second record, move remaining 48 records

Remove third record, move remaining 47 records

....

The total number of operations is 49+ 48+ 47+ · · · + 1︸ ︷︷ ︸
49 terms

and is clearly O(N2) for N students.

To improve the performance, we must change the data structure. A list can erase in constant time

(i.e., O(1)) and can perform the other operations that we require. It is a straightforward exercise to

replace each vector declaration by a corresponding list declaration.

It is obviously important to know which operations invalidate iterators. Fortunately, good STL

reference documents usually provide this information. If you are not sure, you can make a good

guess by thinking about how the operation must work on a given data structure — but it’s much

safer to look up the correct answer.

5.2.3 Range Functions

Most containers have range functions — that is, functions with a pair of parameters representing a

range of elements in the container. If a suitable range function exists, it is better to use it than to

use a loop.

Suppose that you want to create a vector v1 consisting of the back half of the vector v2 (Meyers

2001, Item 5). You could do it with a loop:

v1.clear();

for ( vector<Widget>::const_iterator ci = v2.begin() + v2.size()/2;

ci != v2.end();

++ci )

v1.push_back(*ci);

but it is quicker to write any one of the following statements:
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v1.assign(v2.begin() + v2.size()/2, v2.end());

v1.clear();

copy(v2.begin() + v2.size()/2, v2.end(), back_inserter(v1));

v1.insert(v1.end(), v2.begin() + v2.size()/2, v2.end());

In this case, insert is probably the best choice.



6 TEMPLATE PROGRAMMING 84

6 Template Programming

Templates enable us to write generic, or parameterized, code. The basic idea is simple but some of

the implications — at least for C++— are subtle.

All of the material in this section is covered in (Koenig and Moo 2000). For a more detailed and

complete description of templates, (Vandervoorde and Josuttis 2003) is recommended.

6.1 Template functions

Consider these three functions:14

void Swap(char & x, char & y) // Function (1)

{

char t = x; x = y; y = t;

}

void Swap(int & x, int & y)

{

int t = x; x = y; y = t;

}

void Swap(double & x, double & y)

{

double t = x; x = y; y = t;

}

These functions perform the same task for different types. Since C++ allows overloading, we could

use all three in the same program, but there does appear to be some redundancy.

6.1.1 Type Parameters

We can use templates to avoid source code redundancy. We replace the previous three definitions

by the following template function declaration:

template <typename T>

void Swap(T & x, T & y)

{

T t = x;

x = y;

y = t;

}

The new function can be called in the same way as the previous versions. It is not necessary to

specify the type of the arguments, because the compiler already has this information. The code

14The name Swap, rather than swap, was chosen to avoid confusion with the standard library function.
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char c1 = ’a’;

char c2 = ’b’;

Swap(c1, c2);

cout << c1 << ’ ’ << c2 << endl;

int m = 3;

int n = 5;

Swap(m,n);

cout << m << ’ ’ << n << endl;

prints

b a

5 3

To compile the call Swap(c1, c2), the compiler must perform the following steps:

1. Infer the types of the arguments c1 and c2 (in this case: char and char).

2. Look for functions named Swap.

3. Find (in this case) a template function Swap.

4. Check that the substitution T = char matches the call.

5. Generate source code for the function Swap<char> (which should be the same as function

(1) above).

6. Compile the generated source code.

7. Generate a call to this function.

The compiler detects errors in the template code, if there are any, at step 6, when it compiles the

code obtained by expanding the template. This means that errors in template code are reported

only if the template is instantiated. You can write all kinds of rubbish in a template declaration and

the compiler won’t care if you never use the template.

The process of deriving an actual function from a template declaration is often called “instantiating”

the template. This usage is confusing, because we also talk about objects obtained by instantiating

a class. These notes use the expression applying a template or the application of a template, by

analogy with “applying a function”.

Although templates remove redundancy in the source code, they do not affect the object code. If

the program calls Swap with N different argument types, there will be N versions of Swap in the

object code.

The following template function returns the greater of its two arguments.15

15The name Max is used to avoid confusion with the library function max.
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template <typename T>

T Max(const T & x, const T & y)

{

return x > y ? x : y;

}

We would expect this function to work with various types, and indeed it does. Each of the following

statements compile and execute correctly:

cout << Max(7, 3) << endl;

cout << Max(’a’, ’5’) << endl;

cout << Max(7.1, 3.3) << endl;

This statement appears to execute correctly:

cout << Max("COMP", "6441") << endl;

But further investigation reveals problems. For instance, executing

cout << Max("apple", "berry") << endl;

displays berry but executing

cout << Max("berry", "apple") << endl;

cout << Max("apple", "berry") << endl;

displays apple twice. Even worse, the statement

cout << Max("berry", "cherry") << endl;

gives a compiler error:

error C2782: ’T Max(const T &,const T &)’ :

template parameter ’T’ is ambiguous

To find out what is going wrong, we add a line to Max:

template <typename T>

T Max(const T & x, const T & y)

{

cout << "Max called with " << typeid(x).name() << endl;

return x > y ? x : y;

}

In order to compile this, we must add the directive



6 TEMPLATE PROGRAMMING 87

#include <typeinfo>

Executing

cout << Max("apple", "berry") << endl;

cout << Max("cherry", "orange") << endl;

displays

Max called with char const [6]

apple

Max called with char const [7]

orange

and reveals the problem: we cannot compare strings of different lengths because they have different

types. Also, Max is not comparing the strings; it is comparing the addresses of the strings (i.e., the

pointers).

There are no good, general solutions to problems like this. For Max, the best thing to do is to define

a non-template version for strings:

string Max(const string & x, const string & y)

{

return x > y ? x : y;

}

When the compiler encounters Max("apple", "berry"), it will consider the string version

a better match than the template version.

6.1.2 Missing functions

Suppose, however, that we define our own class Widget as follows:

class Widget

{

public:

Widget(int w) : w(w) {}

private:

int w;

};

Attempting to use Max with widgets

Max(Widget(1), Widget(2));

gives several error messages, including this one:



6 TEMPLATE PROGRAMMING 88

error C2676: binary ’>’ : ’const Widget’ does not define

this operator or a conversion to a type acceptable

to the predefined operator

It is easy to see what has happened: the compiler has generated the function

Widget Max(const Widget & x, const Widget & y)

{

return x > y ? x : y;

}

and has then discovered that Widget does not implement operator>. The correction is also

straightforward: we just have to add the function

friend bool operator>(const Widget & left, const Widget & right)

{

return left.w > right.w;

}

to the declaration of class Widget.

Ensure that template arguments satisfy the require-

ments of the corresponding template parameter.

6.1.3 Conversion failure

The use of templates prevents some of the conversions that we expect. If we declare

double Max(const double & x, const double & y)

{

return x > y ? x : y;

}

then the following calls all compile and execute correctly:

Max(1.2, 3.4);

Max(1, 3.4);

Max(1, 3);

The first call works because the types match exactly, and the other two calls work because the

compiler includes code to convert 1 and 3 from int to double before the function is called.

With the template version, however, the compiler does not allow the second call. It matches

Max(int,int) and Max(double,double) to the template pattern, butMax(int,double)

does not match and the compiler will not insert conversions to make it match.

There are several ways to make the second call work properly:
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• We can cast the argument that is causing the problem:

Max(static_cast<double>(1), 3.4);

• We can specify the template argument explicitly:

Max<double>(1, 3.4);

• We can avoid calls of the form Max(1, 3.4) with mixed-type arguments.

6.1.4 Non-type Parameters

Template parameters are not restricted to types. We can also use integral types (that is, char,

short, int, and long) as parameters. This function has an integer template parameter16

template<int MAX>

int randInt()

{

return rand() % MAX;

}

and is used like this:

// Throwing dice

for (int i = 0; i != 20; ++i)

cout << setw(2) << randInt<6>() + 1;

cout << endl;

Of course, we could have written this function without using templates:

int randInt(const int MAX)

{

return rand() % MAX;

}

Then we would call it in the usual way: randInt(6).

The difference between the two versions of randInt is that the template version substitutes the

integer at compile time whereas the conventional version substitutes the integer at run time. In

this case, the difference is slight — the template version probably runs slightly faster than the

conventional version but the difference will hardly be noticeable — but may be significant in more

realistic situations.

The argument corresponding to a non-type template parameter can be a constant, but it cannot be

a variable:

const int MAXRAND = 100;

.... randInt<MAXRAND>() .... // OK

int MAXVAR = 100;

.... randInt<MAXVAR>() .... // Compiler error

16This is a terrible way to generate random integers! We will consider better ways later.
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6.2 Template classes

Classes can be parameterized with templates; the notation is similar to that of function templates.

Here is a simple class for 2D coordinates, in which each coordinate consists of two floats.

class Coordinate

{

public:

Coordinate(float x, float y) : x(x), y(y) {}

void move(float dx, float dy);

private:

float x;

float y;

};

To parameterize this class, we:

1. Write template<typename T> in front of it;

2. replace each occurrence of float by T; and

3. — important! — within the declaration, replace occurrences of the class name C by C<T>.

Performing these steps for class Coordinate yields the following declaration:

template<typename T>

class Coordinate

{

public:

Coordinate<T> (T x, T y) : x(x), y(y) {}

void move(T dx, T dy);

private:

T x;

T y;

};

Unlike functions, the compiler cannot infer the argument type for classes. Whenever we create an

application of a template class, we must provide a suitable argument:

Coordinate<int> p(1, 2);

Coordinate<float> q(3.4, 5);

The integer argument 5 is acceptable for the Coordinate<float> constructor because the

template application is explicit: the compiler knows that float values are expected, and inserts

the appropriate conversion.

Here is how move is defined for class Coordinate:
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template<typename T>

void Coordinate<T>::move(T dx, T dy)

{

x += dx;

y += dy;

}

In general, if the definition of a member function for a template class uses the template parameter,

we must:

1. Write template<typename T> before the function; and

2. write C<T> wherever the class name C is needed.

Like functions, template classes can have non-type template parameters, provided that the param-

eters have integral types. Instances of the class must be provided with constant arguments of

appropriate types.

6.2.1 A template class for vectors

Figure 52 shows part of a template class for vectors. It is parameterized by Type, the type of a

vector element, and Dim, the dimension of the vectors. A typical declaration would be

Vector<double, 3> v;

If the program uses many vectors of this type, we would probably define a special type for them, to

reduce the amount of writing required and improve the clarity of the program:

typedef Vector<double, 3> vec;

Some points to note about the declaration of Vector:

• There is a default constructor that sets the elements of the vector to zero. The compiler’s

default constructor would leave the elements uninitialized.

• The function operator[] returns a reference to a vector element. This function allows a

user to get or set any element.

It is good practice (as we will discuss later) to provide two versions of this function, one

returning an lvalue (as here) and the other returning an rvalue.

• The function operator[] performs a range check and aborts the program if the range

check fails. It would probably be better to handle a range check error by throwing an excep-

tion.
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template<typename Type, int Dim>

class Vector

{

public:

Vector<Type, Dim>()

{

for (int d = 0; d != Dim; ++d)

v[d] = 0;

}

Type & operator[](int i)

{

assert(0 <= i && i < Dim);

return v[i];

}

friend Vector<Type, Dim> operator+(

const Vector<Type, Dim> & left,

const Vector<Type, Dim> & right )

{

Vector<Type, Dim> result;

for (int d = 0; d != Dim; ++d)

result.v[d] = left.v[d] + right.v[d];

return result;

}

friend ostream & operator<<(ostream & os,

const Vector<Type, Dim> & vec)

{

os << ’(’;

for (int d = 0; d != Dim; ++d)

{

os << vec.v[d];

if (d < Dim - 1)

os << ", ";

}

return os << ’)’;

}

private:

Type v[Dim];

};

Figure 52: Part of a template class for vectors
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• Several of the functions have for-loops for the range [0,Dim). A good compiler might opti-

mize these away for small values of Dim (this optimization is a special case of loop unrolling).

If we were worried about the overhead of a for-loop, we could rewrite the code using if or

switch statements. Figure 53 shows how this might be done for operator+. The code

looks long but, when the compiler expands Vector<double,3>, it will see something like

this:

if (3 == 1)

....

else if (3 == 2)

....

else if (3 == 3)

....

else

Any reasonable compiler should be smart enough to compile the code for the “3 == 3” case

and generate no code for the conditional expressions or the other cases.

<aside> People sometimes wonder why a compiler should bother optimizing code such as

if (1 == 0)

....

on the grounds that no sane programmer would write code like this. Such optimizations are

important, and very common, because a lot of code is not written explicitly by programmers,

but is generated by template expansion, code generators, and in other ways. Unless the

generator is very smart, generated code may be very stupid. </aside>

When we have obtained a type by applying a class template, we can do all of the usual things with

it:

Vector<double, 3> v; // 3D vector

Vector<double, 3> & rv; // reference to a 3D vector

const Vector<double, 3> & rv; // constant reference

// to a 3D vector

Vector<double, 3> * pv; // pointer to a 3D vector

....

6.2.2 class or typename?

Early versions of C++ with templates used “class” where we have been using “typename”. For

example:

template<class T>

class Coordinate { ....
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friend Vector<Type, Dim> operator+(

const Vector<Type, Dim> & left,

const Vector<Type, Dim> & right )

{

Vector<Type, Dim> result;

if (Dim == 1)

{

result.v[0] = left.v[0] + right.v[0];

}

else if (Dim == 2)

{

result.v[0] = left.v[0] + right.v[0];

result.v[1] = left.v[1] + right.v[1];

}

else if (Dim == 3)

{

result.v[0] = left.v[0] + right.v[0];

result.v[1] = left.v[1] + right.v[1];

result.v[2] = left.v[2] + right.v[2];

}

else

{

for (int d = 0; d != Dim; ++d)

result.v[d] = left.v[d] + right.v[d];

}

return result;

}

Figure 53: A more elaborate version of operator+

This usage suggested that the argument replacing T had to be a class and could not be a built-in

type, such as int. The keyword typename suggests that any type can be used, including the

built-in types.

Prefer typename to class for template parameters.

6.3 Complications

6.3.1 Compiling template code

We have seen that normal practice in C++ programming is to put declarations into header files

and definitions into implementation files. This does not work for templates. The compiler cannot

generate code for a function such as
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template<typename T>

void Coordinate<T>::move(T dx, T dy)

{

x += dx;

y += dy;

}

without knowing that the argument that replaces T and, if this definition is in an implementation

file, the compiler cannot access it when it compiles a call such as v.move(2,3).

There are several solutions. Different platforms have different policies, but a solution that works

on (almost?) all platforms is to treat any template code, even a function such as move above, as a

declaration.

Put all template code into header files.

6.3.2 Template return types

It does not make sense to use a template type as a return type:

template<typename T>

T f()

{

return ??

}

Even if we could write a sensible expression after return, the compiler could not deduce the

template argument at the call site.

In general, if the return type of a function is a template parameter, then the function must have at

least one parameter typed with the same template parameter, as in:

template<typename T>

T f(const T & param) { .... }

6.3.3 Template Specialization

It is sometimes necessary or desirable, for efficiency or other reasons, to provide a special imple-

mentation for some particular value of the template parameters. Suppose, for example, that we

want to have both a general template class for all kinds of vectors, as above, but we also want to

give special treatment to three-dimensional vectors with double elements. This is called special-

ization. Suppose the original class was

template<typename T>

class Widget

....
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The specialized version will begin

template<>

class Widget<specType>

....

where specType is the value of T for which we are providing a specialized implementation. In

the rest of the class, we must replace all occurrences of <T> with specType, including changing

Widget<T> to Widget<specType>.

Figure 54 shows the result of specializing the generic vector class for 3D double vectors. The

constructor has been modified with the addition of an output statement to demonstrate that the

specialized version is actually used. The definition

Vector<double,3> v;

produces the message

3D Vector

Within the declaration of the specialized version, we have unrolled the for-loops and made other

small changes. We could also add functions, such as cross product, that are useful for 3D vectors

but not other vectors.

It is also possible to partially specialize a template class with two or more template parameters. For

example, we could specialize Vector to 3D vectors with any element type. The class declaration

would begin

template<typename Type>

class Vector<Type,3>

....

Within the class declaration, instances of Dim are replaced by 3, but instances of Type are left

unchanged. References to the class all have the form Vector<Type,3>.

Template specialization is the key to template metaprogramming. The following class declaration

is allowed:

template<int N>

class Fac

{

public:

Fac()

{

Fac<N-1> f;

val = N * f.getVal();

}

int getVal() { return val; }

private:

int val;

};
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template<>

class Vector<double,3>

{

public:

Vector<double,3>()

{

v[0] = 0; v[1] = 0; v[2] = 0;

cout << "3D Vector" << endl;

}

double & operator[](int i)

{

assert(0 <= i && i < 3);

return v[i];

}

friend Vector<double,3> operator+(

const Vector<double,3> & left,

const Vector<double,3> & right )

{

Vector<double,3> result;

result.v[0] = left.v[0] + right.v[0];

result.v[1] = left.v[1] + right.v[1];

result.v[2] = left.v[2] + right.v[2];

return result;

}

friend ostream & operator<<(ostream & os,

const Vector<double,3> & vec)

{

return os << ’(’ <<

vec.v[0] << ", " <<

vec.v[1] << ", " <<

vec.v[2] << ’)’;

}

private:

double v[3];

};

Figure 54: A specialized version of class Vector
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However, there is a problem: instantiating Fac<4> requires instantiating Fac<3> requires instan-

tiating . . . . We can terminate the recursion by providing a specialized class Fac<0>, as follows:

template<>

class Fac<0>

{

public:

Fac() : val(1) {}

int getVal() { return val; }

private:

int val;

};

With these declarations, the following code prints 24:

Fac<4> f;

cout << f.getVal() << endl;

The compiler constructs class declarations for Fac<4>, Fac<3>, Fac<2>, Fac<1>, andFac<0>.

At run-time, executing the constructor for Fac<4> invokes the constructor for Fac<3>, and so

on.

6.3.4 Default Arguments

Function declarations may have default arguments:

void foo(int n = 0) { .... }

The same is true of template class declarations. For example, if we changed the declaration of

Vector in Figure 52 to

template<typename Type = double, int Dim = 3>

class Vector

....

and defined

Vector<int> u;

Vector<> v;

then u would be a 3D vector of ints and v would be a 3D vector of doubles.

Note that the definition

Vector v;

is not allowed. The brackets <> are required even when we are using the default values of all

parameters. (The same is true for functions, of course.)
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7 Designing classes

Class design is a big topic in C++, with many aspects to consider. Since any one class does not

illustrate all of the aspects of class design, we use two example classes to illustrate the issues. The

first example class is Rational, which implements fractions and provides examples of the issues

that arise in developing a numerical or algebraic class. The second example class is Account,

which – with a bit of artifical manipulation — provides examples of memory management and

other problems.

Rational Figure 65 on page 110 shows the declaration of class Rational. Comments that would

normally be included in such a declaration have been omitted to save space. The accompanying

text provides adequate explanation.

An instance of Rational is a rational number, or “fraction”, represented by two long integers. The

fraction
n
d

is represented by the pair (n,d). The class provides arithmetic operations (+, -, *, /),

and ^ (exponentiation)), the associated assignment operators (+=, -=, *=, /=), and comparisons

(==, !=, <, >, <=, >=) for fractions. It also provides stream operators for reading and writing

fractions.

Rational numbers are stored in normalized form. In the pair (n,d), we require d > 0 and gcd(n,d) =
1. (We can consider d > 0 ∧ gcd(n,d) = 1 to be a class invariant.) For example, the construction

Rational(4,-6) yields the pair (−2,3). An attempt to create a fraction with zero denominator

raises an exception.

Account The other example class, Account, is rather different. Some of the differences are due

to the application and some are due to an intentional complication: Account has a data member

that is a pointer.

An account is associated with a person who has a name. In class Account, the name is represented

as a char* (pointer to array of characters). This introduces various problems, all of which could

be avoided by using the standard class string instead of char*. We use char*, however, just

to show what the problems are and how they can be solved.

