Publications
D. Jones, M. Kohler, A. Krzyzak and A. Richter, Empirical comparison of
nonparametric regression estimates on real data,
to appear in Communications in Statistics-Simulation
and Computation, 2014.
M. Kohler, A. Krzyzak and H. Walk, Optimal
global
rates of convergence for nonparametric regression with unbounded
data, submitted to Journal of Statistical Planning and
Inference, July 1, 2005. Under revision.
M. Kohler and A. Krzyzak, Asymptotic confidence
intervals for Poisson regression. To appear in Journal of
Multivariate
Analysis. Accepted July 26, 2006.
K. Thirulogasanthar, A. Krzyzak,
and Q. D. Katatbeh,
Quaternionic vector coherent states and the SUSY
harmonic
oscillator. To appear in Theoretical and
Mathematical Physics Journal.
Accepted 23 March, 2006.
G. Y. Chen, T. D. Bui, and A. Krzyzak,
Invariant ridgelet-Fourier descriptor for pattern
recognition,
Pattern Analysis and Applications Journal, vol. 9, pp. 83-93, 2006.
S. Li, T. Fevens, A. Krzyzak,
and S. Li,
Automatic clinical image segmentation using pathological
modelling, PCA and SVM, Engineering Applications in
Artificial Intelligence Journal, vol. 19, pp. 403-410, 2006.
S. Li, T. Fevens, A. Krzyzak,
and S. Li,
Automatic variational level set segmentation
framework for dental
X-rays analysis in clinical environments, Computerized
Medical Imaging and Graphics, vol. 30, pp. 65-74, 2006.
M. Kohler and A. Krzyzak,
Adaptive regression estimation with multilayer
feedforward neural networks,
Journal of Nonparametric Statistics, vol. 17, no. 8,
Dec. 2005, pp. 891-913.
M. Kohler, A. Krzyzak and H. Walk, Rates of
convergence
for partitioning and nearest neighbor regression estimates with
unbounded data, Journal of Multivariate
Analysis, vol. 97,
issue 2, Feb. 2006.
G. Y. Chen, T. D. Bui, and A. Krzyzak,
Rotation invariant pattern recognition using ridgelets,
wavelet
cycle-spinning and Fourier features, Pattern Recognition
Journal, vol. 38, pp. 2314-2322, 2005.
J. Dong, A. Krzyzak, and C. Y. Suen,
An improved handwritten Chinese character recognition system using
support vector machine, Pattern Recognition Letters, vol.
26, pp. 1849-1856, 2005.
A. Krzyzak and M. Partyka,
Global identification of nonlinear
Hammerstein systems by recursive kernel approach, Journal on
Nonlinear Analysis, vol. 63, no. 5-7, pp. 1263-1272, 2005.
E. Rafajlowicz and A. Krzyzak,
Nonparametric and
nonlinear reconstruction of surfaces from qualitative
observations, Journal on Nonlinear Analysis, vol. 63, no.
5-7, pp. 1273-1279, 2005.
A. Krzyzak and D. Schaefer, Nonparametric
regression estimation by normalized radial basis function
networks, IEEE Transactions on Information Theory, vol. 51,
no. 3, pp. 1003-1010, 2005.
J. Dong, A. Krzyzak, and C. Y. Suen,
Fast SVM training algorithm with decomposition on very large
training sets, IEEE Transactions on Pattern Analysis and Machine
Intelligence,
vol. 27, no. 4, pp. 603-618, 2005.
G. Y. Chen, T. D. Bui, and A. Krzyzak,
Image denoising using neighborhood wavelet
coefficients,
Integrated Computer-Aided Engineering Journal, vol. 12, no. 1,
pp. 99-107, 2005.
G. Y. Chen, T. D. Bui, and A. Krzyzak,
Image denoising with neighbor dependency
and customized wavelet and threshold,
Pattern Recognition Journal, vol. 38, pp. 115-124,
2005.
K. Thirulogasanthar, G. Honnouvo,
and A. Krzyzak,
Multi-matrix vector coherent states, Annals of Physics, vol.
314, no. 1, pp. 119-144, 2004.
M. Pawlak, E. Rafajlowicz,
and A. Krzyzak,
Post-filtering versus pre-filtering for signal recovery from noisy
samples, IEEE Transactions on
Information Theory, vol. 49, no. 12, pp. 3195-3212, 2003.
M. Kohler, A. Krzyzak, and H. Walk,
Strong consistency of automatic kernel regression estimates,
Annals of the Institute of
Statistical Mathematics, vol. 55, no. 2, pp. 287-308, 2003.
J. Dong, A. Krzyzak, and C. Y. Suen,
A fast SVM training algorithm,
International Journal of Pattern Recognition
and Artificial Intelligence, vol. 17, no. 3, pp. 367-384, 2003.
G. Y. Chen, T. D. Bui, and A. Krzyzak,
Contour-based handwritten numeral recognition using
multiwavelets and neural networks,
Pattern Recognition Journal,
vol. 36, pp. 1597-1604, 2003.
L. Devroye and A. Krzyzak,
New multivariate product density estimators, Journal of
Multivariate Analysis, vol. 82, pp. 88-110, 2002.
J. Dong, A. Krzyzak, and C. Y. Suen,
Local learning framework for
handwritten character recognition,
Engineering Applications in Artificial Intelligence Journal ,
vol. 15, no. 2, pp. 151-159, 2002.
M. Kohler, A. Krzyzak, and D. Schaefer,
Application
of structural risk minimization to multivariate
smoothing spline regression estimates,
Bernoulli Journal, vol. 8, no 4, pp. 475-489,
2002.
