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Abstract. The purpose of this study is to explore an alternative means of hand 
image classification, one that requires minimal human intervention. The main 
tool for accomplishing this is a Genetic Algorithm (GA). This study is more 
than just another GA application; it introduces (a) a novel cooperative co-
evolutionary clustering algorithm with dynamic clustering and feature selection; 
(b) an extended fitness function, which is particularly suited to an integrated 
dynamic clustering space. Despite its complexity, the results of this study are 
clear: the GA evolved an average clustering of 4 clusters, with minimal overlap 
between them. 

1   Introduction 

Biometric approaches to identity verification offer a mostly convenient and potentially 
effective means of personal identification. All such techniques, whether palm-based or 
not, rely on the individual’s most-unique and stable, physical or behavioural 
characteristics. 

The use of multiple sets of features requires feature selection as a prerequisite for 
the subsequent application of classification or clustering [5, 8]. In [5], a hybrid genetic 
algorithm (GA) for feature selection resulted in (a) better convergence properties; (b) 
significant improvement in terms of final performance; and (c) the acquisition of 
subset-size feature control. Again, in [8], a GA, in combination with a k-nearest 
neighbour classifier, was successfully employed in feature dimensionality reduction. 

Clustering is the grouping of similar objects (e.g. hand images) together in one set. 
It is an important unsupervised classification technique. The simplest and most well 
known clustering algorithm is the k-means algorithm. However, this algorithm 
requires that the user specifies, before hand, the desired number of clusters. An 
evolutionary strategy implementing variable length clustering in the x-y plane was 
developed to address the problem of dynamic clustering [3]. Additionally, a genetic 
clustering algorithm was used to determine the best number of clusters, while 
simultaneously clustering objects [9].  
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Genetic algorithms are randomized search and optimization techniques guided by 
the principles of evolution and natural genetics, and offering a large amount of 
implicit parallelism. GAs perform search in complex, large and multi-modal 
landscapes. They have been used to provide (near-)optimal solutions to many 
optimization problems [4]. 

Cooperative co-evolution refers to the simultaneous evolution of two or more 
species with coupled fitness. Such evolution allows the discovery of complex 
solutions wherever complex solutions are needed. The fitness of an individual 
depends on its ability to collaborate with individuals from other species. In this way, 
the evolutionary pressure stemming from the difficulty of the problem favours the 
development of cooperative individual strategies [7].  

In this paper, we propose a cooperative co-evolutionary clustering algorithm, 
which integrates dynamic clustering, with (hand-based) feature selection. The co-
evolutionary part is defined as the problem of partitioning a set of hand objects into a 
number of clusters without a priori knowledge of the feature space. The paper is 
organized as follows. In section 2, hand feature extraction is described. In section 3, 
cooperative co-evolutionary clustering and feature selection are presented, along with 
implementation results. Finally, the conclusions are presented in section 4. 

2   Feature Extraction 

Hand geometry refers to the geometric structure of the hand. Shape analysis requires 
the extraction of object features, often normalized, and invariant to various geometric 
transformations such as translation, rotation and (to a lesser degree) scaling. The 
features used may be divided into two sets: geometric features and statistical features. 

2.1   Geometric Features 

The geometrical features measured can be divided into six categories: 
- Finger Width(s): the distance between the minima of the two phalanges at either 

side of a finger. The line connecting those two phalanges is termed the finger 
base-line. 

- Finger Height(s): the length of the line starting at the fingertip and intersecting (at 
right angles) with the finger base-line. 

- Finger Circumference(s): The length of the finger contour.   
- Finger Angle(s): The two acute angles made between the finger base-line and the 

two lines connecting the phalange minima with the finger tip. 
- Finger Base Length(s): The length of the finger base-lines. 
- Palm Aspect Ratio:  the ratio of the ‘palm width’ to the ‘palm height’. Palm width 

is (double) the distance between the phalange joint of the middle finger, and the 
midpoint of the line connecting the outer points of the base lines of the thumb and 
pinkie (call it mp). Palm length is (double) the shortest distance between mp and 
the right edge of the palm image. 