Other differences between Rational and Account concern comparison, accessors, and muta-

tors.

Figure 66 on page 111 shows the declaration of class Account. The data members of an account

are: the name of the owner or client; an id number; and the balance in the account.

C++ does not have a type that is really suitable for financial work. Accountants do not like double

because rounding prevents precise balancing of accounts. Long integers (type long) used to repre-

sent cents are quite good, provided that input and output functions make appropriate conversions

between dollars and cents. However, the largest amount that can be represented with a long integer

is $42,949,673 — not even enough for a bank president’s annual income. To do good banking, we

would need a special currency class. Curiously, the Boost library developers have never accepted

a currency class, although examples exist17 that could be raised to the standard of a Boost class

fairly easily.

17See, for example, http://www.colosseumbuilders.com/sourcecode.htm.
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#ifndef RATIONAL_H

#define RATIONAL_H

#include <ostream>

class Rational

{

public:

Rational(long num = 0, long den = 1);

Rational & operator+= (const Rational & right);

Rational & operator-= (const Rational & right);

Rational & operator*= (const Rational & right);

Rational & operator/= (const Rational & right);

Rational operator-() const;

Rational operator^ (int e) const;

friend bool operator== (const Rational & left,

const Rational & right);

friend bool operator!= (const Rational & left,

const Rational & right);

friend bool operator< (const Rational & left,

const Rational & right);

friend bool operator> (const Rational & left,

const Rational & right);

friend bool operator<= (const Rational & left,

const Rational & right);

friend bool operator>= (const Rational & left,

const Rational & right);

friend std::istream & operator>> (std::istream & is,

Rational & r);

friend std::ostream & operator<< (std::ostream & os,

const Rational & r);

double toDouble() const;

enum Exceptions { BAD_INPUT, ZERO_DENOMINATOR };

private:

void normalize();

long num;

long den;

};

Rational operator+ (const Rational & left, const Rational & right);

Rational operator- (const Rational & left, const Rational & right);

Rational operator* (const Rational & left, const Rational & right);

Rational operator/ (const Rational & left, const Rational & right);

#endif

Figure 65: Declaration for class Rational
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#ifndef ACCOUNT_H

#define ACCOUNT_H

#include <string>

class Account

{

public:

Account();

Account(char *name, long id, long balance = 0);

Account(const Account & other);

~Account();

Account & operator=(const Account & other);

long getBalance() const;

void deposit(long amount);

void withdraw(long amount);

void transfer(Account & other, long amount);

friend bool operator==(const Account & left,

const Account & right);

friend bool operator!=(const Account & left,

const Account & right);

private:

void storeName(char *s);

char *name;

long id;

long balance;

};

#endif

Figure 66: Declaration for class Account

We avoid the issue of a currency class in our example by using long.

There are other ways, too, in which the account class given here is unrealistic and nothing like a

class that would be used in a banking application, for example. Nevertheless, the example provides

some useful insights into class design.

7.1 Constructors

All classes have constructors. If you do not provide a constructor, the compiler generates a default

constructor that allocates memory for the object but doesn’t do anything else. Except in rare

cases, for very simple classes, it is best to provide one or more constructors. If you provide any

constructor at all, the compiler does not generate a default constructor.

A default constructor is a constructor without any parameters. There are a number of situations in

which a default constructor is required; for example, an array declaration is allowed only for types
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that have a default constructor.

Define a default constructor for every class.

Warning There is a small but important inconsistency in C++ notation. Suppose that C is a class

with two constructors, one of which is a default constructor and consider these statements:

C c1(45);

C c2();

It is natural to read the statements like this:

• c1 is an instance of C constructed from an integer;

• c2 is an instance of C constructed using the default constructor.

Unfortunately, this interpretation is wrong! In fact, c2 has been declared (but not defined) as a

function that takes no arguments and returns a C. To invoke the default constructor, you must

leave out the parentheses:

C c1(45);

C c2;

Rational Class Rational requires only one constructor. It is a general purpose constructor with

two long parameters, corresponding to the numerator and denominator of the fraction, stored

as num and den, respectively. Both parameters have default values (num = 0,den = 1), which

implies that this constructor counts as a default constructor. The constructor calls normalize

(see Figure 67 on page 113) to put the fraction in normal form.

Rational::Rational(long num, long den)

: num(num), den(den)

{

normalize();

}

The data members are set using initializers rather than assignments. This is the best way to initial-

ize data members and you should use it whenever possible.

Use initializers in constructors.
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long gcd(long i, long j)

{

assert(i > 0 && j > 0 && "Error in gcd arguments");

while (true)

{

long tmp = j % i;

if (tmp == 0)

return i;

j = i;

i = tmp;

}

assert(false && "Error in gcd");

}

void Rational::normalize()

{

if (den == 0)

throw Rational::ZERO_DENOMINATOR;

if (num == 0)

{

den = 1;

return;

}

if (den < 0)

{

num = -num;

den = -den;

}

assert(num != 0 && den > 0);

long g = gcd(abs(num), den);

num /= g;

den /= g;

}

Figure 67: Functions to normalize instances of class Rational

The private member function normalize is called whenever a new fraction is created, either by a

constructor or by some other means. If den = 0, it throws the exception ZERO_DENOMINATOR,

which is one of the values of the enumeration Exceptions declared in the class. If num = 0, it

sets den = 1, to ensure that the fraction zero has the unique representation (0,1). If den < 0,

it changes the sign of both numerator and denominator. Finally, it divides both by their greatest

common divisor to cancel common factors.

An important consequence of providing a default value for den in the constructor is that Rational(n)

constructs the pair (n,1) corresponding to the fraction n/1. This form of the constructor is used

in a context where the compiler expects a Rational but finds a value of integral type. It allows
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us to perform “mixed mode” arithmetic so that, for example Rational(1,3) + 1 evaluates to

Rational(4,3).

Account The normal constructor for an Account is passed the name, identification code, and

opening balance for the new account. If the opening balance is omitted, it defaults to zero.

The name is passed as a char*. Simply copying the pointer would be a serious mistake. As one of

the many ways in which things could go wrong, consider this function:

Account * createAccount()

{

char buffer[10000];

cout << "Please enter your name: ";

cin >> buffer;

int id;

cout << "Please enter your account ID: ";

cin >> id;

return new Account(buffer, id);

}

Since the bad guys use buffer overflow as the basis of many attacks, it is always a mistake to read

characters into a character array. To make it hard for them, we can use a long buffer. The real

problem with this function, however, is that the buffer is destroyed when the function returns. If

the new account is not to be left with a pointer into outer space, it had better make a copy of the

buffer.

This constructor does indeed make a copy of the name passed to it:

Account::Account(char *name, long id, long balance)

: id(id), balance(balance)

{

storeName(name);

}

It turns out that storing the name is something that we will have to do several times. Consequently,

it makes sense to put it into a function. Space for the name is allocated dynamically (i.e., using

new, with space taken from the heap) and we must remember to allocate one character position for

the terminator, ’\0’. (We are using the old-style functions strlen and strcpy. As mentioned

above, these problems do not arise with the more modern class string.)

void Account::storeName(char *s)

{

name = new char[strlen(s) + 1];

strcpy(name, s);

}
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The normal constructor is not a default constructor because the parameters do not have default

values. We could give them default values or we could define another constructor for use as the

default, like this:

Account::Account()

: id(0), balance(0)

{

storeName("");

}

The copy constructor is an important component of every C++ class. It is used whenever an object

has to be copied. Common uses of the copy constructor include:

• Initialized declarations of the form

Account anne = bill;

• Passing an object by value.

• Returning an object by value.

If we do not define a copy constructor, the compiler generates one for us. This default copy con-

structor simply copies the values of the data members of the object. The default copy constructor

for Rational does exactly what we want and there was no need to define our own version. Class

Account is different.

Class Account has the data member name, which is a pointer. The default copy constructor just

copies the pointer, not the object it points to. This would be a disaster for accounts, because we

would end up with more than one pointer pointing to the same name. If one account is deleted, the

others would be left with dangling pointers. (Technically, the copy constructor performs a shallow

copy but what we need is a deep copy.)

The copy constructor must therefore behave like the constructor, making a new copy of the name.

Fortunately, we have a function storeName that does exactly the right thing.

The signature (or prototype) of the copy constructor for a general class T is T::T(const T &).

For our class, Account, the implementation looks like this:

Account::Account(const Account & other)

: id(other.id), balance(other.balance)

{

storeName(other.name);

}

Define a copy constructor for any class that has pointer members.

There is an alternative way of defining a copy constructor that is sometimes useful:
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• Declare the copy constructor T(const T &) in the private part of the class declaration.

• Do not provide a definition of the copy constructor.

The effect is to prevent copying of the object. By declaring the copy constructor, we prevent the

compiler from generating it. By making the copy constructor private, we prevent outsiders from

calling it. By not defining the copy constructor, we prevent member functions from using it. The

result is that any initialized declaration, passing by value, or returning by value, will be flagged as

an error by the compiler.

It is quite possible that a real-life banking application might choose to prevent copying of accounts.

This is the mechanism that could be used.

Note that preventing copying does not make Account a Singleton; we can have as many accounts

as we need, but we cannot make copies of them.

7.2 Destructor

A destructor is a member function that is called when an object is to be deallocated or “destroyed”.

The compiler provides a default destructor if you don’t. There are two circumstances in which you

must define a destructor:

1. The class has members that are pointers.

2. The class will be used as a base class.

Rational Class Rational does not have any pointer members and is not intended to be used as

a base class. Consequently, we do not define a destructor for it.

Account We must define a destructor for class Account because it has a pointer member. Later,

we will discuss using Account as a base class, which provides another reason for having a de-

structor.

Define a destructor for any class that has pointer members.

The destructor must destroy any data that was created dynamically (using new) by the constructor.

Destruction is performed by delete, which has two forms:

• delete x for simple objects

• delete [] x for arrays

The distinction between the two kinds of destruction is very important, because the compiler can-

not correct you if you are wrong. In Account, we must use delete [] name; if we wrote

delete name instead, only the first character of the name would be deallocated.
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Use delete for simple variables and delete[] for arrays.

Here is the destructor for class Account:

Account::~Account()

{

delete [] name;

}

7.3 Operators

C++ allows most operators to be overloaded. This is an extremely useful feature of the language,

but it should not be abused. If operators are defined, they should be defined consistently and they

should behave in a reasonable way.

Rational Class Rational is an obvious candidate for overloaded operators, because fractions

are numbers and users will expect to use arithmetic operations with fractions. To respect C++

conventions, if you provide +, you should also provide +=, and similarly for the other operators. It

turns out to be easier, and more efficient, to define the assignment operators (+=, -=, *=, /=) as

member functions and then to use them in the definitions of the simple operators (+, -, *, /).

Figure 68 on page 118 shows the implementation of the assignment operators. Each one normalizes

its result and returns a reference to the new fraction. This is another convention that you should

follow; it allows users to write statements such as

p += q *= r;

assuming that they can figure out what such expressions mean.

7.3.1 Assignment (operator=)

By default, the compiler will generate a default assignment operator (operator=). The effect of

this operator will be to copy all of the fields of the object. If this is what you want, you do not need

to define your own version of operator=.

Rational The default assignment operator is just what we need for Rational objects: the state-

ment r = s will copy the numerator and denominator of s to r. Consequently, we do not define

operator=.
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Rational & Rational::operator+= (const Rational & right)

{

num = num * right.den + den * right.num;

den *= right.den;

normalize();

return *this;

}

Rational & Rational::operator-= (const Rational & right)

{

num = num * right.den - den * right.num;

den *= right.den;

normalize();

return *this;

}

Rational & Rational::operator*= (const Rational & right)

{

num *= right.num;

den *= right.den;

normalize();

return *this;

}

Rational & Rational::operator/= (const Rational & right)

{

num *= right.den;

den *= right.num;

normalize();

return *this;

}

Figure 68: Arithmetic assignment operators for class Rational

Account & Account::operator=(const Account & other)

{

storeName(other.name);

id = other.id;

balance = other.balance;

return *this;

}

Figure 69: An incorrect implementation of operator=
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Account Since Account has a pointer member, we must define an assignment operator for it.

Not doing so will lead to the same problems as not having a copy constructor: we will end up

with many accounts all pointing to the same name. The assignment operator looks rather like the

copy constructor, but there are two important differences. Consider the incorrect version of the

assignment operator shown in Figure 69.

Note first that the type of the assignment operator is Account& and that the function returns

*this. This is conventional for assignment operators and it allows statements such as

a1 = a2 = a3 = a4 = a5;

for programmers who want to write such statements.

Now suppose that the programmer writes

a = a;

and think about the effect in Account::operator= as defined above. storeName allocates

space for the name, and copies the name into. The old name lost — a memory leak. If we insert

the statement delete [] name to avoid the memory leak, things get even worse: storeName

would attempt to copy the deleted name! The solution is to check for self-assignment. These

considerations lead to the correct assignment operator shown in Figure 70.

Account & Account::operator= (const Account & other)

{

if (this == &other)

return *this;

delete [] name;

storeName(other.name);

id = other.id;

balance = other.balance;

return *this;

}

Figure 70: Assignment operator for class Account

We might ask: “What programmer could be so stupid as to write a = a?” The answer is that a

programmer might not write this assignment as such, but it could easily be generated by template

expansion. Also, a programmer might quite reasonably write

a[i] = a[j];

and not feel it necessary to check i 6= j.

Define an assignment operator for any class that has pointer members. The assign-

ment operator should check for self-assignment and return a reference to *this.

If you want to prevent assignment of instances of a class, declare operator= as a private

member function and do not provide an implementation for it.
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7.3.2 Arithmetic

If it makes sense to perform arithmetic operations on instances of the class, we can provide the

appropriate operators. These are usually implemented in conjunction with the corresponding as-

signment operators, described above.

In general, you should implement the arithmetic functions so that they obey standard laws of

algebra. For example, - is the inverse of +, / is the inverse of *, and so on.

There are occasional exceptions to this rule. For example, string uses + for concatenation, even

though concatenation is neither commutative nor associative, and has no inverse. But people seem

to accept + as a concatenation operator, so this is perhaps excusable.

Arithmetic operators, such as operator+, can be implemented as member functions with one

parameter or as free functions with two parameters. If we implement them as member functions,

then

x + y

is effectively translated as

x.operator+(y)

The compiler will use the static type of x to choose the appropriate overload of operator+ and

may convert y to match the type of x. Suppose that we implemented + for class Rational in

this way and that i is an int and r is a Rational. Then r+i converts i to Rational and

adds the resulting fractions but i+r does not compile because the integer version of operator+

cannot accept a Rational right argument. In other words, the advantage of defining comparison

operators as free functions is that the order of operands does not matter.

There is another issue to consider when we choose to implement free functions associated with

a class: do we provide access functions for data members of the class, or do we declare the free

functions as friends? The choice depends very much on the particular application. For example,

if the class already provides accessor functions for some reason, the free functions can make use of

them. If security is important, and data members should not be exposed, then friend functions

may be a better choice.

Rational Figure 71 on page 121 shows the standard arithmetic operators for class Rational,

implemented as free functions that use the corresponding assignment operators. Since class

Rational does not export the numerator and denominator of a fraction, they are declared as

friends of the class.

If you give users the arithmetic operators, they will expect unary minus as well. Unary minus is best

implemented as a member function with no arguments. It does not negate the value of the fraction,

but instead returns the negated value while remaining unchanged. Consequently, we can qualify it

with const.

Rational Rational::operator- () const

{

return Rational(-num, den);

}
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Rational operator+ (const Rational & left, const Rational & right)

{

Rational result = left;

result += right;

return result;

}

Rational operator- (const Rational & left, const Rational & right)

{

Rational result = left;

result -= right;

return result;

}

Rational operator* (const Rational & left, const Rational & right)

{

Rational result = left;

result *= right;

return result;

}

Rational operator/ (const Rational & left, const Rational & right)

{

Rational result = left;

result /= right;

return result;

}

Figure 71: Arithmetic operators for class Rational, implemented using the arithmetic assign-

ments of Figure 68 on page 118

C++ programmers expect to use pow for exponentiation. But pow takes arguments of many types,

even for the exponent. For fractions, we take the slightly daring approach of providing ^ as an

exponential operator. The exponent must be an integer, but the integer may be positive or negative:(n
d

)−e
is evaluated as

(d
n

)e
. If r = 0, then r e will fail (throwing an exception) if e < 0. The function

uses the identity x2e =
(
x2
)e

when e is even to achieve complexity O(loge) rather than O(e). Since

exponentiation is not commutative, and the left operand must be a Rational, we implement

operator^ as a member function, as shown in Figure 72 on page 122.

There is a minor problem with using operator^ as an exponent operator. Although we can

overload operators in C++, we cannot change their precedence. As it happens, operator^, which

is normally used as exclusive-or on bit strings, has a lower precedence than the other arithmetic

operators. Its precedence is even lower than that of operator<< and operator>>. So we had

better warn our users to put exponential expressions in parentheses!
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Rational Rational::operator^ (int e) const

{

if (e < 0)

return (1/ *this)^(-e);

else if (e == 0)

return 1;

else if (e % 2 == 0)

return (*this * *this)^(e/2);

else return *this * (*this^(e - 1));

}

Figure 72: An exponent function for class Rational

7.3.3 Comparison

There are two important kinds of comparison: equality and ordering. Identity comparison corre-

sponds to the operators == and != and is useful for many kinds of objects. Ordering corresponds

to the operator < and its friends and is useful only for objects for which some kind of ordering

makes sense.

By convention, the ordering operators return a Boolean value true or false. They can implement

only a total ordering in which, for any objects x and y , one of the following must be true: x < y ,

x = y , or x > y . They cannot be used to implement a partial ordering, in which two objects may be

unrelated.

Rational Fractions are totally ordered. We can define the ordering by

n1

d1
>
n2

d2
⇐⇒ n1 × d2 > n2 × d1.

Figure 73 on page 123 shows the corresponding functions for class Rational. Like the arithmetic

operators, they are implemented as free, friend functions.

Account Considering the comparison operators for class Account raises interesting questions

about equality.

• Does it make sense to say that two accounts are “equal”?

• If it does make sense, what does it mean to say “account A equals account B”?

Comparing balances probably is not very helpful. Comparing names is unsafe, because two people

might have the same name.18 There are two comparisons that might be reasonable:

• Two accounts are equal if they have the same ID (extensional equality)

• Two accounts are equal if they are the same object (intensional equality or identity)

18This is, in fact, the cause of many “mistaken identity” problems.
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bool operator== (const Rational & left, const Rational & right)

{

return left.num * right.den == right.num * left.den;

}

bool operator!= (const Rational & left, const Rational & right)

{

return !(left == right);

}

bool operator< (const Rational & left, const Rational & right)

{

return left.num * right.den < right.num * left.den;

}

bool operator> (const Rational & left, const Rational & right)

{

return left.num * right.den > right.num * left.den;

}

bool operator<= (const Rational & left, const Rational & right)

{

return left < right || left == right;

}

bool operator>= (const Rational & left, const Rational & right)

{

return left > right || left == right;

}

Figure 73: Comparison operators for class Rational

The following comparison functions check for identity (accounts are equal only if they are the same

object). Note that this is not really realistic because, in a practical application, account objects

would spend most of their lives on disks and would only occasionally be brought into memory.

bool operator==(const Account & left, const Account & right)

{

return &left == &right;

}

bool operator!=(const Account & left, const Account & right)

{

return &left != &right;

}
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It would be straightforward to compare IDs instead.

Accounts could be ordered by name or by ID; this would allow us to sort a vector of accounts,

for example. These operators are easy to add if needed.

7.3.4 Input and output

For many classes, it useful to provide the insertion operator (<<), if only for debugging purposes.

The extraction operator, >>, is less often needed, but can be provided as well. When these operators

are provided, they are commonly implemented as friends.

Rational For fractions, both input and output operators make sense, as we implement them as

friends. Both present complications.

For input, the first decision we have to make is: what should the user enter? Let’s say that the user

must enter two integers separated by a slash:

Enter a rational: 2/3

The next decision is: how does the program respond if the user does not enter the data in the

form that we expect? There are many possible solutions, ranging from accepting only input that is

exactly correct to parsing what the user enters and figuring out what was meant.