J. Zhou, A. Krzyzak, and C.Y. Suen,
Verification - a method of
enhancing the recognizers of isolated and touching
handwritten numerals, Pattern Recognition Journal, vol. 35, no 5,
pp. 1179-1189, May 2002.
B. Kegl and A. Krzyzak,
Piecewise linear skeletonization using principal
curves,
IEEE Transactions on
Pattern Analysis and Machine Intelligence,
vol. 24, no. 1, pp.
59-74, Jan. 2002.
M. Kohler, and A. Krzyzak,
A Vapnik-Chervonenkis
approach to penalized least squares estimation,
IEEE Transactions on
Information Theory, vol. 47, no. 7, pp. 3054-3058, Nov. 2001.
A. Krzyzak,
Nonlinear function
learning using optimal radial basis function networks,
Journal
on Nonlinear Analysis, vol. 47, pp. 293-302, 2001.
A. Krzyzak, and H. Niemann,
Convergence and rates of
convergence of radial basis functions
networks in function learning,
Journal
on Nonlinear Analysis, vol. 47, pp. 281-292, 2001.
A. Krzyzak, E. Rafajlowicz
and
E. Skubalska-Rafajlowicz,
Clipped median and space-filling curves in image filtering,
Journal
on Nonlinear Analysis, vol. 47, pp. 303-314, 2001.
A. Krzyzak, J. Sasiadek
and B. Kegl,
Identification of dynamic nonlinear systems using the Hermite
series approach,
International Journal of Systems Science,
vol. 32, no. 10, pp. 1261-1285, 2001.
B. Kegl,
A. Krzyzak, T. Linder, and K. Zeger,
Learning and
IEEE Transactions on
Pattern
vol.
22, no. 3, pp. 281--297,
J. Zhou, Q. Gan, A. Krzyzak, and C.Y. Suen, Quantum Neural
Network in Recognition
of Handwritten Numerals,
International Journal on
Document Analysis and Recognition, vol. 2,
pp.
30-36, 1999.
L. Devroye and A. Krzyzak,
On the Hilbert kernel
density estimate,
Statistics
and Probability Letters, vol. 44, pp. 299-308, 1999.
L. Devroye, L. Gyorfi, and A. Krzyzak,
The Hilbert kernel
regression estimate,
Journal of Multivariate
Analysis,
vol. 65, pp. 209-227, 1998.
A. Krzyzak
and T. Linder, Radial
basis function nets and complexity
regularization in function learning,
IEEE
Transactions on Neural Networks, vol. 9, no. 2, pp. 247-256, 1998.
A.
Krzyzak, E. Rafajlowicz, and M. Pawlak,
Moving average restoration
of band-limited
IEEE
Transactions on Signal Processing,
M. Pawlak, E. Rafajlowicz, and A. Krzyzak,
Exponential weighting
algorithms for restoration of
IEEE
Transactions on Signal Processing,
A. Krzyzak, T. Linder, and G. Lugosi,
Nonparametric estimation
IEEE
Transactions on Neural Networks,
A. Krzyzak,
On nonparametric
estimation of nonlinear systems by the Fourier
Signal
Processing Journal, vol. 52, pp. 299-321, 1996.
L. Devroye, L. Gyorfi, A. Krzyzak, and G. Lugosi,
On the strong universal
consistency of nearest neighbor regression
Annals
of Statistics, vol. 22, no. 3,
A. Cichocki, R. Unbehauen, and A. Krzyzak,
Neural networks with
on-chip
Journal
of Artificial Neural Systems, vol. 1, no. 1, pp. 1-23, 1994.
L. Xu, A. Krzyzak, and A. Yuille,
On radial basis function net and kernel regression:
Neural Networks
Journal, vol. 7, no. 4, pp. 609-628, Sept. 1994.
X. Yu, T.D. Bui, and A. Krzyzak,
Range image segmentation
and fitting by residual consensus,
IEEE Transactions
on Pattern Analysis and Machine
vol. 16, no. 5, pp.
530-538, May 1994.
L. Xu, A. Krzyzak, and C.Y. Suen,
Associative switch for
combining multiple classifiers,
Journal of
Artificial Neural Networks, vol. 1, no. 1, pp. 77-100,
A. Krzyzak,
Identification of
nonlinear block-oriented systems by the
Journal
of the Franklin Institute, vol. 330, no. 3, pp. 605-627,
L. Xu,
A. Krzyzak, and E. Oja,
Rival penalized
competitive learning for clustering analysis, RBF
IEEE Transactions
on Neural Networks, vol. 4, no. 4,
A. Krzyzak,
Identification of
nonlinear systems by recursive kernel regression
International
Journal of Systems Science, vol. 24, no. 3, pp. 577-598, 1993.
A.
Krzyzak and M. Partyka,
Identification of block
oriented systems by nonparametric
International
Journal of Systems Science, vol. 24, no. 6,
A.
Al-Aloosy., A. Krzyzak and W. Zamojski,
Approximation of a mean
time of the
Applied
Mathematics and
A. Krzyzak,
Global convergence of
the recursive kernel regression
IEEE Transactions
on Information Theory,
L. Xu, A. Krzyzak,
and C.Y. Suen,
Methods of combining
multiple classifiers and their applications
IEEE Transactions
on Systems, Man, and Cybernetics,
L. Xu, A. Krzyzak, and E. Oja,
Neural Nets for Dual
Subspace Pattern Recognition Method,
International
Journal of Neural Systems, vol. 2, no. 3,
On exponential bounds on
the Bayes risk of the kernel
IEEE Transactions on
Information Theory,
A. Krzyzak,
On estimation of a class
of nonlinear systems by the kernel
regression estimate,
IEEE Transactions
on Information Theory,
A. Krzyzak,
On identification of
discrete Hammerstein systems by the
International
Journal of Systems Science,
L. Devroye and A. Krzyzak,
An equivalence theorem
for L1 convergence of the
Journal
of Statistical Planning and Inference, vol. 23, pp. 71-82, 1989.