2.2   Statistical Features 

Before any statistical features are measured, the fingers are re-oriented (see Fig. 1), 
such that they are standing upright by using the Rotation and Shifting of the 
Coordinate Systems. Then, each 2D finger contour is mapped onto a 1D contour (see 
Fig. 2), taking the finger midpoint centre as its reference point. The shape analysis for 
four fingers (excluding the thumb) is measured using: (1) Central moments; (2) 
Fourier descriptors; (3) Zernike moments. 
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Fig. 1. Hand Fingers (vertically re-oriented) using the Rotation and Shifting of the Coordinate 
Systems                      
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Fig. 2. 1D Contour of a Finger. The y-axis represents the Euclidean distance between the 
contour point and the finger midpoint centre (called the reference point) 

Central Moments. For a digital image, the pth order regular moment with respect to a 
one-dimensional function F[n] is defined as: 
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The normalized one-dimensional pth order central moments are defined as: 
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F[n]:  with n�[0,N]; the Euclidean distance between point n and the finger reference 
point. 

N:      the total number of pixels. 

Fourier Descriptors. We define a normalized cumulative function �* as an 
expanding Fourier series to obtain descriptive coefficients (Fourier Descriptors or 
FD’s). Given a periodic 1D digital function F[n] in [0, N] points (periodic), the 
expanding Fourier series is: 
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The kth harmonic amplitudes of the Fourier Descriptors are: 
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Zernike Moments. For a digital image with a polar form function ),( ��f , the 
normalized (n+m)th order Zernike moments  is approximated by: 
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n:     a positive integer. 
m:   a positive or negative integer subject to the constraints that  n-|m| is even, |l|≤ n. 

),( jjf �� : the length of vector between point j and the finger reference point. 

3   Co-evolution in Dynamic Clustering and Feature Selection 

Our clustering application involves the optimization of three quantities, which 
together form a complete solution, (1) the set of features (dimensions) used for 
clustering; (2) the actual cluster centres; and (3) the total number of clusters. Since 
this is the case, and since the relationship between the three quantities is 
complementary (as opposed to adversarial), it makes sense to use cooperative (as 



opposed to competitive) co-evolution as the model for the overall genetic optimization 
process. Indeed, it is our hypothesis that whenever a (complete) potential solution (i) 
is comprised of a number of complementary components; (ii) has a medium-high 
degree of dimensionality; and (iii) features a relatively low level of coupling between 
the various components; then attempting a cooperative co-evolutionary approach is 
justified. 

In similarity-based clustering techniques, a number of cluster centres are proposed. 
An input pattern (point) is assigned to the cluster whose centre is closest to the point. 
After all the points are assigned to clusters, the cluster centres are re-computed. Then, 
the points are re-assigned to the (new) clusters based (again) on their distance from 
the new cluster centres. This process is iterative, and hence it continues until the 
locations of the cluster centres stabilize. 

During co-evolutionary clustering, the above occurs, but in addition, less 
discriminatory features are eliminated, leaving a more efficient subset for use. As a 
result, the overall output of the genetic optimization process is a number of 
traditionally good (i.e. tight and well-separated) clusters, which also exist in the 
smallest possible feature space. 

The co-evolutionary genetic algorithm used entails that we have two populations 
(one of cluster centres and another of dimension selections: more on this below), each 
going through a typical GA process. This process is iterative and follows these steps:  
(a) fitness evaluation; (b) selection; (c) the application of crossover and mutation (to 
generate the next population); (d) convergence testing (to decide whether to exit or 
not);  (e) back to (a).   

This continues until the convergence test is satisfied and the process is stopped.  
The GA process is applied to the first population and in parallel (but totally 
independently) to the second population. The only difference between a GA applied to 
one (evolving population) and a GA applied to two cooperatively co-evolving 
populations is that fitness evaluation of an individual in one population is done after 
that individual is joined to another individual in the other population. Hence, the 
fitness of individuals in one population is actually coupled with (and is evaluated with 
the help of) individuals in the other population. 

Below, is a description of the most important aspects of the genetic algorithm 
applied to the co-evolving populations that make-up PalmPrints. First, the way 
individuals are represented (as chromosomes) is described. This is followed by an 
explanation of step (a) to step (e), listed above. Finally, a discussion of the results is 
presented. 