In the following function, we follow a middle way: we read an integer, a character, and another inte-

ger, and we throw an exception if the character is not ’/’. Although rationals can be constructed

from integers, the user is required to enter a complete fraction, even if it is 3/1.

istream & operator>> (istream & is, Rational & r)

{

long m, n;

char c;

is >> m >> c >> n;

if (c != ’/’)

throw Rational::BAD_INPUT;

r = Rational(m, n);

return is;

}

Output is usually more straightforward than input, but there is one problem. Suppose that we

implement the inserter in the “obvious” way

os << num << ’/’ << den;

and the user writes

cout << setw(12) << r;



7 DESIGNING CLASSES 125

in which r is a Rational. Our function will use 12 columns to write the numerator and then will

write the slash and the numerator — probably not what the user expected!

Of the various ways to correct this error, the simplest is to format the entire fraction, in the obvious

way, into a buffer, and then to insert the buffer into the output stream. This ensures that any width

modifiers will be applied to the complete fraction, not just to the numerator.

The remaining issue is how to write whole numbers (fractions with denominator 1). To avoid silli-

nesses like 3/1, we will not write the slash or the denominator for whole numbers. This reasoning

leads to the following function.

ostream & operator<< (ostream & os, const Rational & r)

{

ostringstream buffer;

buffer << r.num;

if (r.den != 1)

buffer << ’/’ << r.den;

return os << buffer.str();

}

String streams can be used for either output (ostringstream) or input (istringstream) and

require the directive

#include <sstream>

• An output string stream behaves like any other output stream (e.g., cout).

• After writing things to it, you can extract the string of formatted data using the function str,

which returns a string.

• After str has been invoked on an ostringstream, the stream is frozen and does not

permit further write operations.

• When the string stream is deleted (usually at the end of the current scope), data associated

with it is deleted.

An input string stream can be used to parse a string. In the following code, the input string stream

isstr is initialized with myString. The isstr is used, like any other input stream (e.g., cin),

with extract operators.

string myString = "3 4 5 words";

istringstream isstr(myString);

int a, b, c;

string w;

isstr >> a >> b >> c >> w;

7.4 Conversions

Conversions are a delicate issue in C++. Programmers don’t like writing explicit conversions and

want the compiler to do the dirty work for them but too many conversions can be a bad thing.
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Rational It seems reasonable to convert rationals to floating-point numbers. Sometimes, for ex-

ample, we might want 0.66667 rather than 2/3. C++ provides a powerful way of implementing such

conversions, using operator notation. We can define a conversion from Rational to double by

adding this member function to class Rational:

operator double () const

{

return double(num) / double(den);

}

This function provides an implicit conversion from Rational to double: in any context where

the compiler expects to find an expression of type double, but in fact finds an expression of type

Rational, it will insert a call to this function to perform the conversion.

Unfortunately, this solution is too effective! If we write 1/r, for example, the compiler complains

about ambiguity. In 1/r, it can either convert 1 to Rational and evaluate the reciprocal of

r as a Rational or it can convert both 1 and r to double and evaluate the reciprocal of r

as a double. Since we would like to keep the convenience of being able to write 1/r for the

Rational reciprocal of a Rational, we choose not to provide operator double.

It is not hard to find a better alternative: we simply provide the same function with a funny name

to prevent the compiler from using it implicitly. The following function does what we need and will

be invoked only when the user explictly requests it by writing r.toDouble().

double Rational::toDouble() const

{

return double(num) / double(den);

}

7.5 Accessors

An accessor or inspector is a member function that returns information about an object without

changing the object. It follows immediately from this definition that accessors should always return

a non-void value and should be declared const.

Rational The only candidates for accessors for class Rational are getNum and getDen, im-

plemented in the obvious way. The decision not to provide these was that the representation of a

rational number is a “secret” and providing these accessors would give away part of the secret.

If the class did provide getNum and getDen, the friend functions would no longer need to be

declared as friends.

Account There are several candidates for accessors for class Account. We provide just an ac-

cessor for the account balance, to demonstrate the general idea.

long Account::getBalance() const

{

return balance;

}
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7.6 Mutators

A mutator is a member function that changes the state of the object. Usually, the return type of a

mutator is void (otherwise the mutator would be a function with a side-effect).

Rational Any function that changes the state of a rational should do so in a way that makes

semantic sense. Thus += is acceptable, because it changes the state by adding another rational.

Arbitrary mutations of the numerator and denominator do not make semantic sense, and so we do

not provide mutators for class Rational.

Account There are several ways in which the state of an account may reasonably be changed. We

provide three “obvious” functions: deposit, withdraw, and transfer. Of these, deposit

is straightforward.

void Account::deposit(long amount)

{

balance += amount;

}

For withdrawals, we have to decide what to do when the balance would go negative. The solution

adopted here is to throw an exception. Since we do not know who will be handling the exception, we

must ensure that sufficient information is provided. To achieve this, we declare a special exception

class (described below) and store the account ID and a helpful message in the exception object.

void Account::withdraw(long amount)

{

if (amount > balance)

throw AccountException(id,

"Withdrawal: amount greater than balance");

else

balance -= amount;

}

Standard exception classes provide a function what that returns a description of the exception.

Although we could inherit from one of the standard exception classes, we choose not to do so here,

but we provide what anyway. Figure 74 on page 128 shows the declaration and implementation of

the class AccountException.

The third mutator for class Account is transfer, which transfers money from one account

to another. We allow an account to transfer funds to another account but not to transfer funds

from another account. This function will throw an exception if the transfer would leave the giving

account with a negative balance.

void Account::transfer(Account & other, long amount)

{

withdraw(amount);

other.deposit(amount);

}
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class AccountException

{

public:

AccountException(long id, std::string reason);

std::string what();

private:

long id;

std::string reason;

};

AccountException::AccountException(long id, string reason)

: id(id), reason(reason)

{}

string AccountException::what()

{

ostringstream ostr;

ostr << "Account " << id << ". " << reason << ’.’;

return ostr.str();

}

Figure 74: Declaration and implementation of class AccountException

The function transfer is implemented using the previously defined functions withdraw and

deposit. It is always a good idea to use existing code when it applies, rather than introducing

more code, with possible errors.

In real-life banking, an operation such as transfer must be implemented very carefully: either

the transaction must succeed completely, or it must fail completely and have no effect. (Database

gurus are familiar with this problem of transaction integrity.) Without pretending that transfer

is really a secure function, we note that there is only one (obvious) way that it can fail — withdraw

may throw an exception — and that this failure leaves both accounts unchanged.

7.7 Odds and ends

7.7.1 Indexing (operator[])

C++ allows us to overload the “operator” []. The overload has one parameter, which can be of any

type, and returns a value, which can be of any type. The syntax for calling the function is a[i],

in which a is an object and i is the argument passed to the function. Typically, we would use

operator[] for a class that represented an array, vector, or similar kind of object. Figure 75

on page 129 shows an inefficient and incomplete map class that associates names with telephone

numbers, both represented as strings. The store is accessed by calling operator[] with a string

argument. The following code illustrates the use of this store (note the final statement).
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template<typename T>

class Store

{

public:

void insert(string key, T value)

{

data.push_back(pair<string, T>(key, value));

}

T operator[](string key)

{

for ( vector<pair<string, T> >::const_iterator it =

data.begin();

it != data.end();

++it )

if (it->first == key)

return it->second;

return T();

}

private:

vector<pair<string, T> > data;

};

Figure 75: A simple map class

Store<string> myPhoneBook;

myPhoneBook.insert("Abe", "486-2849");

myPhoneBook.insert("Bo", "982-3847");

cout << myPhoneBook["Abe"];

In this example, operator[] has one parameter. This is the only possibility: you cannot declare

operator[] with no parameters or with more than one parameter.

7.7.2 Calling (operator())

C++ allows us to overload the “operator” (). The overload has one parameter, which can be of any

type, and returns a value, which can be of any type. The syntax is f(x), in which f is an object

and x is the argument passed to the function. Typically, we would use operator() in a situation

where it makes sense to treat an instance as a function.

The Command pattern (Gamma, Helm, Johnson, and Vlissides 1995, page 233) “encapsulates a

request as an object, thereby enabling you to parameterize clients with different requests, queue

or log requests, and support undoable operations”. At the appropriate time, a request is acti-

vated in some way. The Gang of Four use a function called Execute to activate a request, but

operator() provides a slightly neater solution.

The Command shown in Figure 76 on page 130 class stores requests to print messages. The mes-

sage to be printed is passed as an argument to the constructor. To activate a command c, the user
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class Command

{

public:

Command(string message) : message(message) {}

void operator()() { cout << message << endl; }

private:

string message;

};

Figure 76: A simple command class

vector<Command> commands;

commands.push_back(Command("First message"));

commands.push_back(Command("Second message"));

// ....

for ( vector<Command>::iterator it = commands.begin();

it != commands.end();

++it )

(*it)();

Figure 77: Using the command class

writes c().

For example, commands can be stored in a vector and then activated sequentially, as shown in

Figure 77 on page 130.

You can declare operator() with any number of parameters and the syntax is conventional: see

Figure 78.

class Test

{

public:

void operator()(int i, int j) { cout << i+j << endl; }

};

int main()

{

Test t;

t(5,6);

}

Figure 78: Defining operator() with two parameters
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7.7.3 Explicit constructors

A constructor with a single parameter provides a form of type conversion. For example, suppose

class Widget has a constructor with a parameter of type int:

class Widget

{

public:

Widget(int n);

....

This constructor gives the compiler permission to convert an integer to a Widget whenever it has

an opportunity to do so. This behaviour might be appropriate, but it might also be an error. For

example, class string has a constructor with an integer argument so that

string s(N);

constructs a string with N characters. A possible consequence is that

string s = ’a’;

constructs a string with 97 characters — probably not what the programmer intended.

In fact, this does not happen, because the string constructor does not allow implicit conversions.

The conversion is prevented by qualifying the constructor with explicit. To prevent Widgets

being constructed from integers, rewrite the example above as

class Widget

{

public:

explicit Widget(int n);

....

The keyword explicit does not prevent the constructor from being used at all, of course. It says

that, in order to use this constructor, the call Widget(N) must actually appear in the program;

the compiler will never call the constructor implicitly.

The keyword explicit can be used with constructors only; it cannot be used with conversion

operators such as operator double described in Section 7.4.

7.7.4 Friends

A function associated with a class can have three properties (Stroustrup 1997, page 278):

1. it can access private members of the class

2. it is in the scope of the class
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3. it must be invoked on an object

Property 2 means that the function f associated with class Cmust be invoked in one of the following

ways:

• C::f()

• c.f() where c is an instance of C

• pc->f() where pc is a pointer to an instance of C

Property 3 means that statements in the function can use the this pointer to the object for which

the function is invoked.

The following table shows which kinds of function have these properties:

Property

Function kind 1 2 3

friend
√

static
√ √

member
√ √ √

The table shows that the three kinds of function form a hierarchy, with member functions having

the most, and friend functions the least, access to the class.

Contrary to popular belief (especially amongst Java programmers), friends do not violate encapsu-

lation in C++. The important point is that friends must be declared within the class. This means that

a class has complete control over its friends — enemies cannot use friends to subvert the class’s

protection mechanisms. Here is Stroustrup’s opinion of friends:

A friendship declaration was seen as a mechanism similar to that of one protection

domain granting a read-write capability to another. It is an explicit and specific part of

a class declaration. Consequently, I have never been able to see the recurring assertions

that a friend declaration “violates encapsulation” as anything but a combination of

ignorance and confusion with non-C++ terminology. (Stroustrup 1994, page 53)

Here are some useful things to know about friends:

• A friend declaration can be placed anywhere in a class declaration. It is not affected by

public or private attributes.

• A function or a class can be declared as a friend. In either case, friends of a class can

access private members (data and functions) of the class.

• Two or more classes can declare the same class or function as a friend.
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Used correctly, friends actually provide better protection than other techniques. Here is an example

(Stroustrup 1997, page 278): we have classes Vector and Matrix and we want to define func-

tions that, for example, multiply a matrix by a vector. We could define the multiply function as a

free function, external to both classes, but then we would have to expose the representations of

both Vector and Matrix for this function to use. Instead, we use friends:

class Vector

{

friend Vector operator* (const Matrix & m,

const Vector & v);

....

}

class Matrix

{

friend Vector operator* (const Matrix & m,

const Vector & v);

....

}

Vector operator* (const Matrix & m,

const Vector & v)

{

....

}

This provides a neat solution to the problem: the multiply function has access to private data in

both classes but we have not “opened them up” to anyone else.

Nevertheless, if there is a choice between a member function and a friend, it is better to use a

member function. The main reason for this preference is conversion: in the class f(x,y), the

compiler may perform conversions to match the types of the arguments x and y to the parameter

types. The call x.f(y) invokes X::f where X is the class of X (although y may still be converted).
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8 Inheritance and templates

Some of the topics in this section are discussed more fully in Scott Meyers’s book (1992, Items 35

through 44), although you should note that this book is quite old (1992) and occasionally refers to

problems that have been solved in more recent versions of C++.

We will use (mostly) C++ terminology for inheritance: a derived class inherits from a base class.

Inheritance may be public (the most common case) or private, depending on the keyword

used before the base class in the derived class declaration:

class Base { .... };

class D1 : public Base { .... }; // public inheritance

class D2 : private Base { .... }; // private inheritance

8.1 What is inheritance?

Perhaps the most confusing aspect of the word “inheritance” is that it is used with several quite

different meanings:

1. Inheritance as an “is-a” relationship.

This form of inheritance models the human urge to form hierarchies of classification (“tax-

onomies”). Each of the following sets contains its successors: living things, animals, mam-

mals, dogs, terriers. Read backwards, these sets form an is-a hierarchy: a terrier is a dog, a

dog is a mammal, a mammal is an animal, etc.

The important feature of a taxonomy is that a smaller set inherits all of the behaviour of

the larger sets that contain it. A dog has all of the properties of a mammal — otherwise it

wouldn’t be a mammal. (We discuss apparent exceptions to this rule below.)

There are two kinds of is-a relationship, depending on what gets inherited. A base class

declares various functions, and the derived class(es) may inherit:

(a) the declarations of the function only, or

(b) the declarations and definitions of the functions.

We refer to the first case as interface inheritance and the second case as implementation

inheritance.19

2. Inheritance as “implemented using”. For example, we could implement a Stack by inheriting

a vector, giving a “stack implemented using vector” class. The important point here is that

vector and Stack provide different sets of functions, but the Stack functions are easily

implemented using the vector functions. However, users of Stack must not be allowed to

use the vector functions because that would violate the integrity of the stack.

The implementation mechanisms for these kinds of inheritance in C++ are, roughly:

19These correspond roughly to implements and extends in Java. Note, however, that Java implements
corresponds to interface inheritance in C++ and Java extends corresponds to implementation inheritance in C++.
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1. public inheritance

(a) abstract base class with pure virtual functions

(b) base class with virtual declarations and default definitions

2. private inheritance

The distinction between 1(a) and 1(b) can become blurred. A base class with one or more pure

virtual functions is called an abstract base class (or “ABC”) and defines, in effect, an interface: this

is 1(a). A base class with implemented virtual functions is a complete, working class that can be

specialized by derived classes that inherit some or most of its implementation and modify the rest:

this is 1(b). In between, there are base classes with a mixture of pure and impure virtual functions,

defining a sort of partially-implemented interface.

It is very important not to confuse “is-a” with “has-a”. In some (older) books, you may see things

like Figure 79 described as “inheritance hierarchies”. But this is a “has-a” hierarchy: a car has an

engine, an engine has pistons, etc. It is absurd to say “a valve is an engine” or “a handle is a door”.

Hierarchies of this kind are represented by layering (also called composition), in which an instance

of class Car contains instances of classes Door, Wheel, and Engine, etc.

car

wheeldoor

handle

engine

window piston valve

Figure 79: Not a class hierarchy

Figure 80 shows a popular example used to demonstrate the “difficulties” of inheritance. There are

various solutions for this “problem”. One solution is to redefine Penguin::fly:

class Penguin : public Bird

{

void fly() { throw PENGUINS_CANNOT_FLY_EXCEPTION; }

};

This is not a good solution, because it violates the rule that a penguin is-a bird: a penguin is

not a bird, because birds fly and penguins don’t. Figure 81 shows a better solution obtained by

realizing that the class hierarchy that we have defined is incomplete: there are birds that fly and

birds that don’t fly. The revised class hierarchy easily accommodates kiwis, ostriches, turkeys, and

cassowaries.
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class Bird

{

public:

virtual void fly();

....

};

class Penguin : public Bird

{

....

};

int main()

{

Bird pb = new Penguin();

pb->fly(); // oops - penguins can’t fly!

}

Figure 80: The problem of the flightless penguin

class Bird

{

public:

// no definition of fly()

....

};

class FlyingBird : public Bird

{

virtual void fly();

};

class NonFlyingBird : public Bird

{

public:

// no definition of fly()

....

};

class Penguin : public NonFlyingBird

{

....

};

Figure 81: Recognizing that some birds don’t fly
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8.1.1 Slicing

A derived class inherits data members from its base class and may define its own data members.

Consequently, a derived class instance d is as large or larger than an instance b of the correspond-

ing base class. There are several consequences:

• The assignment b = d is allowed. Since the data in d does not fit into b, it is not copied: we

say that d is sliced. Slicing occurs not only during assignment but also when a derived object

is passed or returned by value and the destination is a base class object.

• The assignment d = b is not allowed because it would leave the derived data in d undefined.

• It is usually a mistake to use the base class of a hierarchy as a template argument. Consider:

vector<Base> bases;

Derived der( .... );

bases.push_back(der);

Since the argument of push_back is passed by value, der is sliced; data in Derived but

not in Base is lost. To avoid this problem, use pointers, as in vector<Base*>.

Slicing does not occur when we address the object through references or pointers. Suppose that

pb is a pointer to a base class object and pd is a pointer to an instance of a derived class. Then:

• The assignment pb = pd is allowed. After the assignment, pb will point to the complete

object, containing base and derived data, but only base class functions and data will be acces-

sible, because of the type of pb. Assignments of this kind are called upcasts because they go

“up” the class hierarchy, from derived class to base class..

• The assignment pd = pb is not allowed. Allowing it would give the program apparent access

to functions and data of the derived class, but those fields do not exist. Assignments of this

kind are called downcasts, because they go “down” the class hierarchy.

References work in the same way as pointers: whenever we have the address of an object (that is, a

reference or a pointer to it), slicing does not occur and dynamic binding works.

For now, the thing to remember upcast good, downcast bad. We will discuss these casts in more

detail later.

8.1.2 Constructors and destructors

Constructors and destructors work in a special and well-defined way with derived classes.

• When a constructor of a derived class is called, the constructor of the base class is invoked

first, then the constructor of the derived class.

• When the destructor of a derived class is called, the destructor for the derived class is invoked

first, then the destructor for the base class.
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class Parent

{

public:

Parent() { cout << "Construct Parent" << endl; }

~Parent() { cout << "Destroy Parent" << endl; }

};

class Child : public Parent

{

public:

Child() { cout << "Construct Child" << endl; }

~Child() { cout << "Destroy Child" << endl; }

};

class GrandChild : public Child

{

public:

GrandChild() { cout << "Construct GrandChild" << endl; }

~GrandChild() { cout << "Destroy GrandChild" << endl; }

};

int main()

{

GrandChild g;

}

Figure 82: Constructors and destructors in inheritance hierarchies

This behaviour is illustrated by the code in Figure 82. When this program is executed, it prints:

Construct Parent

Construct Child

Construct GrandChild

Destroy GrandChild

Destroy Child

Destroy Parent

8.2 Designing a base class

Designing a class is difficult because you have to think about all the ways in which the class might

be used. Designing a base class is harder still, because you have to think about the people who

want to inherit from your class as well as the people who want to use it. The differences between a

simple class and a potential base class are:

• virtual functions
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• protected attributes

Virtual functions open up the possibility of redefinition in derived classes, leading to polymorphic

behaviour. Protected attributes can be accessed by derived classes but not by outsiders. These two

features combine to make inheritance useful and manageable.