A. Krzyzak,
Y.S. Leung, and
C.Y. Suen,
Reconstruction of two
dimensional patterns by Fourier descriptors,
Machine Vision and
Applications Journal,
A.
Krzyzak, and M. Partyka,
Decision tables in
composition and decomposition
AMSE
Review, vol. 5, no. 4, pp. 25-30, 1987.
A. Krzyzak and M. Pawlak,
The pointwise
rate of convergence of the kernel regression
Journal
of Statistical Planning and Inference, vol. 16, pp. 159-166, 1987.
A. Krzyzak,
The rates of convergence
of kernel regression estimates and
IEEE Transactions on
Information Theory,
A. Krzyzak,
Distribution-free
consistency and the rate of convergence of k-NN
regression estimates,
Mittenkungsblatt der Osterrechischen
Statistischen Gesellschaft,
vol. 55/56, pp. 183-196, 1984.
W.
Greblicki, A. Krzyzak, and M.
Pawlak,
Distribution-free pointwise consistency of kernel regression
Annals
of Statistics, vol. 12, no. 4, pp. 1570-1575, 1984.
A.
Krzyzak, and M. Pawlak,
Almost everywhere
convergence of recursive regression function
IEEE Transactions on
Information Theory,
A. Krzyzak and M. Pawlak,
Distribution-free
consistency of nonparametric kernel regression
IEEE Transactions
on Information Theory,
A. Krzyzak and M. Partyka,
Application of systems
analysis and synthesis
for optimal
AMSE
Review, vol. 3, no. 4, pp. 25-30, 1984.
A. Krzyzak,
A classification
procedure using multivariate variable kernel
Pattern
Recognition Letters, vol. 1, no. 5,6, pp. 293-298,
1983.
A. Krzyzak and M. Pawlak,
Universal consistency
results for Wolverton-Wagner regression
Problems of Control and
Information Theory, vol. 2,
W.
Greblicki and A. Krzyzak,
Asymptotic properties of
kernel estimates of a regression function,
Journal
of Statistical Planning and Inference,
W.
Greblicki and A. Krzyzak,
Nonparametric
identification of memoryless system with cascade
International
Journal of Systems Science,
S. Li, T. Fevens, A. Krzyzak
and Song Li,
Fast and robust clinical triple-region image segmentation using
one level set function, Proceedings of the MICCAI 2006, 9th
International Conference on Medical Image Computing and Computer
Assisted Intervention, October 1-6, 2006, Copenhagen, Denmark.
Lecture Notes in Computer Science, Barillot,
Christian, Haynor,
David R., Hellier, Pierre (Eds.), Vol. 0000,
Springer-Verlag,
2006, pp. 0000.
G. Y. Chen, T. D. Bui, and A. Krzyzak,
Palmprint classification using dual-tree complex
wavelets,
Proceedings of IEEE International Conference on Image
Processing ICIP 2006, Atlanta, USA, Oct. 8-11, 2006, pp. 0000.
M. Kohler and A. Krzyzak, Rate of
convergence of local averaging plug-in
classification rules under margin condition,
Proceedings of
IEEE 2006 International Symposium on Information Theory, Seattle,
USA, July 9-14, 2006, pp. 2176-2179.
A. Krzyzak and D. Schaefer, Nonlinear function
learning
by the normalized radial basis function networks, to appear in
it Proceedings of 8th International Conference on Artificial
Intelligence and Soft Computing ICAISC'06, Zakopane,
Poland, June
25-29, 2006. Lecture Notes in Artificial Intelligence, vol. LNAI
4029, Springer-Verlag, 2006, pp. 46-55.
L. Jelen, T. Fevens
and A. Krzyzak,
Automated feature extraction for breast cancer grading with
Bloom-Richardson scheme, to appear in it Proceedings of 20th
International Conference on Computer Assisted Radiology and
Surgery (CARS 2004), Osaka, Japan, June 28-July 1, 2006.
S. Li, C. Jin, T. Fevens, A. Krzyzak, S. P. Mudur,
A medical volume reconstruction method using tetrahedral meshes
and level set, to appear in it Proceedings of 20th International
Conference on Computer Assisted Radiology and Surgery (CARS
2004), Osaka, Japan, June 28-July 1, 2006.
S. Li, T. Fevens, and A. Krzyzak,
Toward automatic computer aided dental X-ray analysis using level
set method , Proceedings of the MICCAI 2005, 8th
International Conference on Medical Image Computing and Computer
Assisted Intervention, October 26-29, 2005, Palm Springs,
California, USA. Lecture Notes in Computer Science, Duncan, J.,
Gerig, G. (Eds.), Vol. 3750, Springer-Verlag, 2005, pp. 670-678.
J. Dong, C. Y. Suen, and A. Krzyzak,
Cursive word
skew/slant correction based on Radon transform, Proceedings
of International Conference on Analysis and Recognition ICDAR
2005, Seoul, Korea, Aug. 29-Sept. 1, 2005, pp. 478-482.
M. Kohler and A. Krzyzak, Rates of convergence
for adaptive
regression estimates with multiple hidden layer feedforward
neural
networks, Proceedings of IEEE 2004 International
Symposium on
Information Theory, Adelaide, Australia, Sept. 4-9, 2005, pp.
1436-1440.