3.1   Chromosomal Representation 

In any co-evolutionary genetic algorithm, two (or more) populations co-evolve. In our 
case, there are only two populations, (a) a population of cluster centres (Cpop), each 
represented by a variable-length vector of real numbers; and (b) a population of 
‘dimension-selections’, or simply dimensions (Dpop), each represented by a vector of 
bits. Each individual in Cpop represents a (whole) number of cluster centre 
coordinates. The total number of coordinates equals the number of clusters. On the 
other hand, each individual (‘dimension-selection’) in Dpop indicates, via its ‘1’ bits, 



which dimensions will be used and which, via its ‘0’ bits, will not be used. Splicing an 
individual (or chromosome) from Cpop with an individual (or chromosome) from 
Dpop will give us an overall chromosome that has the following form: 

 
{(A1, B1, … , Z1), (A2, B2, ... , Z2), ... (An, Bn, ... ,  Zn), 10110…0 } 

 
Taken as a single representational unit, this chromosome determines: 

(1) The number of clusters, via the number of cluster centres in the left-hand side of 
the chromosome; 

(2) The actual cluster centres, via the coordinates of cluster centres, also presented in 
the left-hand side of the chromosome; and 

(3) The number of dimensions (or features) used to represent the cluster centres, via 
the bit vector on the right-hand side of the chromosome. 

As an example, the chromosome presented above has n clusters in three 
dimensions: the first, third and fourth dimensions. (This is so because the bit vector 
has 1 in its first bit location, 1 in its third bit location and 1 in its fourth bit location.) 
The maximum number of feature dimensions (allowed in this example) is equal to the 
number of letters in the English alphabet: 26, while the minimum is 1. And, the 
maximum number of clusters (which is not shown) is m>n.  

3.2   Crossover and Mutation, Generally  

In our approach, the crossover operators need to (a) deal with varying-length 
chromosomes; (b) allow for a varying number of feature dimensions;  (c) allow for a 
varying number of clusters; and (d) to be able to adjust the values of the coordinates 
of the various cluster centres. This is not a trivial task, and is achieved via a host of 
crossover operators, each tuned for its own task. This is explained below. 

Crossover and Mutation for Cpop. Cpop needs crossover and mutation operators 
suited for variable-length clusters as well as real-valued parameters. When crossing 
over two parent chromosomes to produce two new child chromosomes, the algorithm 
follows a three-step procedure: 
(a) The length of a child chromosome is randomly selected from the range: [2, 

MaxLength], where MaxLength is equal to the total number of clusters in both 
parent chromosomes;   

(b) Each child chromosome picks up copies of cluster centre coordinates, from each 
of the two parents, in proportion to the relative fitness of the parents (to each 
other); and finally,   

(c) The actual values of the cluster coordinates are modified using the following 
(mutation) formula for ith feature with α randomly selected from the range [0,1]: 

 

f i  = min(Fi) + α [max (Fi)  -  min (Fi) ] . (1) 

Fi: the ith feature dimension, i= 0,1,2….  
α: a random value ranged [0,1]. 
min(f i ) / max(f i ):   minimum  / maximum value that feature i can take. 



  
 With α changed within [0,1], the function of equation (1) varies the ith feature 
dimension in its own feature distinguished range [min(Fi), max(Fi)] as for the 
variation of actual values of the cluster coordinates (see Fig. 3).   
 
 
 
 
 
 
 
 
 

Fig. 3. Variation of the ith feature dimension within [min(Fi), max(Fi)] with a random value α 
ranged [0,1] 

In addition to crossover, mutation is applied, with a probability µc to one set of 
cluster centre coordinates. The value of µc used is 0.2 (or 20%).  

Crossover and Mutation for Dpop. Dpop needs one crossover operator suited for 
fixed length binary-valued parameters. For a binary representation of Dpop 
chromosomes, single-point crossover is applied. Following that, mutation is applied 
with a mutation rate of µd. The value of µd used is 0.02.   