8.2.1 virtual functions

Inheritance polymorphism, which means simply class-dependent behaviour, requires a particular

set of circumstances. All of the following conditions must hold for polymorphism to take place:

• There must be a base class B containing a virtual function f.

• There must be a class D, derived from B, that redefines f.

• There must be an instance, d, of D.

• There must be a reference, rd, or a pointer, pd, to the object d. These might be defined as:

B & rd = d;

B * pd = &d;

• The function f must be invoked using either a reference or a pointer, as in these statements:

rd.f();

pd->f();

Each of these statements will call the redefined function D::f(), even though rd (pd) is a

reference (pointer) to the base type. This is polymorphism.

A virtual function may be pure virtual, meaning that it has no implementation. The body of a pure

virtual function is written using the special notation =0. A class that has one or more pure virtual

functions cannot be instantiated. It may have constructors, but these constructors can be called

only by derived classes that provide definitions for the virtual functions.

There are essentially three different kinds of member function in a base class: normal functions,

virtual functions, and pure virtual functions. The following base class has on example of each kind.

class Animal

{

public:

string getName() { .... }

virtual void move() { /* how to walk */ };

virtual void communicate() = 0; // no implementation

....

};
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From this declaration, we can infer the following intentions of the designer of the Animal class

hierarchy. Assume that pa is a pointer declared as Animal* but actually pointing to an instance

of a class derived from Animal.

• getName is a non-virtual function with an implementation. The idea in this example is

that the mechanism for accessing the name of an animal is the same for all derived classes.

A non-virtual function should not be redefined in a derived class for reasons explained in

Section 8.2.2.

Use a non-virtual function for behaviour that is common to all classes

in the hierarchy and should not be overridden in derived classes.

• Function move is virtual and has an implementation. In this example, Animal::move

defines walking, which is a way of moving shared by many animals, and is a kind of default

behaviour. A derived class has the option of either inheriting this method of waling or of

redefining move in a special way for some other kind of movement. Calling pa->move()

invokes movement that depends on the particular kind of animal.

Use a virtual function to define default be-

haviour that may be overridden in derived

classes.

• Function communicate is a pure virtual function. In this example, the use of a pure virtual

function suggests that there is no default behaviour for communication. It corresponds to the

fact that animals communicate in many different and unrelated ways (using sound, gesture,

smell, touch, etc.). Since class Animal has a pure virtual function, it cannot be instantiated:

there are no objects of type Animal. This corresponds to the real world, where if you see an

“animal”, it is always a particular kind of animal: aardvark, beaver, cat, dog, elephant, giraffe,

hedgehog, etc. Any class for which instances are needed must provide an implementation of

communicate.

Use a pure virtual function to require be-

haviour for which there is no reasonable de-

fault.

There is one function that should always be virtual in a base class: it is the destructor. If a class is

intended as a base, declare:

class Base

{

public:

virtual ~Base() { .... }

....

};
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class Base

{

public:

~Base() { cout << "Deleting Base" << endl; }

private:

int x;

};

class Derived : public Base

{

public:

~Derived() { cout << "Deleting Derived" << endl; }

private:

int y;

};

int main()

{

Base * pb = new Derived;

delete pb;

}

Figure 83: The danger of a non-virtual destructor

even if the body of the destructor is empty.

To see the importance of this, consider the code in Figure 83. Running this program produces the

following output:

Deleting Base

We have constructed an instance of Derived, containing data members x and y, but the run-time

system has deleted an instance of Base, with data member x only. The memory occupied by y will

almost certainly not be deallocated — a memory leak!

If we change the declaration of class Base to

class Base

{

public:

virtual ~Base() { cout << "Deleting Base" << endl; }

....

and run the program again, it displays

Deleting Derived

Deleting Base
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By making Base::~Base virtual, we have ensured that delete pb calls Derived::~Derived.

This destructor first executes its own code, then invokes the destructor for the base class, and fi-

nally deallocates the memory for all of the variables of the derived object.

A base class must have a virtual destructor.

8.2.2 Don’t redefine non-virtual functions

C++ allows you to redefine non-virtual functions, as in this example:

class Animal

{

public:

Animal() : name("Freddie") {}

string getName() { return name; }

private:

string name;

};

class Bison : public Animal

{

public:

string getName() { return "Grrrrr"; }

};

Although it is possible, redefining non-virtual functions is not a good idea, for several reasons

(Meyers 1992, Item 37). Suppose that we define some variables:

Bison b;

Animal *pa = &b;

Bison *pb = &b;

These definitions give us two pointers, pa and pb, pointing to the same object, b. It is therefore

something of a surprise when we execute

cout << pa->getName() << endl;

cout << pb->getName() << endl;

and obtain

Freddie

Grrrrr
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What has happened here is that, since Animal::getName is not virtual, the compiler uses

the type of the pointer to choose the function. Thus pa causes Animal::getName to be called

and pb causes Bison::getName to be called.

If Animal::getName was a virtual function, then the function called would depend on the

type of the object, not the pointer. This is more natural behaviour: we expect a bison to answer

"Grrrrr" whether we refer to it as an animal or as a bison (at least in this example).

More formally, overriding a non-virtual function is a violation of the is-a relationship. The purpose

of a non-virtual function in a base class is to define behaviour that is invariant over the whole class

hierarchy. In the example, to be an Animal (that is, to satisfy the predicate “is-a Animal”), you

must respond to getName by returning your name. If you don’t do that, you are not an Animal

and do not belong in the Animal hierarchy. There are two possibilities:

• It is essential that bisons have a way of saying "Grrrrr". In this case, the function that

does this should not be called getName.

• It is correct modelling to say that bisons reply "Grrrrr" when asked their name. In this

case, Animal::getName should be a virtual function.

8.2.3 protected attributes

Attributes in the public part of a class declaration are accessible to anyone who owns an instance

of the object. Attributes in the private part of the declaration are accessible only to members

and friends of the object.

A class declaration may contain a third part, introduced by the keyword protected, for attributes

that are accessible to members and friends of classes derived from the class.

According to Stroustrup (1994, page 301), the keyword protected was introduced into C++ at

the request of Mark Linton, who was writing Interviews, an extensible X-windows toolkit. Five years

later, Linton banned the use of protected data members in Interviews because they had become

“a source of bugs: ‘novice users poking where they shouldn’t have in ways they ought to have

known better than’”. Stroustrup goes on to say (1994, page 302):

In my experience, there have always been alternatives to placing significant amounts of

information in a common base class for derived classes to use directly. In fact, one of

my concerns about protected is exactly that it makes it too easy to use a common

base the way one might sloppily have used global data.

Fortunately, you don’t have to use protected data in C++; private is the default in

classes and is usually the better choice. Note that none of these objections are sig-

nificant for protected member functions. I still consider protected a fine way of

specifying operations for use in derived classes.

So there you have it from the master: use protected data if you have to, but prefer using

protected functions to access private data members of the base class.
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class Account

{

public:

Account();

Account(std::string name, long id, long balance = 0);

Account(const Account & other);

virtual ~Account();

Account & operator=(const Account & other);

const std::string getName() const;

long getID() const;

long getBalance() const;

virtual void deposit(long amount);

virtual void withdraw(long amount);

virtual void transfer(Account & other, long amount);

friend bool operator==(const Account & left,

const Account & right);

friend bool operator!=(const Account & left,

const Account & right);

friend std::ostream & operator<<(std::ostream & os,

const Account & acc);

protected:

void setID(long newID);

void setBalance(long newBalance);

private:

std::string name;

long id;

long balance;

};

Figure 84: Class Account as a base class

8.2.4 A base class for bankers

As an example of base class design, we will take class Account from Section 7 (see page 111)

and redesign it as a base class. Class Account is quite appropriate as a base class, because banks

provide many kinds of account, and the various kinds are often represented as a hierarchy of classes

in banking software. A number of design decisions are mentioned or implied in the following notes;

few of them are cast in stone, and most might be made differently in specific circumstances.

Figure 84 shows the new version of class Account. The type of Account::name has been

changed from char* to std::string, to avoid the memory management problems that we

encountered in Section 7. Some of the functions, and the class AccountException , are not

changed, and we do not repeat their descriptions here. The redesign takes into account the follow-

ing considerations.
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const string Account::getName() const

{

return name;

}

long Account::getID() const

{

return id;

}

long Account::getBalance() const

{

return balance;

}

Figure 85: Accessors for class Account

• Constructors cannot be virtual, so we leave them unchanged.

• The destructor must be virtual, as explained in Section 8.2.1.

• The assignment, operator=, cannot be virtual, so we leave it unchanged.

• We provide some accessors (getName, getID, and getBalance) that were not present

in the original class but are likely to be useful. They are public and non-virtual, since

they access private data members and there should never be a need to redefine them. As

explained above, these functions express invariant properties of the account class hierarchy:

the meaning of getBalance is independent of the type of account we are dealing with.

Figure 85 shows their definitions.

• The definitions of deposit, withdraw, and transfer are not changed. However, it is

quite possible that a derived class might need to modify their behaviour; consequently, we

declare them to be virtual.

• There are some functions that should be available to derived classes but not to everybody.

These functions are declared in the protected section of the class declaration. This group

consists of the new functions setID and setBalance, which have obvious definitions:

void Account::setID(long newID)

{

id = newID;

}

void Account::setBalance(long newBalance)

{

balance = newBalance;

}
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8.3 Designing a derived class

Designing a derived class is usually easier than designing a base class because there are fewer

options. The base class designer has decided what gets inherited and what can be redefined; the

derived class designer has to decide:

• which functions to inherit without change

• which functions to redefine

• new data to introduce

• functions to operate on the new data

If there are no new data or functions, there is probably no need for a derived class at all. In a

banking application, for example, it would be pointless to introduce new classes for different rates

of interest: the interest rate is just a data member of an appropriate base class.

Some functions cannot be inherited and must be defined if the derived class needs them. The

functions that are not inherited are:

• constructors

• the assignment operator (operator=)

• friends

Derived class constructors can, and usually should, call the base class constructors explicitly, as in

this example:

class Base

{

public:

Base(int n) { .... }

};

class Derived : public Base

{

public:

Derived(int k, char c) : Base(k) { .... }

};

The Liskov Substitution Principle provides a helpful guideline for designing derived classes:

Subclasses must be usable through the base class inter-

face without the need for the user to know the difference.
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class SavingsAccount : public Account

{

public:

SavingsAccount();

SavingsAccount(std::string name, long id, long balance = 0,

double rate = 0, long minimumBalance = 0);

SavingsAccount(const SavingsAccount & other);

SavingsAccount & operator=(const SavingsAccount & other);

void withdraw(long amount);

void addInterest();

friend std::ostream & operator<<(std::ostream & os,

const SavingsAccount & sacc);

private:

double rate;

long minimumBalance;

long lowestInPeriod;

};

Figure 86: Class SavingsAccount derived from Account

8.3.1 A derived class for bankers

In this section, we develop a class SavingsAccount derived from the base class Account.20

The important features of a savings account are:

• A savings account is an account. SavingsAccount provides all of the functionality of

Account.

• SavingsAccount has a default constructor and a full constructor that allows all data for

the account to be initialized.

• SavingsAccount provides a copy constructor and an assignment operator.

• A savings account collects interest. SavingsAccount has a data member for the interest

rate and a member function for computing interest and adding the interest to the balance.

• Interest is paid only if the balance exceeds a specified minimum. SavingsAccount up-

dates the minimum balance when money is withdrawn from the account.

• The insertion operator<< shows the interest rate and minimum balance for the SavingsAccount

in addition to the information shown for a Account.

Figure 86 shows the class declaration for savings accounts. The class declaration contains exactly

those functions that we wish to define or redefine.

The data members of SavingsAccount have the following roles:

20The savings account is designed to demonstrate features of object-oriented programming. Any resemblance to
actual banking practice is entirely coincidental.
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• rate is the interest rate for the account.

• minimumBalance is the minimum balance that the client must maintain over each period

in order to earn interest.

• lowestInPeriod is the actual minimum balance during the period.

Since constructors are not inherited, we must define constructors for SavingsAccount. These

constructors can, and should, invoke the base class constructors when necessary. The default

constructor uses the default constructor of class Account and sets the new data members to

zero.

SavingsAccount::SavingsAccount()

: Account(), rate(0), minimumBalance(0), lowestInPeriod(0)

{ }

The full constructor allows the caller to specify all of the fields of an account with default values

for the balance, rate, and minimumBalance. Like the default constructor, it calls the base

class constructor and initializes the new data members separately.

SavingsAccount::SavingsAccount(string name, long id,

long balance, double rate, long minimumBalance)

: Account(name, id, balance), rate(rate),

minimumBalance(minimumBalance), lowestInPeriod(balance)

{ }

The copy constructor must call the copy constructor for the base class and then initialize the new

data members explicitly. Calling the copy constructor for Account with the SavingsAccount

other is an example of upcasting.

SavingsAccount::SavingsAccount(const SavingsAccount & other)

: Account(other),

rate(other.rate),

minimumBalance(other.minimumBalance),

lowestInPeriod(other.lowestInPeriod)

{ }

The assignment operator is implemented by using *this (implicitly) to call the assignment oper-

ator of the base class, and then assigning the new data members explicitly.

SavingsAccount & SavingsAccount::operator=

(const SavingsAccount & other)

{

Account::operator=(other);

rate = other.rate;

minimumBalance = other.minimumBalance;

lowestInPeriod = other.lowestInPeriod;

return *this;

}
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We must update the value of lowestInPeriod whenever the balance might get smaller. This

can happen only when money is withdrawn from the account. We override the definition of

Account::withdraw with a function that updates lowestInPeriod.

void SavingsAccount::withdraw(long amount)

{

Account::withdraw(amount);

if (lowestInPeriod > getBalance())

lowestInPeriod = getBalance();

}

The new function addInterest, which we assume is called periodically, checks that the client

has the required minimum balance and, if so, adds interest. Since balance is private, addInterest

must call the protected member function Account::setBalance to update the balance. This

function also reinitializes lowestInPeriod.

void SavingsAccount::addInterest()

{

if (lowestInPeriod >= minimumBalance)

{

long interest = static_cast<long>(rate * getBalance());

setBalance(getBalance() + interest);

}

lowestInPeriod = getBalance();

}

The insertion operator calls Account(sacc) to upcast the SavingsAccount to an Account

before inserting it into the stream. It then inserts the new data members into the stream.

std::ostream & operator<<(std::ostream & os,

const SavingsAccount & sacc)

{

return os <<

Account(sacc) <<

fixed << setprecision(6) << setw(10) << sacc.rate <<

setw(6) << sacc.minimumBalance;

}

If sa1 and sa2 are savings account objects, the expressions sa1 == sa2 and sa1 != sa2

compile and evaluate correctly. This is not because operator== and operator!= are inherited

from Account but because the compiler can convert sa1 and sa2 to Account.

Figure 87 shows a short test program for accounts and savings accounts. When it is run, this

program displays:
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Account anne("Anne Bailey", 1234567, 1000);

cout << anne << endl;

Account & ar = anne;

cout << ar << endl;

SavingsAccount chas("Charles Daumier",

7654321, 1500, 0.01, 1000);

cout << "Before interest: " << chas << endl;

chas.addInterest();

cout << "After interest: " << chas << endl;

Account *pa = & chas;

pa->transfer(anne, 1000);

cout << "Before interest: " << chas << endl;

chas.addInterest();

cout << "After interest: " << chas << endl;

Figure 87: Testing the banker’s hierarchy

Anne Bailey 1234567 1000

Anne Bailey 1234567 1000

Before interest: Charles Daumier 7654321 1500 0.010000 1000

After interest: Charles Daumier 7654321 1515 0.010000 1000

Before interest: Charles Daumier 7654321 515 0.010000 1000

After interest: Charles Daumier 7654321 515 0.010000 1000

The first two lines show that an account can be constructed and copied. The next two lines show

that Charles earns $15 interest because his balance is greater than $1,000. After transferring $1,000

to Anne, his balance drops to $500 and does not earn interest, as shown in the last two lines.

Note that the transfer is performed using a reference to an Account, not a SavingsAccount.

(This is realistic, because the object doing the transferring should not have to know the kind of

accounts involved in the transfer.) Since transfer is not redefined in SavingsAccount, the

function called is Account::transfer. When transfer called withdraw, it uses this,

which is a pointer to a SavingsAccount object. Consequently, SavingsAccount::withdraw

gets called, and updates the lowest balance.

8.3.2 Additional base class functions

After completing the base class Account and the derived class SavingsAccount, we notice

that there is information that might be helpful to users: does a particular account pay interest? It

is easy to add a function to SavingsAccount:

bool paysInterest() { return true; }
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This is of little use, however, to the owner of a pointer to an Account that may or may not be

a SavingsAccount . If paysInterest is to be useful, it must be declared virtual in the

base class, Account:

virtual bool paysInterest() { return false; }

Thus, by default, an account class does not pay interest. Any class corresponding to an account

that does pay interest must redefine paysInterest to return true.

This seems fairly innocuous: after all, the question ‘does it pay interest?’ can be asked of any

account, and therefore the function paysInterest should be defined in the base class. The

problem — trivial in this example — is that the concept of ‘paying interest’ is not otherwise men-

tioned in class Account.

In a hierarchy with many classes, there will be many functions of this kind. The base class will

become cluttered with accessors that provide specialized information that is only relevant to par-

ticular derived classes. This can become a maintenance problem because, each time one of these

functions is added, the base class is changed, requiring recompilation of the entire hierarchy. Un-

fortunately, there does not seem to be a clean solution to this problem.

8.4 Designing a template class

In this section, we discuss the development of a template class with features similar to an STL

container. Koenig and Moo (2000, Chapter 11) provides a very similar presentation.

Our objective is a class Vec that behaves in more or less the same way as the STL class vector.

We will provide memory management, but in a somewhat less sophisticated way than Koenig and

Moo (2000). We will obtain the class declaration by filling in the blanks of this skeleton:

template <typename T>

class Vec

{

public:

// interface

private:

// hidden data

};

The data in the vector will be stored in a dynamic array of the template type, T. We need a pointer

to the first element of the array and either: (a) the number of elements in the array, or (b) a pointer

to one-past-the-last element of the array. Following STL conventions, we will adopt choice (b) and,

of course, the user will see our pointers as iterators.

It would be possible to store exactly the number of elements that we need. This can be inefficient,

however, if the user inserts elements into the array one at a time. Consequently, we provide a

pointer to one-past-the-last element that is actually in use and another pointer to one-past-the-last

element that is available for use. The three pointers are
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1. data points to the first element

2. avail points to one-past-the-last element in use

3. limit points to one-past-the-last element of allocated memory

These three pointers define a class invariant for class Vec:

• data points to the first element

• data ≤ avail ≤ limit

• The range [data,avail) contains the allocated data

• The range [avail,limit) contains the allocated but uninitialized space

Figure 88 shows these pointers for an array in which 8 elements are in use and 13 elements are

available altogether.

1 2 3 4 5 6 7 8

data avail limit

Figure 88: Pointers for class Vec

Following STL conventions, class Vec defines several types for its clients. These types hide, for

example, the fact that Vec uses pointers to implement iterators. (We do not hide this fact because

we are ashamed of using pointers, but rather to present a consistent abstraction to our clients.) The

types we define are:

• iterator for the type of iterators

• const_iterator for the type of constant iterators

• size_type for the type of the size of a Vec

• value_type for the type of an element of a Vec

For size_type, we use size_t from namespace std.