J. Dong, C. Y. Suen, and A. Krzyzak,
Algorithms of fast
SVM evaluation based on subspace projection, Proceedings of
the International Joint Conference on Neural Networks IJCNN 2005,
Montreal, Canada, July 31-August 4, 2005, pp. 865-870.
J. Dong, A. Krzyzak, and C. Y. Suen,
Low-level cursive word representation based on geometric
decomposition, Proceedings of the International Conference on
Machine Learning and Data Mining, MLDM 2005, P. Perner
and A.
Imiya (Eds.), Leipzig, Germany, July 9-11, 2005,
Springer Lecture
Notes in Artificial Intelligence, vol. LNAI 3587, pp. 590-599,
2005.
S. Li, T. Fevens, A. Krzyzak,
and S. Li,
Automatic clinical image segmentation using pathological
modelling, PCA and SVM, Proceedings of the International
Conference on Machine Learning and Data Mining, MLDM 2005, P.
Perner and A. Imiya (Eds.),
Leipzig, Germany, July 9-11, 2005,
Springer Lecture Notes in Artificial Intelligence, vol. LNAI 3587,
pp. 314-324, 2005.
A. Krzyzak, J. Sasiadek
and B. Kegl,
On the Hermite Series Approach to Nonparametric
Identification of
Hammerstein Systems, Proceedings of IFAC World Congress,
Prague, July 4-8, 2005 (to appear).
S. Li, T. Fevens, and A. Krzyzak,
Level set segmentation for computer-aided dental x-ray analysis,
Proceedings of SPIE Symposium on Medical Imaging, San Diego,
USA, February 12-17, 2005, pp. 580-589.
S. Li, T. Fevens, and A. Krzyzak,
Image segmentation adapted for clinical settings by combining
pattern classification and level sets, Proceedings of the em
MICCAI 2004, 7th International Conference on Medical Image
Computing and Computer Assisted Intervention, September 26-30,
2004, Saint-Malo, France. Lecture Notes in Computer Science, vol.
LNCS 3216-3217, Springer-Verlag, pp. 160--167, 2004.
M. Kohler and A. Krzyzak,
Adaptive regression estimation with multilayer
feedforward neural networks, Proceedings of the
6-th World Congress of the Bernoulli Society for Mathematical
Statistics and Probability, Barcelona, Spain, July 26-31, 2004,
p. 129.
M. Kohler and A. Krzyzak,
Adaptive regression estimation with multilayer
feedforward neural networks, Proceedings of
IEEE 2004 International Symposium on Information Theory,
Chicago, USA, June 29-July 4, 2004, p. 467.
S. Li, T. Fevens, and A. Krzyzak,
An SVM-based framework for autonomous volumetric medical image
segmentation using hierarchical and coupled level sets,
Proceedings of 18th International Conference on Computer
Assisted Radiology and Surgery (CARS 2004), Chicago, USA, June 23
- 26, 2004, Elsevier Int. Congress Series 1268, 2004, pp.
207--212.
A. Krzyzak and E. Skubalska-Rafajlowicz,
Combining space-filling curves and radial basis function networks,
Proceedings of ICAISC 2004, 7th International Conference on
Artificial Intelligence and Soft Computing, June 7-11, 2004,
Zakopane, Poland. Lecture Notes in Artificial
Intelligence, vol.
LNAI 3070, Springer-Verlag, 2004, pp. 229-234.
R. Buchnajzer, J. W. Atwood, and A. Krzyzak,
Simulation of lead-time scheduling in PMP FWA networks,
Proceedings of 2004 IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE 2004), Niagara Falls, May 2-5,
2004, pp. 1693--1698.
G. Y. Chen, T. D. Bui, and A. Krzyzak,
Image compression with optimal wavelet, Proceedings of 2004 IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE 2004),
Niagara Falls, May 2-5, 2004, pp. 0209--0212.
G. Y. Chen, T. D. Bui, and A. Krzyzak,
Image denoising using neighboring wavelet
coefficient,
Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing ICASSP 2004, Montreal, May 17-21,
2004, pp. II-917-920.
A. Krzyzak and S. Klasa,
Chernoff bound on classification error for
multivariate parametric
and nonparametric classes, Proceedings of the 35th
Southeastern International Conference on Combinatorics,
Graph
Theory, and Computing, Baton Rouge, Florida, March 8-12, 2004.
G. Y. Chen, T. D. Bui, and A. Krzyzak,
Optimal Wavelets and Neural Networks for Pattern Recognition, em
Proceedings of Image and Vision Computing, Palmerston
North, New
Zealand, November 26-28, 2003, pp. 315-319.
J. Dong, A. Krzyzak, and C. Y. Suen,
High accuracy handwritten Chinese character recognition
using support vector machine,
Proceedings of International Workshop on Artificial Neural
Networks in Pattern Recognition,
Florence, Italy, September 12-13, 2003, pp. 39-45.
A. Krzyzak and D. Schaefer, Nonparametric
regression estimation
by radial basis function networks and empirical risk minimization,
Proceedings of 2003 9th IEEE International Conference on
Methods and Models in Automation and Robotics (MMAR 2003),
Miedzyzdroje, Poland, August 25-28, 2003, pp.
891-898.
A. Krzyzak and D. Schaefer, Nonparametric
regression
estimation by normalized radial basis function networks, em
Proceedings of IEEE 2003 International Symposium on Information
Theory, Yokohama, Japan, June 29-July 4, p. 219, 2003.
J. Dong, A. Krzyzak, and C. Y. Suen,
A fast parallel optimization for training support vector, em
Proceedings of the International Conference on Machine Learning
and Data Mining, MLDM 2003, P. Perner and A.