3.2   Selection and Generation of Future Generations 

For both populations, elitism is applied first, and causes copies of the fittest 
chromosomes to be carried over (without change) from the current generation to the 
next generation. Elitism is set at 12% of Cpop and 10% of Dpop. Another 12% of 
Cpop and 10% of Dpop are generated via the crossing over of pairs of elite 
individuals, to generate an equal number of children. The rest (76% of Cpop and 80% 
of Dpop ) of the next generation is generated through the application of crossover and 
mutation (in that order) to randomly selected individuals from the non-elite part of the 
current generation. Crossover is applied with a probability of 1 (i.e. all selected 
individuals are crossed over), while mutation is applied with a probability of 20% for 
Cpop and 2% for Dpop.  

3.3   Fitness Function 

Since the Mean Square Error (MSE) can always be decreased by adding a data point 
as a cluster centre, fitness was a monotonically decreasing function of cluster 
numbers. The fitness function (MSE) was poorly suited for comparing clustering 
situations that had a different numbers of clusters. A heuristic MSE was chosen with 
dynamic cluster n, based on the one given by [3]. 



In our own approach of dynamic clustering with feature selection in a co-
evolutionary GA, there are two dynamic variables interchanged with the two 
populations: dynamic clustering and dynamic feature dimensions. Hence, a new 
extended MSE fitness is proposed for our model, which measures quantities of both 
object tightness (fT ) and cluster separation (fS ): 
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n:     dynamic no. of clusters     
k:     dynamic no. of features 
ci:    the ith cluster centre      
Ave(A):  the average value of A 
mi:   the number of data points belonging to the ith cluster 

i
jx :  the jth data point belonging to the ith cluster 

d(a,b):    the Euclidean distance between points a and b 
 

The square root of the number of clusters and the square root of the number of 
dimension in MSE extended fitness are chosen to be unbiased in the dynamic co-
evolutionary environment. The point of the MSE extended fitness is to optimize of the 
distance criterion by minimizing the within-cluster spread and maximizing the inter-
cluster separation. 

3.4   Convergence Testing 

The number of generations prior to termination depends on whether an acceptable 
solution is reached or a set number of iterations are exceeded. Most genetic 
algorithms keep track of the population statistics in the form of population maximum 
and mean fitness, standard deviation of (maximum or mean) fitness, and minimum 
cost. Any of these or any combination of these can serve as a convergence test. In 
PalmPrints, we stop the GA when the maximum fitness does not change by more than 
.001 for 10 consecutive generations.  

3.5   Implementation Results 

The Dpop population is initialized with 500 members, from which 50 parents were 
paired from top to bottom. The remaining 400 offspring are produced randomly using 



single-point crossover and a mutation rate (µd) of 0.02. Cpop is initialized at 88 
individuals, from which 10 members are selected to produce 10 direct new copies in 
the next generation. The remaining 68 are generated randomly, using the dimension 
fine-tuning crossover strategy and a mutation rate (µc) of 0.2. 

The experiment presented here uses 100 hand images and 84 normalized features. 
Termination occurred at a maximum of 250 generations, since it is discovered that 
fitness converged to less than 0.0001 variance prior. The results are promising; the 
average co-evolutionary clustering fitness is 0.9912 with a significantly low standard 
deviation of 0.1108. The average number of clusters is 4, with a very low standard 
deviation of 0.4714. Average hand image misplacement rate is 0.0580, with a low 
standard deviation of 2.044. Following convergence, the dimension of the feature 
space is 41, with zero standard deviation. Hence, half of the original 84 features are 
eliminated. Convergence results are shown in Fig. 4. 
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Fig. 4. Convergence results 

4   Conclusions 

This study is the first to use a genetic algorithm to simultaneously achieve 
dimensionality reduction and object (hand image) clustering. In order to do this, a 
cooperative co-evolutionary GA is crafted, one that uses two populations of part-



solutions in order to evolve complete highly fit solutions for the whole problem. It 
does succeed in both its objectives. The results show that the dimensionality of the 
clustering space is cut in half. The number (4) and quality (0.058) of clusters 
produced are also very good. These results open the way towards other cooperative 
co-evolutionary applications, in which 3 or more populations are used to co-evolve 
solutions and designs consisting of 3 or more loosely-coupled sub-solutions or 
modules.  

In addition to the main contribution of this study, the authors introduce a number of 
new or modified structural (e.g. palm aspect ratio) and statistical features (e.g. finger 
1D contour transformation) that may prove equally useful to others working on the 
development of biometric-based technologies. 
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