We will provide three constructors: a default constructor; a constructor that specifies a (number of

elements) size and an initial value for each element; and a copy constructor. The default constructor

creates an empty vector. We declare the second constructor to be explicit to avoid accidental

conversion. In the second constructor, the value of the element defaults to T(), which implies

that the type T provided by the user must have a default constructor. Clearly, we will also need a

destructor. Figure 89 shows the class declaration with the features we have incorporated so far.
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template <typename T>

class Vec

{

public:

typedef T* iterator;

typedef const T* const_iterator;

typedef size_t size_type;

typedef T value_type;

Vec();

explicit Vec(size_t n, const T & val = T());

Vec(const Vec & other);

~Vec();

// rest of interface

private:

iterator data;

iterator avail;

iterator limit;

};

Figure 89: Declaration for class Vec: version 1

Figure 90 shows implementations for the constructors and destructor. Because this is a template

class, these declarations are in the header file vec.h after the class declaration. The second con-

structor is inefficient: for example, if the caller assumes the default value for the second parameter,

the constructor T() will be called 2n times: n times for new T[n] and another n times in the for

statement. Koenig and Moo (2000) show how to avoid this inefficiency by allocating uninitialized

memory, but we will not bother with this improvement.

The copy constructor requires a function that returns the size (number of elements) of the Vec

object:

size_type size() { return avail - data; }

Since the assignment operator is somewhat similar to the copy constructor, we consider it next.

Although they are similar, the difference between assignment and initialization is significant and

must not be overlooked. Before assigning to a variable, we must destroy its current value. Also, as

we have seen previously, we must provide the correct behaviour for the self-assignment, x = x.

The implementation of operator= shown in Figure 91 takes care of all this. The constructors

and assignment operator introduce duplicated code into the implementation, but we can clean that

up later.

It is straightforward to define the functions begin and end that provide clients with iterators

pointing to the first and one-past-the-last elements. Two versions are required, one returning an

iterator and the other returning a const_iterator.
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template <typename T>

Vec<T>::Vec<T>() : data(0), avail(0), limit(0) {}

template <typename T>

Vec<T>::Vec<T>(size_t n, const T & val)

: data(new T[n]), avail(data + n), limit(data + n)

{

for (iterator p = data; p != avail; ++p)

*p = val;

}

template <typename T>

Vec<T>::Vec<T>(const Vec<T> & other) :

data(new T[other.size()]),

avail(data + other.size()),

limit(avail)

{

const_iterator q = other.begin();

for (iterator p = data; p != avail; ++p, ++q)

*p = *q;

}

template <typename T>

Vec<T>::~Vec<T>()

{

delete [] data;

}

Figure 90: Constructors and destructor for class Vec

iterator begin() { return data; }

const_iterator begin() const { return data; }

iterator end() { return avail; }

const_iterator end() const { return avail; }

These functions provide all that is needed for code such as this loop

for (Vec<int>::const_iterator it = v.begin(); it != v.end(); ++it)

.... *it ....

because the operators !=, ++, and * are all provided for pointers.

We enable the user to subscript Vecs by implementing operator[]. Two overloads of this

operator are required:

T & operator[](size_type i) { return data[i]; }

const T & operator[](size_type i) const { return data[i]; }
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template <typename T>

Vec<T> & Vec<T>::operator=(const Vec<T> & rhs)

{

if (&rhs != this)

{

delete [] data;

data = new T[rhs.size()];

avail = data + rhs.size();

limit = avail;

const_iterator q = rhs.begin();

for (iterator p = data; p != avail; ++p, ++q)

*p = *q;

}

return *this;

}

Figure 91: Assignment operator for class Vec

The need for two versions arises as follows. We want a version of operator[] that allows us

to use subscripted elements on the left of an assignment, as in a[i] = e. The first version of

operator[] does this by returning a reference. But the compiler will not accept this function if

it is applied to a const Vec, because the reference makes it possible to change the value of the

object. Consequently, we need a second version that returns a const T & and promises not to

change the object. Consider the following code:

Vec<int> v(5);

v[3] = 5; // (1)

const Vec<int> w(v);

n = w[2]; // (2)

The statement labelled (1) fails if the first (non-const) version of operator[] is omitted, be-

cause it changes the value of v. The statement labelled (2) fails if the second (const) version

of operator[] is omitted, because the compiler needs assurance that the call w[2] does not

change the value of w.

Normally, we cannot provide two versions of a function with the same parameter list. In this case,

the object (*this) is an implicit first parameter, and the overloads distinguish a const Vec and

a non-const Vec.

As with similar STL functions, neither version of operator[] checks to see if the subscript is in

range. Such a check could easily be added, perhaps as an assertion.

The next function that we provide is push_back, which appends a new value to the end of the

array. There are two cases: if there is space already allocated, we store the new element at the

position indicated by avail and then increment avail. In the other case, avail = limit,

and we must allocate more space. We will introduce a private function, grow, to find more space.

Figure 92 shows the definitions of both functions.
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template<typename T>

void Vec<T>::push_back(const T & val)

{

if (avail == limit)

grow();

*avail = val;

++avail;

}

template<typename T>

void Vec<T>::grow()

{

size_type oldSize = avail - data;

size_type newSpace = 2 * (limit - data);

if (newSpace == 0)

newSpace = 1; // Ensure that we have at least one slot.

iterator newData = new T[newSpace];

iterator p = newData;

for (const_iterator q = data; q != avail; ++q, ++p)

*p = *q;

delete [] data;

data = newData;

avail = data + oldSize;

limit = data + newSpace;

}

Figure 92: Appending data to a Vec

The algorithm that we use for increasing the size of a Vec has important implications for efficiency.

It is usually not possible simply to increase the size of a dynamic array, because the adjacent

memory may already be allocated. Consequently, if we have and area of M bytes and we want to

use N bytes, where M < N, we must: (1) allocate a new area of N bytes; (2) copy M bytes from the

old area to the new area; and (3) delete the old area. This operation requires time O(M).

If we add one element, or in fact any constant number of elements each time a Vec grows, the

performance of push_back will be quadratic. For example, if we add one element at each call of

grow, we will copy 1, then 2, then 3 elements. To get 4 elements into the Vec, we will have to copy

1+ 2+ 3 = 6 elements. To get N elements into the Vec, we will have to copy 1
2N(N − 1) elements.

If, instead, we multiply the size of the Vec by a constant factor, the time spent copying falls to

O(N logN), which is much better. The implementation of grow in Figure 92 uses this technique

with a constant factor of 2.

We can improve the clarity of the implementation of Vec by doing some simple refactoring. Refac-

toring means rearranging code to improve it maintainability or performance without changing

its functionality. In this case, we introduce two overloaded versions of a private function called

create to manage the creation of new Vecs. We can use this function to simplify the code for

the constructors and the assignment operator. The two versions of create are declared in the
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template<typename T>

void Vec<T>::create(size_type n = 0, const T & val = T())

{

data = new T[n];

avail = data + n;

limit = avail;

for (iterator p = data; p != avail; ++p)

*p = val;

}

template<typename T>

void Vec<T>::create(const_iterator begin, const_iterator end)

{

size_type size = end - begin;

data = new T[size];

avail = data + size;

limit = avail;

for (iterator p = data; p != avail; ++p, ++begin)

*p = *begin;

}

Figure 93: Implementation of two overloads of create

private part of the class declaration:

void create(size_type n = 0, const T & val = T());

void create(const_iterator begin, const_iterator end);

The first version has two parameters, for the size of the array and the initial values, respectively.

Both parameters have default values, so that calling create() yields an empty Vec. The second

version also has two parameters that must be iterators defining a range of some other compatible

Vec.

The function create is responsible for allocating memory and for initializing the pointers data,

avail, and limit. Figure 93 shows the implementations of both versions. Figure 94 shows the

revised definitions of functions that use create. Finally, Figure 95 shows the declaration of class

Vec with all the changes that we have discussed.

8.5 Note on iterators

It might seem from the example of class Vec that an iterator is just a pointer and that we can use

++, ==, and so on, just because these functions are defined for pointers.

In fact, this is not always the case. The STL class list, for example, stores data in a linked list of

nodes. An iterator value identifies a node. Incrementing the iterator means moving it to the next

node. As Figure 96 shows, achieving this requires defining all of the iterator functions, including *
and ->.
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template <typename T>

Vec<T>::Vec<T>()

{

create();

}

template <typename T>

Vec<T>::Vec<T>(size_t n, const T & val)

{

create(n, val);

}

template <typename T>

Vec<T>::Vec<T>(const Vec<T> & other)

{

create(other.begin(), other.end());

}

template <typename T>

Vec<T> & Vec<T>::operator=(const Vec<T> & rhs)

{

if (&rhs != this)

{

delete [] data;

create(rhs.begin(), rhs.end());

}

return *this;

}

Figure 94: Revised definitions of functions that use create

In particular, note that the prefix operators --it and ++it are more efficient than the postfix

operators it-- and it++, because the postfix operators use the copy constructor to create the

result.
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template <typename T>

class Vec

{

public:

typedef T* iterator;

typedef const T* const_iterator;

typedef size_t size_type;

typedef T value_type;

Vec();

explicit Vec(size_t n, const T & val = T());

Vec(const Vec & other);

~Vec();

Vec & operator=(const Vec & rhs);

T & operator[](size_type i) { return data[i]; }

const T & operator[](size_type i) const { return data[i]; }

size_type size() const { return avail - data; }

iterator begin() { return data; }

const_iterator begin() const { return data; }

iterator end() { return avail; }

const_iterator end() const { return avail; }

void push_back(const T & val);

private:

void create(size_type n = 0, const T & val = T());

void create(const_iterator begin, const_iterator end);

void grow();

iterator data;

iterator avail;

iterator limit;

};

Figure 95: Declaration for class Vec: version 2
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const_reference operator*() const

{ // return designated value

return (_Myval(_Ptr));

}

_Ctptr operator->() const

{ // return pointer to class object

return (&**this);

}

const_iterator& operator++()

{ // preincrement

_Ptr = _Nextnode(_Ptr);

return (*this);

}

const_iterator operator++(int)

{ // postincrement

const_iterator _Tmp = *this;

++*this;

return (_Tmp);

}

const_iterator& operator--()

{ // predecrement

_Ptr = _Prevnode(_Ptr);

return (*this);

}

const_iterator operator--(int)

{ // postdecrement

const_iterator _Tmp = *this;

--*this;

return (_Tmp);

}

bool operator==(const const_iterator& _Right) const

{ // test for iterator equality

return (_Ptr == _Right._Ptr);

}

bool operator!=(const const_iterator& _Right) const

{ // test for iterator inequality

return (!(*this == _Right));

}

Figure 96: An extract from the STL class list
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9 When things go wrong

In any non-trivial program, there will come a time when things go wrong. There are several ways of

responding:

1. do nothing

2. report an error

3. set an error status flag

4. return a special value

5. trigger an assertion failure

6. throw an exception

The first four mechanisms are easy to implement and the fifth (triggering an assertion) was dis-

cussed in Section 2.7. The next section contrasts two approaches to coding, Section 9.2 discusses

the mechanics of exception handling, and Section 9.3 evaluates the appropriateness of the mecha-

nisms for various situations.

Error handling is an important topic. In large applications, as much as half of all the code may be

devoted to checking for errors. Moreover, this code is hard to get right. There can be real errors,

such as error reports getting lost or not being created in the first place, and inefficiencies caused

by repeated, unnecessary checks.

9.1 Design by contract versus defensive coding

The function

Matrix rotation(const Vector & u, const Vector & v);

returns a Matrix corresponding to a rotation that takes vector u to vector v. In other words, the

function returns a matrix M such that Mu = v.

The matrix computed by this function is correct only if u and v are unit vectors: |u| = |v| = 1. The

problem is what to do if u or v is not a unit vector.21

The first response is do nothing. We will assume that this is not an acceptable alternative because

the consequences could be serious. (Perhaps the rotation will be used to rotate an aircraft into the

correct orientation for landing.)

The second response is to specify that the vectors passed to the function must be unit vectors and

that the behaviour of the function is undefined if they are not. The usual way to do this is to write

an assertion or comment called a precondition in the code:

21One obvious possibility would be to normalize the vectors before using them. We will asssume that, for some
reason, this is not a feasible solution for this application.
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/**

* Construct the matrix that rotates one vector to another.

* \param u is a vector representing an initial orientation.

* \param v is a vector representing the final orientation.

* The matrix, applied to \a u, will yield \a v.

* \pre The vectors \a u and \a v must be unit vectors.

*/

Matrix rotation(const Vector & u, const Vector & v);

The precondition passes the responsibility to the caller. Effectively, the comments define a contract

between the caller and the function: if you give me unit vectors, I will give you a rotation matrix;

if you give me anything else, I guarantee nothing. This form of coding is called design by contract

or DBC; it was pioneered by Bertrand Meyer (1997) but has been recommended by other people as

well (see, for example, (Hunt and Thomas 2000, pages 109–119)). The code for the function does

not check the length of the vectors u and v.

The third response is to have the function inspect the vectors and take some action if they are not

unit vectors:

Matrix rotation(const Vector & u, const Vector & v)

{

if (fabs(u.length() - 1) > TOL || fabs(v.length() - 1) > TOL)

// error handling

else

// compute rotation matrix

}

This approach is called don’t trust the user or, more politely, defensive coding. We will discuss

possible ways of handling errors later.

There are advocates and opposers of both DBC and defensive coding. There is perhaps a general

trend away from defensive coding and towards DBC. For example, the home page for the Java

Modeling Language22 says that JML is a “design by contract” language for Java. Here are some

arguments for and against each approach.

Overhead DBC has no run-time overhead. Defensive coding executes tests which almost always

fail (e.g., most vectors passed to rotation are in fact unit vectors).

Safety DBC relies on programmers to respect contracts. Defensive coding ensures that malingerers

will be caught.

Clarity DBC requires maintainers to read comments. With defensive coding, the checks are in the

code.

Completeness There are situations that DBC cannot handle, such as the validity of user input. In

these situations, we can — and must — code defensively.

DBC and defensive programming are not mutually exclusive: you can use both. The best policy is

to decide which fits the needs of the particular application better and then use it.

22http://www.cs.iastate.edu/∼leavens/JML/
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9.2 Exceptions

We have already seen a simple example of the use of exceptions in Section 7.6. The exception

handling mechanism of C++ provides one way of managing errors. It has two parts:

• The statement

throw 〈expression〉

raises, or throws, an exception. The exception is the object obtained by evaluating 〈expression〉.

• The statement

try

{

〈try-sequence〉
}

catch ( 〈exc-type〉 〈exc-name〉 )

{

〈catch-sequence〉
}

handles exceptions thrown in 〈try-sequence〉. More precisely:

If a statement in 〈try-sequence〉 throws an exception e whose class is 〈exc-type〉 or

a class derived from 〈exc-type〉, then the statements 〈catch-sequence〉 are executed

with 〈exc-name〉 bound to e.

There are several things to note about try/catch statements:

• The throw statement may not be visible in 〈try-sequence〉: it may be (and usually is) nested

inside several levels of function call.

• The pair 〈exc-type〉 〈exc-name〉 is analogous to the formal parameter of a function. It is as if

the catch clause is “called” with the exception object as an argument.

• Although we mentioned the “class” of the exception object, basic objects such as ints and

chars can be thrown as exceptions.

• There may be more than one catch clause. The run-time systems matches the exception

against each catch clause in turn, executing the first one that fits.

For example, suppose there is a class hierarchy Dog inherits Carnivore (meat-eater) inher-

its Animal and a try statement

try { dangerous_stuff }

catch (Dog d) { .... }

catch (Carnivore c) { .... }

catch (Animal a) { .... }
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then if dangerous_stuff throws a Dog, a Carnivore, or an Animal, the appropriate

handler will catch it. But writing

try { dangerous_stuff }

catch (Animal a) { .... }

catch (Dog d) { .... }

catch (Carnivore c) { .... }

is pointless because Dogs and Carnivores will never be caught.

• The classes of multiple catch clauses do not have to be related by inheritance.

• The clause catch(...) (that is, you actually write three dots between parentheses) catches

all exceptions. If you use this in a multiple catch sequence, it should be the last catch

clause.

• Any C++ program behaves as if it was written like this:

try

{

main();

}

catch (...)

{

fail();

}

so that unhandled exceptions terminate the program, usually with some more or less helpful

error message.

• If a catch-block discovers that it cannot handle the exception, it can execute throw (with

no argument) to pass the same exception to the next level.

• You can throw exceptions by value, or you can create an exception dynamically (using new)

and throw a pointer to it. If a pointer is thrown, the handler must delete the exception.

• A function can declare the exceptions it throws, like this:

void f1() throw();

void f2() throw(T1);

void f3() throw(T2, T3);

void f4();

// doesn’t throw anything

// may through a T1

// may throw a T2 or a T3

// may throw anything

It is useful to have an approximate understanding of exceptions. They work roughly as follows:

• When the run-time system reaches try, it pushes an exception frame onto the stack.23 This

frame contains descriptors for each catch clause.

23An implementation may use a separate stack for exceptions. This stack will contain pointers to the main stack.
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• If the try-block executes normally, the exception frame is popped from the stack.

• If code in the try-block throws an exception, there will generally be a number of stack

frames on top of the exception frame. The run-time system moves down the stack, pop-

ping these frames and performing any clean-up actions required (e.g., calling destructors),

until it reaches the exception frame. This is called unwinding the stack.

• The run-time system inspects the catch descriptors until it finds a match. It then passes

the exception to the catch block and gives control to the catch block.

• When the catch block terminates, it passes control to the statement following the entire

try-catch sequence.

9.3 Managing failure

We have now discussed all of the possible responses (page 161) to a run-time problem. The next

step is to decide which one to use in a particular situation. We begin by characterizing the kind of

problems we are considering.

• If the problem is caused by a logical inconsistency in the program, the best way to deal with

it is to use DBC and/or assertions (or DBC with contracts expressed as assertions). It is not

appropriate to use if statements, error message, and the like to deal with simple incorrect-

ness.

Using the example above, suppose that the programmer(s) ensure that the functionrotation

is always given unit vectors. If rotation receives a vector of the wrong length, there is a

logical error in the program that should trigger an assertion failure.

• If the problem is something that can reasonable be expected to happen, the best solution is

normal code. For example, an if statement to detect the condition followed by an appropri-

ate response.

Users cannot be relied upon to enter valid data. Any system component that is reading data

from the keyboard should validate the input and complain immediately if anything is wrong.

This does not require fancy coding techniques.

• The remaining are serious, rare, and unavoidable. The following subsections discuss suitable

responses to problems of this kind.

9.3.1 Error messages

The easiest response to a problem is an error message, sent to cout, or (better) cerr, or, in a

windowing environment, a dialog or message box.

The streams cout and cerr behave in essentially the same way. Both send messages to a stream

that C++ calls standard output. he difference is that cout is buffered and cerr is not. When the

programs crashes, it is more likely to have displayed cerr output than cout output.

If this method works for your application, use it. However, it is inappropriate for many applications:
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• The software may be embedded in a car, pacemaker, or electric toaster. There is nowhere to

send messages to and perhaps no one to respond to them anyway.

• The software is part of a system that must do its job as well as possible without giving up or

complaining. For example, an internet router.

• The user is not someone who can handle the problem. For example, a web browser should

not display error messages — although, of course, they sometimes do — because there isn’t

much typical users can do.

9.3.2 Error codes

An effective system used by many software packages, such as unixTM and OpenGL, is to set an

error flag and continue in the best feasible way.

• A unixTM library function may set the global variable errno. Most library functions also do

something else to indicate failure, such as returning -1 instead of a char.

• Many OpenGL functions perform according to the following specification: either the function

behaves as expected, or an error number is set and there is no other effect.

This system requires some discipline from the programmers using it. They should look at the error

status from time to time to make sure that nothing has gone wrong. A common strategy is to ignore

the error status except just after doing something that is likely to fail.

Error codes are ideal for an application in which the consequences of failures are usually not seri-

ous, such as a graphics library. They are not secure enough for safety-critical applications.

9.3.3 Special return values

A function can return a funny value to indicate that it has not completed its task successfully. We

will call these values special return values. The classic example of this behaviour is the C function

getchar: you would expect its type to be char or even unsigned char, but in fact it returns

an int (thus causing much grief to C beginners). It does this so that it can report end-of-file by

returning -1.