Rosenfeld (Eds.),
Leipzig, Germany, July 5-7, 2003, Springer Lecture Notes in
Artificial Intelligence, vol. LNAI 2734, pp. 96-105, 2003.
J. Dong, A. Krzyzak, and C. Y. Suen,
A practical SMO algorithm, Proceedings of the 2002
International Conference on Pattern Recognition, Quebec City,
Canada, August 11-15, 2002.
J. Dong, A. Krzyzak, and C. Y. Suen,
A fast SVM training algorithm, Proceedings of the
International Workshop on Pattern Recognition with Support Vector
Machines , S. W. Lee and A. Verri (Editors). Niagara
Falls,
Canada, August 10, 2002. Springer Lecture Notes in Computer
Science LNCS, vol. LNCS 2388, pp. 53-67, 2002.
M. Pawlak, E. Rafajlowicz,
and A. Krzyzak,
Post-filtering versus pre-filtering for signal sampling and
recovery under noise, IEEE International Symposium on
Information Theory, Lausanne, Switzerland, June 30-July 5, p.
155, 2002.
A. Krzyzak and S. Klasa,
On convergence of neural network
regression estimates and
classification rules, Proceedings of the
30th Southeastern International Conference on
Combinatorics, Graph Theory, and Computing, Baton
Rouge, Florida, 2001, Congressus
Numerantium, vol. 152, pp. 159-168, 2002.
J. Dong, A. Krzyzak, and C. Y. Suen,
A multinet local learning framework for pattern
recognition,
Proceedings of the Sixth International Conference on Document Analysis
and Recognition,
Seattle, September 10-13, 2001, pp. 328-332, 2001.
J. Dong, A. Krzyzak, and C. Y. Suen,
A local learning framework for recognition of lowercase handwritten characters,
Proceedings of Machine Learning and Data Mining in Pattern Recognition
Conference,
Leipzig, July 25-27, 2001, Springer Lecture Notes in Computer Science, pp.
226-238, 2001.
A. Krzyzak,
Nonlinear function learning and classification using optimal radial basis
function networks,
Proceedings of Machine Learning and Data Mining in Pattern Recognition
Conference,
Leipzig, July 25-27, 2001, Springer Lecture Notes in Computer Science, pp.
217-225, 2001.
A. Krzyzak,
Nonlinear function learning and classification using optimal radial basis
function networks,
presented at the Conference on Nonlinear Learning and Classification,
Mathematical Sciences Research Institute, University of California at Berkeley,
March 19-29, 2001, considered for the proceedings
to be published in Springer Lecture Notes in Computer Science.
A. Krzyzak,
Nonlinear function learning
using optimal radial basis function networks,
Proceedings of IEEE International Symposium on Information Theory,
Washington DC, June 24-29, 2001, p. 93.
J. Dong, A. Krzyzak, and C. Y. Suen,
A local learning framework for pattern recognition,
Proceedings of 14th Conference Vision Interface, Ottawa, Canada, June
7-9, 2001, pp. 220--227.
A. Krzyzak and S. Klasa,
On
almost sure convergence and rates of radial basis function networks
classifiers,
Congressus Numerantium, vol. 142, 2000, pp. 185-193.
J. Zhou, A. Krzyzak, and C. Y. Suen,
Recognition and verification of touching handwritten numerals,
Proceedings of the International Workshop on Frontiers in Handwriting
Recognition, Amsterdam, September 11-13, 2000, pp. 179-188.
J. Zhou, A. Krzyzak, and C. Y. Suen,
Recognition and
Verification of Touching Handwritten Numerals,
Proceedings of the
International Workshop on Frontiers
B.
Kegl, A. Krzyzak, and H. Niemann,
Radial Basis Function Networks and Complexity Regularization
Proceedings of the 15th International
Conference on Pattern
B. Kegl, A. Krzyzak,
Piecewise linear skeletoni
Proceedings of the 15th International
Conference on Pattern
A.
Krzyzak, E. Rafajlowicz, and M. Pawlak,
Signal Recovery Under
Noise for Not Necessarily
E.
Rafajlowicz and A. Krzyzak,
Consistency of max+min algorithm for reconstruction of surfaces
E.
Rafajlowicz and A. Krzyzak,
Reconstruction of
surfaces from random depth sensing using
Proceedings
of the Fifth Conference on Neural
M. Kohler, and A. Krzyzak,
A Vapnik-Chervonenkis
approach
Abstracts
of the 5th World Congress of the Bernoulli Society
A.
Krzyzak and S. Klasa,
On $L_1$ convergence and
rates of
and
classification,
Congressus Numerantium,
vol. 138,
L. Devroye and A. Krzyzak,
On Hilbert kernel
density estimates,
Proceedings of the
Colloquium on Limit Theorems
B. Kegl, A. Krzyzak, T. Linder, and
K. Zeger,
A Polygonal Line Algorithm for Constructing
Principal Curves,
Advances in Neural Information
B. Kegl, A. Krzyzak, T. Linder, and
K. Zeger, Principal
Curves: Learning and Convergence, Proceedings of 1998 IEEE
A.
Krzyzak, M. Pawlak, and E. Rafajlowicz,
Signal Recovery Under
Noise for Not Necessarily
Proceedings of 1998 IEEE
J. Zhou, Q. Gan, A. Krzyzak, and C.Y. Suen,
Quantum Neural
Proceedings of
International Workshop on
B. Kegl, A. Krzyzak, and H. Niemann,
Radial Basis Function
Proceedings of the 14th
International Conference on Pattern
A. Krzyzak, and J. Sasiadek,
Identification of
dynamic nonlinear systems using the Hermite
Proceedings of 1997 IEEE
International
A. Krzyzak, S. Klasa and L. Xu,
On asymptotic properties
of radial
E.