Special return values are easy to code and require no special language features. They have strong

advocates.24 They also have disadvantages:

• There may be no suitable value to return. This is not a problem for exp and log, whose

values are always positive, but how does tan report an error (its range is all of the reals from

−∞ to ∞)?

• In some cases, it is not feasible to pack all of the information about errors and returned data

into a single value. Then we have to add reference parameters to the function to enable it to

return all of the information.

24Graduate student Ravi Rao drew my attention to an interesting article by Joel Spolsky that argues for special return
values rather than exceptions: http://joelonsoftware.com/items/2003/10/13.html.
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int ch;

while ( ch = getchar() >= 0 )

{

// process characters

}

// end of file

Figure 97: The consequence of ambiguous return values

double t1 = h(x);

if (t1 == h_error_value)

// handle h_error

else

{

double t2 = g(t1);

if (t2 == g_error_value)

// handle g_error

else

{

double y = f(t2);

if (y == f_error_value)

// handle f_error

else

{

// carry on

}

}

}

Figure 98: Catching errors in y = f(g(h(x)))

• Using the return value for multiple purposes leads to awkward code. In particular, conditions

with side-effects are often needed, as in the C idiom of Figure 97.

• Code can become verbose. Instead of writing y = f(g(h(x))), we have to write some-

thing like the code in Figure 98.

• Programmers have a tendency not to check for special return values. This problem is notori-

ous in unixTM.

• The caller may not know how to handle the problem. There will be multiple levels of func-

tions, all specially coded to return funny results until someone can deal with the situation

appropriately.
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9.3.4 Exceptions

Exceptions provide a form of communication between distant parts of a program. The problem that

exceptions solve is: something has gone wrong but, at this level or in this context, there is no way

to fix it. Examples:

• In the middle of complex fluid-flow calculations, the control system software of a nuclear

reactor detects that a pressure is sending improbable data.

• A library function that has a simple, natural interface (e.g., Matrix::invert ) but may

nevertheless fail for some inputs (e.g., singular matrix).

The main advantage of exceptions is that they can transfer control over many levels without clut-

tering the code. Unfortunately, this is also their main disadvantage. The sequence

make_a_mess();

clean_up_mess();

looks perfectly fine until you realize that make_a_mess might throw an exception.

In more detail, the advantages of exceptions include:

• The thrower does not have to know where the catcher is.

• The catcher does not have to know where the thrower is.

• A catcher can be selective, by only catching exceptions of particular types.

• If no exceptions are thrown, the overhead of the exception handling system is essentially

zero.

• The try and throw statements make it obvious in the code that a problem is being detected

and handled.

But exceptions also have some disadvantages:

• A programmer who calls a function that might throw an exception, either directly or indirectly

(i.e., at some deeply nested place) cannot rely on that function to return. (This is sometimes

called “the invisible goto problem”.)

• Exception handling in a complex system can quickly become unmanageable.

• Unhandled exceptions cause the program to terminate unexpectedly.

• Exceptions violate the “one flow in, one flow out” rule.

• It may be difficult for maintenance programmers to match corresponding try and throw

statements. (The first problem is “who threw this?” and the second problem is “where is this

going to end up?”.)

The cure for the disadvantages of exceptions is disciplined use.
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• Use exceptions only when there is no alternative that is better.

• Document exceptions wherever they might affect behaviour in significant ways.

• Learn how to write “exception-safe code”.

• For a large project:

– plan an exception strategy during the initial design phase

– define and use conventions for throwing and handling exceptions

– make use of exception domains, which are regions of the program from which no excep-

tion can escape

An application should execute correctly in all normal

situations with the exception handlers removed.

9.4 Exception-safe Coding

Exception-safe coding is an important topic for C++ programmers, but a rather large one for this

course. Herb Sutter (2005) devotes 44 pages to it. The basic rules are:

• Write each function to be exception safe, meaning that it works properly when the functions

it calls raise exceptions.

• Write each function to be exception neutral, meaning that any exceptions that the function

cannot safely handle are propagated to the caller.

As an example, the constructor of the class Vec, discussed in Section 8.4, is exception-safe. Here

is the code again:

template <typename T>

Vec<T>::Vec<T>(size_t n, const T & val)

: data(new T[n]), avail(data + n), limit(data + n)

{

for (iterator p = data; p != avail; ++p)

*p = val;

}

The only action that may cause an exception to be thrown is new, because the default allocator

throws an exception when there is no memory available. The constructor does not handle this

exception but, by default, passes it on to the caller. Therefore the constructor is exception neutral.

The remaining danger is that the constructor does not work properly when the exception is raised.

For example, it might happen that the pointers are set even though no data has been allocated. This

doesn’t matter, because a constructor that raises an exception is assumed to have failed completely.

There is no object, and so values of the attributes of the object are irrelevant.
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template<class T>

T Stack<T>::pop()

{

if (vused_ == 0)

{

throw "Popping empty stack";

}

else

{

T result = v_[used_ - 1];

--vused_;

return result;

}

}

Figure 99: Popping a stack: 1

template<class T>

void Stack<T>::pop(T & result)

{

if (vused_ == 0)

{

throw "Popping empty stack";

}

else

{

result = v_[used_ - 1];

--vused_;

}

}

Figure 100: Popping a stack: 2

So far so good. Now consider a case where there is a problem. The code in Figure 99 is supposed

to implement “popping” a stack (Sutter 2005, page 34). The subtle problem with this code is that

return result requires a copy operation that may fail and throw an exception. If it does, the

state of the stack has been changed (--vused_) but the popped value has been lost. The code in

Figure 100 avoids this problem:

The STL is exception-safe. In order to avoid problems like these, it provides two functions for

popping a stack:

void stack::pop() removes an element from the stack

const T & stack::top() const returns the top element of the stack

Another rule that is provided and assumed by the STL is: destructors do not throw exceptions.
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10 System Design

For large systems, design must take into account not only the performance of the finished product,

but also its development and maintenance. Three anecdotes (the first two from John Lakos’s (1996)

experiences) illustrate the problems of large-scale development.

1. A maintenance programmer needed to find the meaning of the undocumented declaration

TargetID id;

After a quick search failed, he tried using the unixTM utility grep to search for the string

"TargetID". There were several thousand header files involved, and grep complained

“too many files”. The programmer wrote a script to search through a*.h, then b*.h, and

so on. This search eventually revealed

typedef int TargetID;

2. Lakos worked at Mentor Graphics, a company that developed one of the first general-purpose

graphics libraries for unixTM systems. Programmers were in the habit of #includeing all

of the headers that they thought their component might need. The result was that compiling

the library required more than a week — using a network of workstations.

3. A major software product was completed, the source code and executables were written to

CDs, and the product was ready to be shipped to the customer. A couple of days later, a

programmer made a small change to a member function, something like this:

class Widget

{

public:

double get()

{

++accessCount; // this line added

return size;

}

private:

static double size;

unsigned long accessCount;

};

After this change, the program crashed during most runs.

The problem was solved after several days of debugging. The following code was the culprit:

Widget *pw;

// .... several pages of code

s = pw->get();
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10.1 Logical and physical design

Object oriented logical design concerns the organization of classes from the point of view of func-

tionality, inheritance, layering, and so on. It is discussed in many books on C++ programming and

software engineering, often with the use of UML diagrams, patterns, and other aids.

Physical design concerns the distribution of the various classes and other entities into files, direc-

tories, and libraries. Physical design is important for large projects but is less often discussed in

books (Lakos (1996) being a significant exception).

Logical and physical design are closely related. If the logical design is bad, it will not usually be

possible to obtain a good physical design. But a good logical design can be spoilt by a poor physical

design.

Logically, a system consists of classes (including enumerations) and free functions, with classes

providing the main structure.

Physically, a system consists of components. There are various ways of defining components but,

fortunately, there is one precise definition which is suitable for systems written mostly or entirely

in C++.

A component consist of a header (.h) and an implementation (.cpp) file.

The header and implementation files may both use #include to read other files. However, these

other files are not considered to be part of the component.

The compiler turns each component into an object file (.obj) or sometimes a library file (.lib or

.dll). The linker takes all the object and library files and creates an executable. Components

are also called compilation units (see Section 1.2.1) and translation units.

Since C++ does not allow a class declaration to be split over several files, the definition of component

implies that every class belongs to exactly one component. However, the definition does allow a

component to contain more than one class and, in fact, it is often useful to define components with

several classes:

• Several closely-related classes may be declared in a single header file.

• A class, or classes, needed by a single component can be declared in the implementation file

of that component.

In general, the logical structure of a design is determined by its classes; the physical structure of a

design is determined by its components.

There are various kinds of logical association between two classes: a class can contain an instance

of another class or a pointer to such an instance; inherit another class; have a value of another class

passed to it by value, reference, or as a pointer; and so on. Physical associations are, in general,

simpler: one component either uses another component or it doesn’t.

A client of component C is another component of the system that uses C. With a few exceptions

(see Figure 10.4.2), clients can be recognized because they #include header files: component C1

is a client of C2 if either C1.h or C1.cpp needs to read C2.h. Note that:
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• “Reading” C2.h is not the same thing as #includeing C2.h because a client might #include

X.h which #includes C2.h. In Figure 101, compiling C1.cpp requires reading C2.h:

• The client relationship is transitive: if C1 is a client of C2, and C2 is a client of C3, then C1

is a client of C3.

#ifndef C1_H

#define C1_H

#include "X.h"

....

#endif

#ifndef X_H

#define X_H

#include "C2.h"

....

#endif

Figure 101: Physical dependency: c1.h “reads” c2.h

10.2 Linkage

We discussed linkage issues previously (see Section 4.3). To get good physical structure, we want

to minimize dependencies between components. Doing this requires knowing how dependencies

arise.

Declarations in a header or implementation file have no effect outside the file (except, of course,

that declarations in a header file are read in the corresponding implementation file).

Definitions in a header or implementation file cause information to be written to the object file, and

therefore create dependencies. As we have seen, definitions should be avoided altogether in header

files.

General rules:

• Put only constant, enumeration, and class declarations into header files.

• Put all data and function definitions into implementation files.

• Put data inside classes wherever possible.

• If you have to put data at file scope, declare it as static.

The compiler considers inlined functions to be declarations, not definitions, even if they have bod-

ies. It is therefore acceptable to put, for example,

inline double sqr(double x) { return x * x; }

in a header file. However, if you remove the inline qualifier, the program may not compile! This

is because the header file may be read more than once, putting two copies of the function sqr into

the program, which causes problems for the linker.
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10.3 Cohesion

Every book on Software Engineering includes the slogan low coupling, high cohesion. This mantra

is useful only if we know:

• what is coupling?

• what is cohesion?

• how do we reduce coupling?

• how do we increase cohesion?

Coupling is probably the more important of these two aspects of a system, and we discuss it in

Section 10.4.

Cohesion is the less important partner of the “low coupling, high cohesion” slogan. Roughly speak-

ing, a component is cohesive if it is independent of other components (as far as possible) and per-

forms a single, well-defined role, or perhaps a small number of closely related tasks. A component

is not cohesive if its role is hard to define or if it performs a variety of loosely related tasks.

One way to define cohesion is by saying that the capabilities of a class should be necessary and

sufficient (like a condition in logic). The capabilities of a component are necessary if the system

cannot manage without it. The capabilities of a class are sufficient if they jointly perform all the

services that the client requires.

Necessary = every capability provided is in fact required by the system.

Sufficient = every capability required by the system is in fact provided.

The “necessary and sufficient” criterion is not the whole story. For example, we could write the

entire system as one gigantic class that provided the required functionality and had no superfluous

functions; clearly, this class would be both necessary and sufficient, but it would also be unman-

ageable and probably useless.

Sufficiency is a precise concept, but there is some leeway. For example, if it turns out that the

sequence

p->f();

p->g();

occurs often in system code — perhaps, in fact, every invocation of f is followed by a call to g —

then it probably makes sense to add a function h that combines f and g to the class. The old class

was technically sufficient, but the new function improves clarity, simplifies maintenance, and may

even make the program run a little faster.

Clearly there is no point in taking the time to code and test functions that will never be used.

Nevertheless, there are programmers who like to spend large amounts of time writing code that

“might be useful one day” rather than focusing on writing or improving code that was actually

needed yesterday.
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Consequently, cohesion also implies a division of the system into components of manageable size.

A good guideline is that it should be possible to describe the role of a component with a single

sentence. If you ask what a component does and the answer is either a mumble or a 10 minute

peroration, there is probably something wrong with the design of the component.

Cohesion is related to coupling in the following way: a component that tries to do too much (that

is, plays several roles) is likely to have many clients (perhaps one or more for each role). It may

also need to be a client of several other components in order to perform its roles. Consequently, its

coupling is likely to be high. On the other hand, a cohesive component is likely to have few clients

and few dependencies, and therefore lower coupling.

There are always exceptions.

• A highly-cohesive component might provide an essential service to many parts of a system;

in this case it would be contribute to heavy coupling.

• Low cohesion in the design can sometimes be corrected by careful physical design. For exam-

ple, a group of related classes could be put into a single component, exposing on some class

interfaces to the rest of the system.

10.4 Coupling

Coupling is any form of dependency between components.

Coupling is not an all-or-nothing phenomenon: there are degrees of coupling. At one end of the

scale, if a component has no coupling with the rest of the system, it cannot be doing anything

useful and should be thrown away. It follows that some coupling is essential and therefore that the

issue is reducing coupling, not eliminating it.

The other end of the scale is very high coupling: every component of the system is strongly coupled

to every other component. Such a system will be very hard to maintain, because a change to one

component often requires changes to other components.

10.4.1 Encapsulation

The first step towards low coupling is encapsulation, which means hiding the implementation de-

tails of an object and exposing only a well-defined public interface. Figure 102 shows is a first

(rather feeble) attempt at defining a class for points with two coordinates.

Class Point1 provides very poor encapsulation: anyone can get and set its coordinates, and it has

no control over its state at all. Obviously, we should make the coordinate data private, but then

we would have to provide some access functions, as shown in Figure 103.

Access functions that provide no checking, like these, are not much better than public data.

But access functions to at least provide the possibility of controlling state and maintaining class

invariants. For example, setX might be redefined as
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class Point1

{

public:

double x;

double y;

};

Figure 102: A class for points: version 1

class Point2

{

public:

double getX() { return x; }

double getY() { return y; }

void setX(double nx) { x = nx; }

void setY(double ny) { y = ny; }

private:

double x;

double y;

};

Figure 103: A class for points: version 2

void Point2::setX(double nx)

{

if (nx < X_MIN) nx = X_MIN;

if (nx > X_MAX) nx = X_MAX;

x = nx;

}

Access functions provide a way of hiding the representation of an object. For example, Figure 104

shows how we could define points using complex numbers without affecting users in any way

(except, perhaps, efficiency).

Even with access functions, however, Point hardly qualifies as an object. Why do users want

points? What are the operations that points should provide? A class for points should look more

like Figure 105, in which function declarations appear in the class declaration, but function defini-

tions are in a separate implementation file.

Point4 has less coupling than Point3 in another respect. If any of the inline functions of

Point3 are changed, its clients will have to be recompiled. Since the functions of Point4 are

defined in Point4.cpp rather than Point4.h, they can be changed without affecting clients

(although the system will have to be re-linked, of course).

A client of one of the Pointn classes will be coupled to the Pointn component. The degree of

coupling depends on the Point class: it is highest for Point1 (the user has full access to the

coordinates) and lowest for Point4 (the user can manipulate points only through functions such

as move and draw).
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class Point3

{

public:

double getX() { return z.re; }

double getY() { return z.im; }

void setX(double nx) { z.re = nx; }

void setY(double ny) { z.im = ny; }

private:

complex<double> z;

};

Figure 104: A class for points: version 3

class Point4

{

public:

void draw();

void move(double dx, double dy);

....

private:

// Hidden representation

};

Figure 105: A class for points: version 4

From the point of view of the owner of the Point class, lower coupling means greater freedom.

If the owner of Point1 makes almost any change at all, all clients will be affected. The owner

of Point4, on the other hand, can change the representation of a point, or the definitions of the

member functions, without clients needing to know, provided only that the class continues to meet

its specification. This is one advantage of low coupling:

Low coupling makes maintenance easier.

A complicated object is entitled to have a few access functions but, in general, a class should keep a

secret.25 If your class seems to need a lot of get and set functions, you should seriously consider

redesigning it.

Here are formal definitions (Lakos 1996, pages 105 and 138):

1. The logical interface of a component is that which programmatically accessible or detectable

by a client.

2. An implementation entity (type, variable, function, etc.) that is not accessible or detectable

programmatically through the logical interface of a component is encapsulated by that com-

ponent.

25The useful metaphor “keeping a secret” was introduced by David Parnas in a very influential paper (1978).
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In set theoretic notation, for any component C

IC ∪ EC = U and IC ∩ EC = �

where IC is the set of implementation entities in the logical interface of C, EC is the set of entities

encapsulated by C, and U is the “universe” of all entities in C.

10.4.2 Hidden coupling

C++ provides various ways in which coupling between components can be hidden: that is, there is

a dependency between two components even though neither #includes the other’s header file.

For example, the following components A and B are coupled:

// file A.cpp

int numWidgets;

....

// file B.cpp

extern int numWidgets;

....

Using the definitions of the previous section, we note that numWidgets is in the logical interface

of component A, because it can be accessed by component B by using extern.

The object file obtained when A.cpp is compiled will allocate memory for numWidgets. The

object file obtained when B.cpp is compiled will not allocate memory for numWidgets but will

expect the linker to provide an address for numWidgets. If the definition in A.cpp is changed

or removed, both components will compile, but the system won’t link.

Don’t use global variables.

Don’t use extern declarations.

10.4.3 Compilation dependencies

Coupling can affect the time needed to rebuild a system. Build times are significant for large

projects, and it is useful to know how to keep them low. If we define class Point5 as in Figure 106,

sizeof(Point5) gives 16 bytes, showing that the compiler allocates two 8-byte double values

to store a Point5. If we decide to add a new data member, d, to store the distance of the point

from the origin, we obtain Point6, shown in Figure 107. Then sizeof(Point6) gives 24 bytes,

showing that the compiler allocates three 8-byte double values to store a Point6.

At this point, we might decide that our class needs a function, as shown in Figure 108. Adding a

function has no effect on the size of the class: sizeof(Point7) is 24 bytes, just like Point6.

But if we make the function virtual, as in Figure 109, then sizeof(Point8) gives 32 bytes,

because a virtual function requires a virtual function table or vtable for short.26

26The pointer to the vtable needs 4 bytes on the Intel architecture. The additional 4 bytes may be added for alignment
purposes.
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class Point5

{

private:

double x;

double y;

};

Figure 106: A class for points: version 5

class Point6

{

private:

double x;

double y;

double d;

};

Figure 107: A class for points: version 6

class Point7

{

public:

void move(double dx, double dy) { x += dx; y += dy; }

private:

double x;

double y;

double d;

};

Figure 108: A class for points: version 7

class Point8

{

public:

virtual void move(double dx, double dy) { x += dx; y += dy; }

private:

double x;

double y;

double d;

};

Figure 109: A class for points: version 8
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#include "point.h"

int main()

{

Point p;

....

}

Figure 110: Forward declarations: 1

#include "point.h"

int main()

{

Point* pp;

....

void f(Point & p);

....

}

Figure 111: Forward declarations: 2

In summary, adding or removing data members changes the size of the objects. Adding a virtual

function also changes the size. (Adding virtual functions after the first makes no difference, because

there is only one vtable and it contains the addresses of all virtual functions.)

The changes we have been discussing should not affect users of the class. Private data members

cannot be accessed anyway, and whether a function is virtual affects only derived classes. Neverthe-

less, if we change the size of a point, every component that includes point.h will be recompiled

during the next build! Since building a large project can take hours or even days, changing a class

declaration, even the private part, is something best avoided.

To see why this happens, consider the first program in Figure 110. To allocate stack space for p, the

compiler must be able to compute sizeof(Point). To compute this, it must see the declaration

of class Point. Finally, to see the declaration, it must read "point.h". If "point.h" changes,

the program must be recompiled.

The program in Figure 111 is slightly different. The compiler does not need to know sizeof(Point)

to compile this program, because all pointers and references have the same size (the size of an ad-

dress: usually 4 bytes). Consequently, reading the declaration of class Point is a waste of time.

However, the compiler does need to know that Point is a class and, for this purpose, the forward

declaration of Figure 112 is sufficient.

Don’t include a header file when a forward declaration is all you need.

In early versions of the standard libraries, names such as ostream referred to actual classes.

Consequently, the code shown in Figure 113 worked well in a header file. Times have changed, and
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class Point; // forward declaration

int main()

{

Point* pp;

....

void f(Point & p);

....

}

Figure 112: Forward declarations: 3

class ostream;

....

friend ostream & operator<<(ostream & os, const Widget & w);

Figure 113: Forward declaration for ostream: 1

ostream is now defined by typedef. However, the standard library defines a header file that

contains forward declarations for all stream classes: see Figure 114.

Suppose that points have colours. It is tempting to put the enumeration declaration outside the

class declaration:

enum Colour { RED, GREEN, BLUE };

class Point

{

....

This is convenient, because we can use the identifiers RED, GREEN, and BLUE wherever we like.

But this convenience is also a serious drawback: the global namespace is polluted by the presence

of these new names. It is much better to put the enumeration inside the class declaration, like this:

class Point

{

public:

enum Colour { RED, GEEN, BLUE };

....

#include <iosfwd>

....

friend ostream & operator<<(ostream & os, const Widget & w);

Figure 114: Forward declaration for ostream: 2
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We now have to write Point::RED instead of RED, but there is no longer any danger of the colour

names clashing with colour names introduced by someone else.

In situations where class declarations alone are inadequate, for example in the development of a

library, we can use namespaces instead.

10.4.4 Cyclic Dependencies

The worst kind of dependencies are cyclic dependencies. When a system has cyclic dependencies,

“nothing works until everything works”.27 Some cyclic dependencies are unavoidable, but many

can be eliminated by careful design.

Suppose we have classes Foo and Bar that are similar enough to be compared. We might write

class Foo

{

public:

operator==(const Bar * b);

....

};

class Bar

{

public:

operator==(const Foo & f);

....

};

This creates a cyclic dependency between Foo and Bar. The dependency can be eliminated by

using friend functions:

class Foo

{

friend operator==(const Foo & f, const Bar & b);

friend operator==(const Bar & b, const Foo & f);

....

};

class Bar

{

friend operator==(const Foo & f, const Bar & b);

friend operator==(const Bar & b, const Foo & f);

....

};

operator==(const Foo & f, const Bar & b) { .... }

operator==(const Bar & b, const Foo & f) { .... }

27I’m not sure who said this first, but it might have been David Parnas.
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10.4.5 Pimpl

A complicated class might have quite a large private part. Every time the owner of the class

changes the class declaration, every client gets recompiled. A “pimpl” is a simple way of avoiding

this dependence: it is a mnemonic for pointer to implementation. Thus

class Widget

{

public:

....

private:

int something;

char somethingElse;

double yetAnotherThing;

....

};

becomes

class Widget

{

public:

....

private:

class WidgetImplementation;

WidgetImplementation * pimpl;

};

There is naturally a price to pay for the increased indirection: the functions of Widget are reduced

to messengers that just forward their requests to WidgetImplementation :

class Widget

{

public:

Widget() { pimpl = new WidgetImplementation(); }

~Widget() { delete pimpl; }

int getSomething() { return pimpl->getSomething(); }

void doSomething(char what) { pimpl->doSomething(what); }

....

private:

WidgetImplementation * pimpl;

};

The overhead of the extra calls will be small, possibly even zero. For a large system, however,

the gains may be considerable. The owner of WidgetImplementation can change data and

functions freely without forcing recompilation of Widget clients. In fact, Widget clients will be

recompiled only if the declaration of class Widget itself has to be changed, perhaps by adding a

new function. Herb Sutter (2000, page 110) says:
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I have worked on projects in which converting just a few widely-used classes to us

Pimples has halved the system’s build time.

Another name for pimpl is “handle/body class”. In the example, above, Widget is the han-

dle and WidgetImplementation is the body. Koenig and Moo (2000) use this term: Sec-

tion 13.4 (pp. 243–245) gives a definition of class Student_info in which the only data member

is Core *cp. The pointer cp points an instance of either the base class Core or the derived class

Grad, illustrating a further advantage of pimpl: a class may provide behaviour that depends on

the way in which it is initialized.

10.4.6 Inlining

Normally, a function is called by evaluating its arguments, placing them in registers or on the stack,

storing a return link in the stack, and passing control to the function’s code. When the function

returns, it uses the return link to transfer control back to the call site. There is clearly a fair amount

of overhead, especially if the function is doing something trivial, such as returning the value of a

data member of a class.

If the compiler has access to the definition of a function, it can compile the body of the function

directly, without the call and return. This is called inlining the function.

An inline function will usually be faster than a called function, although the difference will be

significant only for small functions. (For large functions, especially if they have loops or recursion,

the time taken by calling and returning will be negligible compared to the time taken to execute the

function.)

Heavy use of inlined functions increases the size of the code, because the code of the function is

compiled many times rather than once only. Thus inlining is an example of a time/space tradeoff.

Inlining is relevant to this section because inlining affects coupling. The compiler can inline a

function only if its definition is visible. Within an implementation file, a definition of the form

inline void f() { .... }

permits the compiler to inline f, but only in that particular implementation file. To inline a func-

tion throughout the system, the inline qualifier, and the body of the function, must appear in a

header file. As we have seen, this implies that any change to the function body will force recompi-

lation of all clients.

Whenever a function definition appears inside a class declaration, the compiler is allowed to compile

it inline. In Figure 115, the compiler may inline f1 and f3 and it cannot inline f2 and f4.

The qualifier inline is a compiler hint, not a directive. The compiler is not obliged to inline func-

tions that are defined inside the class declaration or declared inline, and it may inline functions

of its own accord.

Do not place too much dependence on inlining: the rewards are not great and there may be draw-

backs. Herb Sutter (2002, pages 83–86) argues that good compilers know when and when not to

inline and programmers should leave the choice to them.
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#ifndef WIDGET_H

#define WIDGET_H

class Widget

{

public:

int f1() { return counter; }

int f2();

private:

int counter;

};

inline double f3()

{

....

}

char f4();

Figure 115: Inlining

10.5 Improving system structure

There are several techniques for developing well-structured systems or improving systems with

structural weaknesses.

10.5.1 CRC Cards

CRC cards where introduced by Kent Beck and Ward Cunningham at OOPSLA (1989) for teaching

programmers the object-oriented paradigm. A CRC card is an index card that is use to represent the

responsibilities of classes and the interaction between the classes. The cards are created through

scenarios, based on the system requirements, that model the behavior of the system. The name

CRC stands for Class, Responsibilities, and Collaborators.

Although CRC cards are old and have largely been replaced by heavy-weight methods such as UML,

the underlying ideas are still useful in the early stages of system design. The focus on responsibility

and collaboration is appropriate and helps to improve the coupling/cohesion ratio.

10.5.2 Refactoring

When we change a system to improve its maintainability, performance, or other characteristics

without changing its functionality, we are refactoring it. A common reason for refactoring is to

increase cohesion and decrease coupling. Refactoring is a large topic and entire books have been

written about it.



10 SYSTEM DESIGN 186

10.5.3 DRY

DRY stands for don’t repeat yourself. As systems grow, it is easy for them to accumulate multiple

implementations of a single function. These functions might vary in small details, such as the

number and order of parameters, but they do essentially the same thing. Weed out such repetition

by converting all the variations into a single function whenever you can. As Hunt and Thomas

(2000, page 27) say:28

Every piece of knowledge must have a unique, unam-

biguous, authoritative representation within a system.

10.5.4 YAGNI

YAGNI stands for you aren’t going to need it and it is a slogan associated with agile methods. Some

programmers are tempted to provide all kinds of features that might come in useful one day. When

writing a class, for instance, they will include a lot of methods but they don’t actually need right

now for the application, but look nice. This is usually a waste of time: there is a good chance that

the functions will not in fact be needed and, if they are, it does not take long to write them.

10.6 Using Patterns

Patterns (Gamma, Helm, Johnson, and Vlissides 1995)29 belong more to high-level design than to

physical organization. However, interesting issues arise in mapping patterns to concrete C++ code,

and this section describes some of these issues.

10.6.1 Singleton

GoF summarizes the Singleton pattern as: ensure a class has only one instance, and provide a global

point of access to it.Figure 116 shows a declaration for class Singleton based on (Alexandrescu

2001, pages 129–133). Here are some points of interest in this declaration.

• The function fun and the data member uid are included just to illustrate that the singleton

can do something besides merely exist.

• The only way that a user can access the singleton is through the static reference function

instance.

• Access to the unique instance of the singleton is throughprivate, static pointer, pInstance.

• The constructor is private.

• The copy constructor and assignment operator are private and unimplemented. This en-

sures that the singleton cannot be passed by value, assigned, or otherwise copied.

28I changed their word “single” to “unique” for greater emphasis.
29The four authors of this book are often referred to as “the Gang of Four”. Like other authors, we will refer to the

book as “GoF”.
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• The destructor is also private and unimplemented. This ensures that the singleton cannot

be accidentally deleted. (This could be considered as a memory leak, but that is harmless

because there is only one instance anyway.)

class Singleton

{

public:

static Singleton & instance();

void fun();

private:

int uid;

static Singleton * pInstance;

Singleton();

Singleton(const Singleton &);

Singleton & operator=(const Singleton &);

~Singleton();

};

Figure 116: Declaration for class Singleton

Figure 117 shows the implementation of class Singleton. The constructor is conventional; the

body given here merely demonstrates that it works. The function instance constructs the sin-

gleton when it is called for the first time, and subsequently just returns a reference to it.

Singleton::Singleton()

{

uid = 77;

cout << "Constructed Singleton " << uid << endl;

}

Singleton & Singleton::instance()

{

if (!pInstance)

pInstance = new Singleton;

return *pInstance;

}

void Singleton::fun()

{

cout << "I am Singleton " << uid << endl;

}

Singleton * Singleton::pInstance = 0;

Figure 117: Definitions for class Singleton
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The following code demonstrates the singleton in action. A user must access the singleton as

Singleton::instance(). Any attempt to copy it or pass it by value causes a compile-time

error. For the particular singleton defined here, all the user can do is apply the function fun to the

singleton.

int main()

{

Singleton::instance().fun();

Singleton::instance().fun();

Singleton::instance().fun();

return 0;

}

This is in fact a rather simple version of the Singleton pattern and it is not robust enough for all

applications. For details about its improvement, see (Alexandrescu 2001, pages 133–156)

10.6.2 Composite

The composite pattern is used with part-whole hierarchies. A simple hierarchy allows the user to

work with one part at a time. The composite pattern allows the user to work also with groups of

parts as if they were single parts.

The example is a highly simplified typesetting application. The abstract base class Text has a

single, pure virtual function set which “sets” type to an output stream provided as a parameter.

Initially, there are three derived classes, Blank, Character, and Word, as shown in Figure 118.

Suppose that we want to typeset paragraphs. Paragraphs are related to the classes we have in

that they should be able to implement the method set, but they are also different in that a para-

graph has many words and is typically typeset between margins. Nevertheless, we can add a class

Paragraph to the hierarchy, as shown in Figure 119.

Class Paragraph has a parameter in the constructor giving the width in which to set the para-

graph. (A more realistic example would also allow this value to be set after construction.) We

provide a function addWord that allows us to build paragraphs, and the words are stored in a

STL vector. The important points are that class Paragraph inherits from class Text and

implements set, making it a part of the hierarchy.

Figure 120 shows the implementation of the Paragraph functions set and addWord. Function

set uses a stringstream to store the words in a line. When there is not enough space on the

line for the next word (and the blank that precedes it), the string stream buffer is written to the

output stream.

10.6.3 Visitor

Each time we add a function to a class hierarchy such as Text, we have to add one function to each

class in the hierarchy. Furthermore, each of these functions has essentially the same structure. For

example, every function we add to class Paragraph will iterate over the words in the paragraph.
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class Text

{

public:

virtual void set(std::ostream & os) = 0;

};

class Blank : public Text

{

public:

Blank() {}

void set(std::ostream & os) { os << ’ ’; }

};

class Character : public Text

{

public:

Character(char c) : c(c) {}

void set(std::ostream & os) { os << c; }

private:

char c;

};

class Word : public Text

{

public:

Word(const std::string & w) : w(w) {}

void set(std::ostream & os) { os << w; }

std::size_t size() const { return w.size(); }

private:

std::string w;

};

Figure 118: Declarations for the text class hierarchy

class Paragraph : public Text

{

public:

Paragraph(int width) : width(width) {}

void set(std::ostream & os);

void addWord(const Word & w);

private:

std::vector<Word> words;

size_t width;

};

Figure 119: A class for paragraphs
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void Paragraph::set(std::ostream & os)

{

Blank b;

ostringstream oss;

for ( vector<Word>::iterator it = words.begin();

it != words.end(); ++it)

{

if (size_t(oss.tellp()) + 1 + it->size() > width)

{

while (size_t(oss.tellp()) < width)

b.set(oss);

os << oss.str() << endl;

oss.seekp(0);

}

if (size_t(oss.tellp()) > 0)

b.set(oss);

it->set(oss);

}

}

void Paragraph::addWord(const Word & w)

{

words.push_back(w);

}

Figure 120: Definitions for class Paragraph

The purpose of the visitor pattern is to avoid both the need to add functions to every class and to

repeat the iteration patterns over and over again. The idea is to define a “visitor” class that knows

how to process each kind of object in the hierarchy. The visitor class is an abstract base class that

cannot actually do anything useful, but it has derived classes for performing specific operations.

The following steps are required to support visitors in the text hierarchy.

1. Create a base class Visitor with a visiting function corresponding to each derived class in

the Text hierarchy: see Figure 121. Each visiting function is passed a pointer to an object of

the corresponding type in the Text hierarchy.

2. Add functions to “accept” visitors in the Text hierarchy, starting with a pure virtual function

in the base class:

class Text

{

public:

virtual void accept(Visitor & vis) = 0;

....

};
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class Visitor

{

public:

virtual void visitBlank(Blank*) = 0;

virtual void visitCharacter(Character*) = 0;

virtual void visitWord(Word*) = 0;

virtual void visitParagraph(Paragraph*) = 0;

};

Figure 121: The base class of the Visitor hierarchy

Most of these functions are fairly trivial. For example:

void Blank::accept(Visitor & vis) { vis.visitBlank(this); }

void Character::accept(Visitor & vis) { vis.visitCharacter(this); }

For composite classes, function accept passes the visitor to each component individually:

void Paragraph::accept(Visitor & vis)

{

for ( vector<Word>::iterator it = words.begin();

it != words.end(); ++it)

it->accept(vis);

}

This completes the framework for visiting.

3. The next step is to construct an actual visitor. We will reimplement the typesetting func-

tion, set as a visitor. For this, we need a class setVisitor derived from Visitor: see

Figure 122.

class setVisitor : public Visitor

{

public:

void visitBlank(Blank*);

void visitCharacter(Character * pc);

void visitWord(Word*);

void visitParagraph(Paragraph*);

};

Figure 122: A class for typesetting derived from Visitor

4. Finally, we implement the member functions of setVisitor, as in Figure 123. It is not

necessary to provide a body for setVisitor::visitParagraph because it is never

called: when a Paragraph object accepts a visitor, it simply sends the visitor to each of

its words (see Paragraph::accept above). However, we do have to provide a trivial

implementation in order to make Paragraph non-abstract. (Alternatively, we could have

defined a trivial default function in the base class.)
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void setVisitor::visitBlank(Blank*)

{

cout << ’ ’;

}

void setVisitor::visitCharacter(Character * pc)

{

cout << pc->getChar();

}

void setVisitor::visitWord(Word * pw)

{

cout << ’ ’ << pw->getWord();

}

void setVisitor::visitParagraph(Paragraph * pp) {}

Figure 123: Implementation of class setVisitor

5. To typeset a paragraph p, we call just:

p.accept(setVisitor());

For a single task (typesetting), setting up the visitor classes seems rather elaborate. Suppose, how-

ever, that there were many operations to be performed on the Text hierarchy. Once we have

defined the accept functions, we do not need to make any further changes to that hierarchy. In-

stead, for each new operation that we need, we derive a class from Visitor and define its “visit”

functions for each kind of Text.

The visitor pattern has some disadvantages:

• If we use a separate function for each operation (like set in the original example), we can

pass information around simply by adding parameters. Since the operations are independent,

each can have its own set of parameters.

The operations in the visitor version, however, must all use the protocol imposed by accept.

This means that they all get exactly the same parameters (none, in our example).

• The structure of composite objects is hard-wired into their accept functions. For example,

Paragraph::accept iterates through its vector of Words. This makes it difficult to

modify the traversal in any way.

In this example, Paragraph::set inserted line breaks whenever the length of a line would

otherwise have exceeded width. It is difficult to provide this behaviour with the visitor

pattern, because Paragraph::accept does a simple traversal over the words and does

not provide for any additional actions.
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11 Using Design Patterns

Design patterns encode the knowledge of experienced designers. Patterns are design components
that can be mapped into code for a particular application. A discussion of patterns in general is
beyond the scope of this course; in this chapter, we look at some of the simpler patters and show
how they can be mapped into C++ code.

The “bible” of design patterns is the book Design Patterns (Gamma, Helm, Johnson, and Vlissides
1995)40 The patterns discussed in this chapter are all taken from the “GoF book”. We have
already seen some design patterns in these notes, including Command (Section 7.7.2) and Façade
(Section 10.5.2).

11.1 Singleton

Problem Ensure that a class has only one instance at all times and provide a global point of
access to it.

Solution The problem has two parts: the first part is to ensure that only one instance of a class
can exist; the second is to provide users with access to the unique instance. 394

Figure 133 shows a declaration for class Singleton based on Alexandrescu’s example (2001,
pages 129–133). Here are some points of interest in this declaration.

• The function fun and the data member uid are included just to illustrate that the singleton
can do something besides merely exist.

• The only way that a user can access the singleton is through the static reference function
instance.

• Access to the unique instance of the singleton is through the private, static pointer,
pInstance.

• The constructor is private. The copy constructor and assignment operator are private and
unimplemented. Thus the singleton cannot be constructed (except for the first time), passed
by value, assigned, or otherwise copied.

• The destructor is also private and unimplemented. This ensures that the singleton cannot
be accidentally deleted. (This could be considered as a memory leak, but that is harmless
because there is only one instance anyway.)

395

Figure 134 shows the implementation of class Singleton. The constructor is conventional; the body
given here merely demonstrates that it works. The function instance constructs the singleton when
it is called for the first time, and subsequently just returns a reference to it. A user must access the
singleton object as Singleton::instance(). Any attempt to copy it or pass it by value causes
a compile-time error. For the particular singleton defined here, all the user can do is apply the
function fun to the singleton. Obviously, other functions would be added in a practical application.
This is in fact a rather simple version of the Singleton pattern and it is not robust enough for all
applications. For details about its improvement, see (Alexandrescu 2001, pages 133–156). 396

39740The four authors are often referred to as “The Gang of Four” or “GoF”.
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class Singleton
{
public:

static Singleton & instance();
void fun();

private:
int uid;
static Singleton * pInstance;
Singleton();
Singleton(const Singleton &);
Singleton & operator=(const Singleton &);
~Singleton();

};

Figure 133: Declaration for class Singleton

int globalUID = 77;

// Inaccessible pointer to the unique instance.
Singleton * Singleton::pInstance = 0;

// Private constructor.
Singleton::Singleton()
{

uid = globalUID++;
}

// Public member function allows user to create the unique instance.
Singleton & Singleton::instance()
{

if (!pInstance)
pInstance = new Singleton;

return *pInstance;
}

// Simple test function.
void Singleton::fun()
{

cout << "I am Singleton " << uid << endl;
}

Figure 134: Definitions for class Singleton

Figure 135 demonstrates the singleton in action. The first three lines of output show that there is
only one instance; if more instances had been created, globalUID would have been incremented.
The fourth line shows that the singleton has been passed as a reference.
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void f(Singleton & s)
{

cout << "Inside f: ";
s.fun();

}

int main()
{

Singleton::instance().fun();
Singleton::instance().fun();
Singleton::instance().fun();

// A singleton can be passed by reference.
f(Singleton::instance());

// The following lines are all illegal.
// Singleton s1;
// Singleton s2 = Singleton::instance();

return 0;
}

Output:

I am Singleton 77
I am Singleton 77
I am Singleton 77
Inside f: I am Singleton 77

Figure 135: A program that tests class Singleton and its output

11.2 Composite

Problem Suppose we have a hierarchy of classes. We may also have collections of instances of
these classes. A collection might be homogeneous (members all of the same class) or heterogeneous
(members of different classes). The problem is to make these collections behave in the same way as
elements of the class hierarchy. The collections are called composite classes and the pattern that
solve the problem is called Composite.