Rafajlowicz, A. Krzyzak, and M. Pawlak,
Moving average
Proceedings of 1997
Ulm, Germany, p. 243, 1997.
A. Krzyzak,
and T. Linder, Radial basis function networks and
Proceedings
of Neural Information Processing
A. Krzyzak and J.A. Nossek,
Adaptive radial basis
function nets for
Proceedings of the World
Congress on Neural Networks,
San Diego, pp. 271-276, 1996.
A. Krzyzak and A. Cichocki,
On the convergence of
Proceedings
of
A. Krzyzak and H. Niemann,
On MISE convergence
Proceedings
of
E.
Skubalska-Rafajlowicz and A. Krzyzak,
Fast k-NN classification
rule
Proceedings of
Vienna, Austria, pp. 121-124, 1996.
A. Krzyzak,
On the convergence of
the recursive radial
Proceedings of the
Second Conference
pp.
292-299, 1996.
A. Krzyzak and T. Linder,
Radial basis function
networks and
Proceedings of
Vienna, Austria, pp.
650-653, 1996.
A. Krzyzak and T.
Linder,
Radial basis function
networks and
Proceedings of
A. Krzyzak and T. Linder,
Nonlinear function
estimation using
Proceedings of
A. Krzyzak,
On optimal radial basis
function nets and nonlinear
Proceedings
of 1995 IEEE International
A.
Krzyzak, S. Klasa, and L. Xu,
On L1 convergence rate
of RBF
classification,
Proceedings
of 1995 IEEE International
E.
Skubalska-Rafajlowicz and A. Krzyzak,
Data sorting along a
Proceedings of
and Robotics, Miedzyzdroje, Poland, pp. 339-344, 1995.
A. Krzyzak, T. Linder, and G. Lugosi,
Nonparametric estimation
Proceedings
of 1995 IEEE International Symposium on
A.
Krzyzak, E. Rafajlowicz, and M. Pawlak,
On reconstruction of
band-limited signals from noisy measurements,
Proceedings of
1994 IEEE International
Orlando, pp. 1195-1196, 1994.
A. Krzyzak and J. Sasiadek,
Identification of dynamic
nonlinear systems using the Hermite
Proceedings
of 1994 IEEE
A. Krzyzak, T. Linder and G. Lugosi,
Nonparametric classification using radial
Proceedings
of the 12th
A.
Krzyzak, L. Xu and S. Klasa,
On $L_1$ convergence rates
of RBF networks and
Proceedings
of the 12th
E.
Rafajlowicz, A. Krzyzak, and M. Pawlak,
On restoration of
band-limited signals from noisy observations,
Proceedings
of 1994 IEEE International Symposium on
A. Krzyzak, L. Xu, and H. Niemann,
On $L_2$ convergence
rates of radial basis
Proceedings
of 1994 IEEE International Symposium on
A. Krzy.zak,
On identification
Proceedings
of the International
A. Krzyzak,
and R. Unbehauen,
On estimation of
nonlinear systems by
Proceedings
of IEEE International
P. Scattolin and A. Krzy.zak,
Weighted elastic matching
method
Proceedings
of the
N.W.
Strathy, C.Y. Suen, and A.
Krzyzak,
Segmentation of
handwritten
Proceedings
of the Second
N.W. Strathy, C.Y.
Suen, and A. Krzyzak,
Segmentation of connected
Proceedings
of International
X. Yu, T.D. Bui,
and A. Krzyzak,
The genetic algorithm
parameter settings
Proceedings
of the 8th Scandinavian
L. Xu, A. Krzyzak, and A. Youille,
On radial basis function net and kernel regression: approximation
Proceedings
of 1993 IEEE International Symposium on
L. Xu, A. Krzyzak, and A. Youille,
Kernel regression and
radial basis functions net: some theoretical
Proceedings
of the International Joint Conference on
L. Xu,
A. Krzyzak, and E. Oja,
Rival penalized
competitive learning for cluster analysis,
Proceedings
of the 11th
496-499,
1992.
X. Yu, T.D. Bui, and A. Krzyzak,
3-D object
recognition and
Ed. C. Arcelli
X. Yu, T.D. Bui, and A. Krzyzak,
3D range image
segmentation and filtering by quadratic surfaces,
Proceedings of
SPIE Conference on Advances in Intelligent
P. Zhu, A. Krzyzak, and T. Kasvand,
Recovering motion from
image range sequences,
Proceedings
of SPIE Conference on Advances in Intelligent
P. Zhu, T. Kasvand, and A. Krzyzak,
Range image segmentation
based on coherent motion,
Proceedings
of the 14th Symposium on Information Theory and
A. Krzyzak, and J.Z. Sasiadek,
Flexible robot
identification using nonparametric techniques,
Proceedings
of the 30th IEEE Conference on Decision and
A.
Krzyzak and P. Wojcik,
Nonparametric estimation
of discrete-type Hammerstein systems with
Proceedings
A. Krzyzak,
On exponential bounds on
the Bayes risk of the
Proceedings of the NATO
A. Krzyzak, W. Dai, and C.Y. Suen,
On the recognition of
handwritten
Eds.
R. Plamondon and H.D. Cheng,
X. Yu, T.D.
Bui, and A. Krzyzak,
Segmentation and fitting
by residual,
Proceedings
of the Canadian Conference
P.Y. Zhu, A. Krzyzak, and T. Kasvand,
The local measurement
and global
from range image sequences,
Proceedings
of the Canadian Conference
M.
Pawlowsky, and A. Krzyzak,
Desegregation in genetic
algorithms,
Proceedings
of the Canadian Conference
X. Yu, T.D.
Bui, and A. Krzyzak,
3-D object
recognition and pose determination by quadratic surface
Proceedings
of the 7th International
L. Xu, L., A. Krzyzak, and C.Y. Suen,
Associative switch for
combining multiple classifiers,
Proceedings
of the International Joint Conference
L. Xu, A. Krzyzak, and E. Oja,
Neural-net method for
dual subspace pattern recognition,
Proceedings
of the International Joint Conference on Neural
A. Krzyzak,
Nonparametric
identification of discrete-time Hammerstein systems,
Proceedings
of the 9th IFAC/IFORS Symposium on Identification
On exponential bounds on
the Bayes risk of nonparametric
Proceedings
of the 1991 International
Curve detection by rival
penalized competitive learning,
Proc.
of the International Conference on Neural Networks for
Classification of large
set of handwritten characters using
Proc.
of the International Joint Conference on Neural
Motion estimation based
on point correspondence using neural
Proc.
of the International Joint Conference on Neural
A.
Krzyzak, and J. Sasiadek,
Dynamics identification
of a flexible robot using multichannel
Proceedings
of the American Control
A. Krzyzak,
On estimation of
discrete Hammerstein systems by the Fourier and
Proceedings of the IEEE
A. Krzyzak,
On estimation of
discrete Hammerstein systems by the recursive kernel regression
estimates,
Proceedings
of the IEEE
A. Krzyzak,
On identification of nonstationary Hammerstein systems by the
Proceedings
of the 28th
A. Krzyzak, and J. Sasiadek,
Displacement
identification of flexible manipulator arm using
Proceedings
of the American Control
A. Krzyzak, and J. Sasiadek,
Identification of
Hammerstein systems by the Hermite series
Proceedings
of the IEEE International Conference on Control
A. Krzyzak,
S.Y. Leung, and
C.Y. Suen,
Reconstruction of two
dimensional patterns by Fourier descriptors,
Proceedings of the
9th International Conference on Pattern
A. Krzyzak,
S.Y. Leung, and
C.Y. Suen,
Fourier descriptors
Proceedings
of the IAPR Workshop on Computer Vision-Special
A. Krzyzak,
On identification of
discrete Hammerstein system by the Fourier series regression
estimate,
Proceedings
of the American
A. Krzyzak,
On estimation of the
class of nonlinear systems by the kernel
Proc.
of the IEEE International
A. Krzyzak
and H. El-Buaeshi,
On classification of
digitized contours via curve signatures,
Proc. of the
Vision Interface 88 Conference,
A. Krzyzak,
On estimation of a
discrete Hammerstein system by the kernel
Proc.
of the 26th Conference on Decision
A. Krzyzak, P. Ahmed, and C.Y. Suen,
Recognition of totally unconstrained
handwritten zipcodes by kernel
Proc.
of the 5th Scandinavian Conference
A. Krzyzak,
A. and H. El-buaeshi,
Classification of
digitized curves represented by signatures,
Proc.
of the 3rd International Symposium on Handwriting and
A. Krzyzak,
Optimal modeling and
recursive identification of cascade systems,
Proc.
of the American Control Conference, Minneapolis,
A. Krzyzak,
On identification of
discrete, multivariate Hammerstein system by
Proc.
of the American Control
A. Krzyzak,
The rates of convergence
of k-NN classification rules,
Proc.
A. Krzyzak,
Nonparametric
identification of a memoryless stochastic system with
Proc.
of the American Control Conference,
A.
Krzyzak and M. Partyka,
The rate of convergence
of nonparametric discrimination rules
Proc.
of the 13th IASTED International Conference Modeling and
A. Krzyzak,
Simulation analysis of
performance of selected algorithms for
Proc.
of the 4th IASTED International Symposium
A. Krzyzak,
A., Empirical evaluation
of performance of multivariate variable
Proceedings
of the 6th
A. Krzyzak,
Distribution-free
consistency and the rates of convergence of
Proceedings
of the 6th
A. Krzyzak and W. Greblicki,
On a new algorithm for
nonparametric identification of a stochastic
Proceedings of the 15th
Annual
765-770,
1984.
A. Krzyzak,
A classification
procedure using Breiman variable kernel density
The 2nd International
Conference on Pattern
A. Krzyzak and M. Partyka,
Application of systems
analysis and synthesis for optimal solutions
Proceedings of the
Nice, 39-42, 1983.
A. Krzyzak,
Distribution-free
consistency and the rate of convergence of k-NN
The 4th Panonian Symposium on
(published
in Muttenkungsblatt der Osterreichischen
Statistischen
A. Krzyzak and W. Greblicki,
Optimal modeling and
identification of stochastic system with
Proceedings
of the 14th Annual Pittsburgh
A. Krzyzak and M. Pawlak,
Almost everywhere
convergence of recursive kernel regression
Proceedings of the
2nd Panonian
Symposium
A. Krzyzak and M. Pawlak,
Estimation of
multivariate density by orthogonal series,
Proceedings of the 2nd Panonian Symposium on Mathematical
A. Krzyzak and W. Greblicki,
Optimal model of
stochastic systems with cascade structure and its
Proceedings
of the AMSE Conference on Modelling and
A. Krzyzak,
Universal consistency
and the rate of convergence of discrimination
Proceedings
of the 6th International Conference on Pattern
A. Krzyzak,
Nonparametric
identification of stochastic systems with cascade
Proceedings
of the 8th National Conference on
Books:
L. Gyorfi,
M. Kohler, A. Krzyzak, and H. Walk,
A Distribution-free Theory of Nonparametric Regression.