Solution To implement the Composite pattern, all we have to do is incorporate the composite
classes into the class hierarchy. Since putting them into the hierarchy forces them to implement
the base class interface, the effect will be to make their behaviour similar to that of other classes
in the hierarchy.

The following example is a highly simplified typesetting application. The abstract base class
Text has a single, pure virtual function set which “sets” type to an output stream provided as
a parameter. Initially, there are three derived classes, Blank, Character, and Word, as shown in
Figure 136. 398

399
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class Text
{
public:

virtual void set(std::ostream & os) = 0;
virtual void accept(Visitor & v) = 0;

};

class Blank : public Text
{
public:

Blank() {}
void set(std::ostream & os);

};

class Character : public Text
{
public:

Character(char c) : c(c) {}
void set(std::ostream & os);
char getChar() const { return c; }

private:
char c;

};

class Word : public Text
{
public:

Word(const std::string & w) : w(w) {}
void set(std::ostream & os);
std::string getWord() const { return w; }
std::size_t size() const { return w.size(); }

private:
std::string w;

};

Figure 136: Declarations for the text class hierarchy

Suppose that we want to typeset paragraphs. Paragraphs are related to the classes we have in
that they should be able to implement the method set, but they are also different in that a
paragraph has many words and is typically typeset between margins. Nevertheless, we can add a
class Paragraph to the hierarchy, as shown in Figure 137.

Class Paragraph has a parameter in the constructor giving the width in which to set the paragraph. 400
(A more realistic example would also allow this value to be set after construction.) We provide a
function addWord that allows us to build paragraphs, and the words are stored in a STL vector.
The important points are that class Paragraph inherits from class Text and implements set,
making it a part of the hierarchy. 401

402Figure 138 shows the implementation of the Paragraph functions set and addWord. Function set
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class Paragraph : public Text
{
public:

Paragraph(int width) : width(width) {}
void set(std::ostream & os);
void addWord(const Word & w);

private:
std::vector<Word> words;
size_t width;

};

Figure 137: A class for paragraphs

void Paragraph::set(std::ostream & os)
{

Blank b;
ostringstream oss;
for (vector<Word>::iterator it = words.begin(); it != words.end(); ++it)
{

if (size_t(oss.tellp()) + 1 + it->size() > width)
{

while (size_t(oss.tellp()) < width)
b.set(oss);

os << oss.str() << endl;
oss.seekp(0);

}
if (size_t(oss.tellp()) > 0)

b.set(oss);
it->set(oss);

}
}

void Paragraph::addWord(const Word & w)
{

words.push_back(w);
}

Figure 138: Definitions for class Paragraph

uses a stringstream to store the words in a line. When there is not enough space on the line for
the next word (and the blank that precedes it), the string stream buffer is written to the output
stream.

11.3 Visitor
403

Problem Figure 139 shows a grid of classes and operations that extend the Text hierarchy of
the previous section. Note that a column corresponds to a class (that implements each operation)
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Blank Char Word Paragraph Chapter

set ? ? ? ? ?

cap ? ? ? ? ?

print ? ? ? ? ?

count ? ? ? ? ?

Figure 139: A grid of classes and operations

and a row corresponds to an operation (that must be implemented in each class). Each ? indicates
an action that must be implemented. Here are two ways of organizing the code that implements
the operations:

1. In pre-object-oriented days, each operation was implemented as a single function with a big
switch statement: 404

void set(....)
{

switch(kind)
{
case BLANK:

....
break;

case CHAR:
....
break;

case WORD:
....
break;

....
}

}

This made it easy to add a function, because all of the code would be in one place, but hard
to add a class, because this would involve adding a clause to many different functions.

2. In an object-oriented language, we put the classes into a hierarchy; the root class of the
hierarchy defines default or null versions of each function; and each class implements the
functions in its own way. This design has two consequences:

(a) The code becomes fragmented: a function implements one operation in one class.

(b) It is easy to add a class, with an implementation for each operation, but hard to add
an operation, because each class has to be modified.

(c) If the objects are stored in a data structure, it is likely that each function will be
responsible for traversing its part of the data structure.
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class Visitor
{
public:

virtual void visitBlank(Blank*) = 0;
virtual void visitCharacter(Character*) = 0;
virtual void visitWord(Word*) = 0;
virtual void visitParagraph(Paragraph*) = 0;

};

Figure 140: The base class of the Visitor hierarchy

For example, each time we add a operation to a class hierarchy such as Text, we have to add one
function to each class in the hierarchy. Furthermore, every function we add to class Paragraph
will iterate over the words in the paragraph.

The problem is combine these two modes: we would like to retain the fragmented code, which is
easier for maintenance, but we would like to organize it by operation rather than by class. We
would also like to keep the organization of the data structure out of the individual functions.

Solution The idea of the Visitor pattern is to define a “visitor” class that knows how to process
each kind of object in the hierarchy. The visitor class is an abstract base class that cannot actually
do anything useful, but it has derived classes for performing specific operations.

The following steps are required to support visitors in the Text hierarchy.

1. Create a base class Visitor: see Figure 140. This class has a virtual “visiting” function 405
corresponding to each derived class in the Text hierarchy. Each visiting function is passed a
pointer to an object of the corresponding type in the Text hierarchy.

2. Add functions to “accept” visitors in the Text hierarchy, starting with a pure virtual function
in the base class, as shown in Figure 141. Most of these functions are fairly trivial. For 406
example: 407

void Blank::accept(Visitor & vis) { vis.visitBlank(this); }
void Character::accept(Visitor & vis) { vis.visitCharacter(this); }

For composite classes, function accept passes the visitor to each component individually: 408

void Paragraph::accept(Visitor & vis)
{

for ( vector<Word>::iterator it = words.begin();
it != words.end(); ++it)

it->accept(vis);
}

This completes the framework for visiting.

3. The next step is to construct an actual visitor. We will reimplement the typesetting function,
set as a visitor. For this, we need a class setVisitor derived from Visitor: see Figure 142. 409
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class Text
{
public:

virtual void accept(Visitor & v) = 0;
....

};

Figure 141: Adding accept to the base class of the Text hierarchy

class setVisitor : public Visitor
{
public:

void visitBlank(Blank*);
void visitCharacter(Character * pc);
void visitWord(Word*);
void visitParagraph(Paragraph*);

};

Figure 142: A class for typesetting derived from Visitor

4. Finally, we implement the member functions of setVisitor, as in Figure 143. It is not 410
necessary to provide a body for setVisitor::visitParagraph because it is never called:
when a Paragraph object accepts a visitor, it simply sends the visitor to each of its words
(see Paragraph::accept above). However, we do have to provide a trivial implementation
in order to make Paragraph non-abstract. (Alternatively, we could have defined a trivial
default function in the base class.)

5. To typeset a paragraph p, we call just: 411

p.accept(setVisitor());

To demonstrate the flexibility of the Visitor pattern, we can define another visitor that sets the
same text in capital letters. The new class is called capVisitor: 412

class capVisitor : public Visitor
{
public:

void visitBlank(Blank*);
void visitCharacter(Character * pc);
void visitWord(Word*);
void visitParagraph(Paragraph*);

};

Its member functions are the same as those of setVisitor except for visitCharacter and
visitWord: 413

void capVisitor::visitCharacter(Character * pc)
{
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void setVisitor::visitBlank(Blank*)
{

cout << ’ ’;
}

void setVisitor::visitCharacter(Character * pc)
{

cout << pc->getChar();
}

void setVisitor::visitWord(Word * pw)
{

cout << ’ ’ << pw->getWord();
}

void setVisitor::visitParagraph(Paragraph * pp)
{

cout << "I should never be called";
}

Figure 143: Implementation of class setVisitor

char ch = pc->getChar();
cout << toupper(ch);

}

void capVisitor::visitWord(Word * pw)
{

string word = pw->getWord();
for (string::iterator it = word.begin(); it != word.end(); ++it)

*it = toupper(*it);
cout << ’ ’ << word;

}

To invoke capVisitor, we simply construct an instance:

p.accept(capVisitor());

For a single task (typesetting), setting up the visitor classes seems rather elaborate. Suppose,
however, that there were many operations to be performed on the Text hierarchy. Once we have
defined the accept functions, we do not need to make any further changes to that hierarchy.
Instead, for each new operation that we need, we derive a class from Visitor and define its “visit”
functions for each kind of Text.

The visitor pattern has some disadvantages:

• If we use a separate function for each operation (like set in the original example), we can
pass information around simply by adding parameters. Since the operations are independent,
each can have its own set of parameters.
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The operations in the visitor version, however, must all use the protocol imposed by accept.
This means that they all get exactly the same parameters (none, in our example).

• The structure of composite objects is hard-wired into their accept functions. For example,
Paragraph::accept iterates through its vector of Words. This makes it difficult to modify
the traversal in any way.

In the example above, Paragraph::set inserted line breaks whenever the length of a line
would otherwise have exceeded width. It is difficult to provide this behaviour with the
visitor pattern, because Paragraph::accept does a simple traversal over the words and
does not provide for any additional actions. Nor is it possible to pass an argument to
Paragraph::accept giving the position on the current line.

11.4 State

Problem An object has various states and behaves in different ways depending on its state. We
could write a switch statement to capture this property, as shown in Figure 144. This solution 414

415is unsatisfactory because any changes — modification of a state’s behaviour, adding or removing
states, etc. — requires changes to this statement.

class StateChanger
{
public:

void act()
{

switch (state)
{
case RUNNING:

// ....
break;

case STUCK:
// ....
break;

case BROKEN:
// ....
break;

}
}

private:
enum { RUNNING, STUCK, BROKEN } state;

};

Figure 144: A class with various states

Solution The State pattern is often implemented by inheritance and dynamic binding. The base
class, which may be abstract, defines the action corresponding to a default state or no action at all.
Each derived class defines the action for a particular state. The following example demonstrates
the State pattern with a scanner whose state determines the text that it recognizes.
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The abstract base class Scanner shown in Figure 145 specifies that any scanner object must accept 416

417

418

a character pointer and return a string. Note that the pointer is passed by reference, because a
scanner will advance the pointer over the buffer and must return its new value to the caller. The
result of scanning is the a string representing the token scanned. For example, a number scanner
might return the string "123.456". Figure 145 also shows derived classes that scan white space,
numbers, and identifiers.

The scanners may be selected in various ways. Figure 146 shows a simple managing class. An 419

420

421

instance of ScanManager has a pointer to each kind of scanner; its the constructor creates the corre-
sponding objects dynamically and its destructor deletes them. The function ScanManager::scan is
given a pointer to a character array and it uses the character to choose a scanner object. Figure 147

422shows a simple example of the scanner in use.

Remarks:

• The nice thing about the State pattern is that it localizes the behaviour corresponding to a
given state. There are many simple classes rather than a possibly huge switch statement
or equivalent. It is easy to modify a state without looking at, or even knowing about, other
states. Adding a state is also easy and does not require interfering with existing code.

• In this example, there is a single controlling object, the ScanManager, that handles all the
state changes. This makes the State pattern look a bit pointless. However, there are other
ways of changing state:

– Each derived class might be responsible for choosing its successor state. A drawback of
this approach is that each derived class has to know about one or more other derived
classes, which goes against the usual practice of keeping derived classes independent of
each other.

– The state could be chosen externally. In the example above, ScanManager could provide
another member function that was told what kind of token to expect and could set the
state accordingly.

• It would be nice to put some useful data into the base class. In C++, we cannot do this
efficiently, because the scanning is performed by separate objects that cannot access data in
the base object. There are several workarounds for this problem.

– We could construct state objects dynamically when needed, pass them the information
they need, and delete them at the next state transition. This is clearly less efficient
than the solution above, but the inefficiency might be acceptable if state transitions
were infrequent.

– We could provide additional functions for updating the Scanner objects before executing
them. But it is not obvious when to call such functions.

– Some object oriented languages (e.g., Self) provide dynamic inheritance, which allows
an object to move around the class hierarchy, adopting the behaviour of the class it
belongs to at any given time.

11.5 Bridge

Problem Tight coupling between an interface and an implementation make it difficult to change
either part without affecting the other.
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class Scanner
{
public:

virtual string scan(char * & p) = 0;
};

class ScanBlanks : public Scanner
{
public:

string scan(char * & p)
{

while (isspace(*p))
p++;

return string();
}

};

class ScanNumber : public Scanner
{
public:

string scan(char * & p)
{

string num;
while (isdigit(*p))

num += *p++;
if (*p == ’.’)
{

num += *p++;
while (isdigit(*p))

num += *p++;
}
return num;

}
};

class ScanIdentifier : public Scanner
{
public:

string scan(char * & p)
{

string id(1, *p++);
while (isalpha(*p) || isdigit(*p))

id += *p++;
return id;

}
};

Figure 145: State pattern: scanners for white space, numbers, and identifiers
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class ScanManager
{
public:

ScanManager();
~ScanManager();
string scan(char *buffer);

private:
Scanner *ps;
Scanner *psBlanks;
Scanner *psNumber;
Scanner *psIdentifier;

};

ScanManager::ScanManager() :
ps(0),
psBlanks(new ScanBlanks()),
psNumber(new ScanNumber()),
psIdentifier(new ScanIdentifier())

{ }

ScanManager::~ScanManager()
{

delete psBlanks;
delete psNumber;
delete psIdentifier;

}

string ScanManager::scan(char *buffer)
{

string result;
char *p = buffer;
while (*p != ’\0’)
{

if (isspace(*p))
ps = psBlanks;

else if (isdigit(*p))
ps = psNumber;

else if (isalpha(*p))
ps = psIdentifier;

else
throw "illegal character.";

string token = ps->scan(p);
if (token.length() > 0)

result += "<" + token + "> ";
}
return result;

}

Figure 146: State pattern: the scanner controller class
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int main()
{

ScanManager sm;
char *test = "123 456 Pirate456\t789 anotherID ";
try
{

cout << "Scan succeeded: " << sm.scan(test).c_str() << endl;
}
catch (const char *error)
{

cerr << "Scan failed: " << error << endl;
}
return 0;

}

Figure 147: State pattern: using the scanner

Solution The Bridge pattern separates an abstraction from its implementation so that the two
can vary independently. It is also known as the Handle/Body pattern.

There is an example of the Bridge pattern (called Handle/Body) in Koenig and Moo (2000). In
Section 13.4 (pages 243–245), there is a declaration of class Student_info in which the only data
member is Core *cp. The pointer cp points an instance of either the base class Core or the derived
class Grad: see Figure 148. An instance of class Student_info is constructed by reading data from 423

424a file. The class of *cp is determined by a character in the file: see Figure 149.

425
11.6 The Curiously Recurring Template Pattern

The Curiously Recurring Template Pattern (CRTP) was named by James “Cope” Coplien (1995).
Here it is: 426

class X : public Base<X>
{

....
};

At first sight, it is rather mysterious. An example may help.

Consider this problem: we would like to provide a way of extending any class that provides
operator< so that it also provides operator>.

We might try to apply inheritance in the usual way. We define a base class: 427

class Ordered
{

virtual bool operator<(const Ordered & other) = 0;
bool operator>(const Ordered & other)
{

return other < *this;
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#ifndef GUARD_Student_info_h
#define GUARD_Student_info_h

#include <iostream>
#include <stdexcept>
#include <string>
#include <vector>

#include "Core.h"

class Student_info {
public:

// constructors and copy control
Student_info(): cp(0) { }
Student_info(std::istream& is): cp(0) { read(is); }
Student_info(const Student_info&);
Student_info& operator=(const Student_info&);
~Student_info() { delete cp; }

// operations
std::istream& read(std::istream&);

std::string name() const {
if (cp) return cp->name();
else throw std::runtime_error("uninitialized Student");

}
double grade() const {

if (cp) return cp->grade();
else throw std::runtime_error("uninitialized Student");

}

static bool compare(const Student_info& s1,
const Student_info& s2) {

return s1.name() < s2.name();
}

private:
Core* cp;

};

#endif

Figure 148: Separating interface and implementation (Koenig & Moo, pages 243–244)
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istream& Student_info::read(istream& is)
{

delete cp; // delete previous object, if any

char ch;
is >> ch; // get record type

if (ch == ’U’) {
cp = new Core(is);

} else {
cp = new Grad(is);

}

return is;
}

Figure 149: Setting the pointer (Koenig & Moo, page 245)

}
}

Then we can inherit this base class to give the desired functionality:

class Widget : public Ordered
{

bool operator<(const Widget & other) { .... }
....

};

Unfortunately, this doesn’t work. The redefinition of operator< in class Widget is incorrect because
the parameter type is different. Moreover, Ordered::operator> provides an instance of Ordered
for comparison, but we want to compare another Widget.

template <class T>
class Ordered
{
public:

bool operator>(const T & rhs) const
{

const T & self = static_cast<const T &>(*this);
return rhs < self;

}
};

Figure 150: A class that provides operator> using operator<

CRTP comes to the rescue! We define the base class Ordered as a template class, as shown in
Figure 150. We have to cast from Ordered to T, but we will see that this doesn’t matter in practice. 428
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The revised version of class Widget inherits from a version of class Ordered that is customized for
Widgets, using the “recursive” template argument:

class Widget : public Ordered<Widget>
{

bool operator<(const Widget & other) { .... }
....

};

After templates have been expanded, we have a class that looks something like this (or rather,
would look like this if we could see it): 429

class OrderedWidget
{
public:

bool operator>(const Widget & rhs) const
{

const Widget & self = static_cast<const Widget &>(*this);
return rhs < self;

}
};

We can now see that the cast is perfectly harmless, because it is just casting a const Widget & to
itself!

As another example of CRTP, consider the problem of keeping track of the number of instances
of a class. This is easily done by providing a static counter in the class. But suppose we want
to encapsulate this behaviour, providing a base class whose children can all keep track of their
instances.

The obvious way of doing this doesn’t work. If we put a static counter in the base class, we will
count all instances of child classes. We need a way of providing a separate counter for each child
class. Once again, CRTP shows the way. Here is the base class: 430

template<class T>
class Counted
{
public:

Counted() { ++counter; }
~Counted() { --counter; }
static long num() { return counter; }

private:
static long counter;

};

To make class T a “counted” class, it must inherit from Counted<T>. Whenever we create such as
class, we must also provide an initialized definition for its counter:

class Widget : public Counted<Widget> { .... };
long Counted<Widget>::counter = 0;
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We can create as many counted classes as we need:

class Goblet : public Counted<Goblet> { .... };
long Counted<Goblet>::counter = 0;

Here is a program that tests these ideas. The output shows that the counts are maintained correctly
as objects are created and destroyed. 431

void report(string title)
{

cout << title << endl <<
"Widgets: " << Widget::num() << endl <<
"Goblets: " << Goblet::num() << endl << endl;

}
432

int main()
{

Widget w1;
Goblet g1;
Goblet g2;
{

Widget w2;
Widget w3;
Goblet g3;
report("Inner:");

}
report("Outer:");
return 0;

}

This program writes:

Inner:
Widgets: 3
Goblets: 3

Outer:
Widgets: 1
Goblets: 2