Springer-Verlag, ISBN: 0-387-95441-4,
2002.
A. Krzyzak, T. Kasvand, and C.Y. Suen, (Eds.).
Computer
Vision and Shape Recognition.
World
Scientific Publishers, 1989.
Book
Chapters:
J. Dong, A. Krzyzak, and C. Y. Suen,
Low-level cursive word representation based on geometric
decomposition, Proceedings of the International Conference on
Machine Learning and Data Mining, MLDM 2005, P. Perner
and A.
Imiya (Eds.), Leipzig, Germany, July 9-11, 2005,
Springer Lecture
Notes in Artificial Intelligence, vol. LNAI 3587, pp. 590-599,
2005.
S. Li, T. Fevens, A. Krzyzak,
and S. Li,
Automatic clinical image segmentation using pathological
modelling, PCA and SVM, Proceedings of the International
Conference on Machine Learning and Data Mining, MLDM 2005, P.
Perner and A. Imiya (Eds.),
Leipzig, Germany, July 9-11, 2005,
Springer Lecture Notes in Artificial Intelligence, vol. LNAI 3587,
pp. 314-324, 2005.
S. Li, T. Fevens, and A. Krzyzak,
Image segmentation adapted for clinical settings by combining
pattern classification and level sets, Proceedings of the
MICCAI 2004, 7th International Conference on Medical Image
Computing and Computer Assisted Intervention, September 26-30,
2004, Saint-Malo, France. Lecture Notes in Computer Science, vol.
LNCS 3216-3217, Springer-Verlag, pp. 160--167, 2004.
S. Li, T. Fevens, and A. Krzyzak,
An SVM-based framework
for autonomous volumetric medical image segmentation using
hierarchical and coupled level sets, Proceedings of 18th
International Conference on Computer Assisted Radiology and
Surgery (CARS 2004), Chicago, USA, June 23 - 26, 2004, Elsevier
Int. Congress Series 1268, 2004, pp. 207--212.
A. Krzyzak and E. Skubalska-Rafajlowicz,
Combining space-filling curves and radial basis function networks,
Proceedings of ICAISC 2004, 7th International Conference on
Artificial Intelligence and Soft Computing, June 7-11, 2004,
Zakopane, Poland. Lecture Notes in Artificial
Intelligence, vol.
LNAI 3070, Springer-Verlag, 2004, pp. 229-234.
J. Dong, A. Krzyzak, and C. Y. Suen,
A Fast Parallel Optimization for Training Support Vector,
Proceedings of the Third International Conference on Machine Learning and
Data Mining, MLDM 2003, Leipzig, Germany, July 5-7, 2003.
Springer Lecture Notes in Computer Science LNAI, pp. 96-105, 2003.
A. Krzyzak, Nonlinear function learning
and classification using optimal radial basis function networks,
Nonlinear Learning and Classification. Proceedings of the
International Workshop on Nonlinear Estimation and Learning,
Eds. David D. Denison, Mark H. Hansen, Christopher C. Holmes,
Bani Mallick and Bin Yu.
Mathematical Sciences Research Institute,
University of California at Berkeley, Berkeley, California,
March 19-29, 2001. Lecture Notes in Statistics LNS, vol. 171,
Springer-Verlag, pp. 393-404, 2002.
J. Dong, A. Krzyzak, and C. Y. Suen, A fast SVM training algorithm,
Proceedings of the International Workshop on
Pattern Recognition with Support Vector Machines,
Niagara Falls, Canada, August 10, 2002. Lecture Notes
in Computer Science LNCS, vol. 2388, Springer-Verlag,
New York, USA, pp. 53-67, 2002.
Ed. M. Dror, P. L'Ecuyer and F.Szidarovszky,
Modeling Uncertainty: An Examination of its Theory, Methods and
Applications (S. Yakowitz memorial volume), Kluwer,
Dordrecht, pp. 383--410, 2002.
A. Krzyzak and E. Rafajlowicz,
Approximation of
functions
Ed. W. Duch, J. Korbicz,
Biocybernetics
J. Zhou, Q. Gan, A. Krzyzak, and C.Y. Suen,
Quantum Neural
Ed. S.W. Lee,
B. Kegl,
A. Krzyzak, T. Linder, and K. Zeger,
A Polygonal Line
Algorithm for Constructing Principal Curves,
Ed. S. Solla, Advances in
A. Krzyzak
and T. Linder,
Radial basis function
networks and
complexity regularization in function
learning,
Eds. M.C. Mozer,
P. Scattolin
and A. Krzyzak,
Weighted elastic
matching method
Eds. C. Archibaldt and P. Kwok,
A. Krzyzak,
On identification of
cascade
Proceedings
of the International Conference on Stochastic and
X. Yu, T.D. Bui
and A. Krzyzak,
3D Object recognition
and pose determination by quadratic surface
Plenum Press, pp. 623-632, 1991.
On exponential bounds on
the Bayes risk of the nonparametric
Ed. G. Roussas,
A. Krzyzak,
W. Dai, and C.Y.
Suen,
On the recognition of
handwritten characters using neural networks,
Eds. R. Plamondon and H.D. Cheng,
Applications,
World Scientific, pp. 115-135, 1991.
A. Krzyzak, and H. El-Buaeshi,
Classification of
digitized curves represented by signatures and
Fourier
descriptors,
Computer Vision and
Shape Recognition,
Book review of L.F. Luo and R. Unbehauen,
Applied Neural
64(3):397-399, 1998.
Book review of A. Cichocki and R. Unbehauen,
Neural