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Cellular data and communication networks are usually neaztlak graphs with each node
representing a base station in a cell in the network, andsedg@esenting geographical
adjacency of cells. The problem of channel assignment ih setworks can be seen as
a graph multicoloring problem. We survey the models, atbars, and lower bounds for

this problem.

1.1 INTRODUCTION

In a cellular network, there are ongoing requests for comaation links from
mobiles in each cell to the base stations responsible fardtheln FDMA or TDMA
networks, the available spectrum is divided into narrowgdiency channels, and each
communication requestis served by the assignment of adrexychannel. Spectrum
is a scarce resource, and careful assignment of channeddi$dsccritical to being
able to maximize the number of users in the network. Celloktwworks employ
a low power transmitter in every cell, which makes it possitd reuse the same

frequency channel in different cells. Frequency reuse,dvew is limited by two
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ii CHANNEL ASSIGNMENT AND GRAPH MULTICOLORING

kinds of radio interferenceCo-channel interferencis caused by two simultaneous
transmissions on the same channel. To avoid this, once anehmnassigned to a

certain call, it should not be reused by another call in ama arkere it may cause

significant interferenceAdjacent channel interferends the result of signal energy
from an adjacent channel spilling over into the current cighn

Inthis chapter, we model cellular data and communicatitwoeks as graphs with
each node representing a base station in a cell in the netewodledges representing
geographical adjacency of cells. Associated with each naal¢he graph at any time
is a setC'(v) which is the set of calls or active mobiles in the cell servgdbThe
size of the se€’(v), is denotedv(v), and called the weight of the node Co-channel
interference constraints are modeled in terms of reusertist it is assumed that the
same channel can be assigned to two different nodes in tpa grand only if their
graph distance is at least We do not deal with adjacent channel interference in this
chapter; see [20] (in this book) for models and solutiongi@ problem. For our
purposes, the objective of an algorithm for thennel assignment probles at time
instantt, to assignu; (v) channels to each noden the network, wheres;(v) is the
weight of the node at timet, in such a way that co-channel interference constraints
are respected, and the total number of channels used overdak in the network is
minimized. The problem can thus be seen as a graph multinglproblem.

The channel assignment problem has been studied extgngivélie last two
decades. A look at an online research index turns up hundrfedapers on the
subject. The communities involved include radio and eieatengineers, operations
researchers, graph theorists, and computer scientist$ sifipes. In this chapter,
we limit ourselves to papers taking a graph-theoretic agpgrdo the problem, and
furthermore, to results that prove some bounds on the peece of the proposed
algorithms. A comprehensive survey of channel assignnteategies proposed in
the engineering literature is given in [26] and techniquesdlin operations research
can be found in [21]. The relationship to graph coloring andtitoloring was
set out in detail in [13]. We use the competitive analysisnieavork to analyze
algorithms. Basic definitions are given in Section 1.2; Sjddr more details on

competitive analysis and [2] on graph theory. A large parwffocus will be on
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Fig. 1.1 A hexagon graph with a 3-coloring.

the so-called hexagon graphs (see Figure 1.1). It is weallkknthese are a very
imperfect approximation of real-life cells; neverthel¢issy provide a convenient
idealization that continues to be useful in practice. We ik at different values
of the reuse distance parameter; this amounts to multicgjgpowers of hexagon
graphs. We will also look at the results on unit disk grapHsesE are the intersection
graphs of equal-sized disks in the plane, where a disk reptes transceiver and its
transmission area. Finally we will mention a few results oapdps where adjacent
cells have some overlapping areas.

Since the processing of calls and assignment of frequeisc@songoing process,
and present decisions can influence future ones, the chassighment problem is
best modeled in an online fashion. The graph to be multieolahanges over time.
These changes can be modeled as an ordered sequence otglagdctor pairs
{(G, Cy) : t > 0} whereC, is the set of new and ongoing calls to be serviced at time
t. ClearlyC; N Cty+1 may not be empty. This brings us to an important issue, which
concerns whether or not a node, when allocating channetbdarext time step, can
change the channels it has already assigned to its ongatagdalls on previous
steps. An algorithm said to beon-recoloringif once having assigned a channel in
response to a particular new call it never changes thatrassigt (.e., recolors the
call).

The available technology, however, allows for a limitedrreagement of fre-

guency channels. It is interesting therefore, to consitker algorithms that allow
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iv CHANNEL ASSIGNMENT AND GRAPH MULTICOLORING

recoloring of calls. In this case, the actual set of callsmat given time step is no
longer relevant; just the number of calls at any step suftieepecify the problem.
Thus, the problem can now be modeled as multicoloring a seguef weighted
graphs given by{(G,w;) : t > 0}. If arbitrary recoloring is allowed, it is not
difficult to see that the competitive ratio of any algorithar this online problem
is no better than the performance ratio of an algorithm ferstiatic version of the

problem. Essentially, at every time step, run the algoritbnthe static version of
the problem, with no concern for how many calls get recolofatbther motivation

for studying the static problem is that the weight of a node lsa considered to
represent the expected traffic in the corresponding cedl ,amoffline solution then
gives a non-uniform precomputed fixed assignment to be ustiationline setting.

It is intuitively clear that recoloring is a very powerfuldly and algorithms that
are allowed to recolor are more powerful than those that ate dpper and lower
bounds that confirm this are reported in the later sectiomsinferesting challenge
would be to develop algorithms that do allow recoloring baltyc limited amount.
Alternatively, there could be a cost associated with redodp and the algorithm
would have to minimize this cost along with other objectjaskeep the cost below
a specified allowable limit. As far as the author is awaregheas not been significant
work in this area.

Another important issue concerns whether the algorithrs asatralized or dis-
tributed control. Some algorithms are inherently cerzeali they require knowledge
of all nodes and their current assignments before beingtabfeake an assignment.
The strategy in [35] for reuse distan2eand the algorithm with competitive ratio 2
for reuse distance 3 given in [9] are centralized strateghesommonly used strat-
egy precomputes channels to be assigned to different cellg;calls are assigned
channels from these precomputed sets. This strategy islettypdistributed and
requires no online communication with neighbors. Thereyateother algorithms
which can be implemented in a distributed manner, but recuiimited amount of
communication with nearby base stations to ensure that nfictooccurs. To limit
the amount of information about other nodes that needs toolbected to aid in

decision-making, the concept of thexality of an algorithm was introduced in [19].
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An algorithm is said to bé-local, if the only information available to a node apart
from its own history, is the current weights of nodes thatwithin graph distance
k from it. A certain amount of precomputed information indegent of the weight
sequence, such as a base coloring of the graph, is also blwEhis model makes
sense for recoloring algorithms; indeed knowing the wedajla neighbor also gives
some knowledge about the decisions the neighbor would makeei current time
step. However, for non-recoloring algorithms, it would reakore sense to allow a
k-local algorithm to also collect information about the @t color assignments of
nodes in itg:-locality. The distributed algorithms described in thispter are for the
most part, synchronous. They proceed in rounds, and a misaham synchronize
the roundsis assumed. In[41], however, the algorithm is@®onous, and is proved
to be free of deadlock and starvation. No bounds are provgzediormance, as in
the number of channels used in the average case or worst case.

There are very few lower bounds known for this problem, fohei recoloring
or non-recoloring algorithms. Janssen and Kilakos [17wskimat for generak-
colorable graphs, the competitive ratio of a@njocal recoloring algorithm is at least
k/2 and that of any non-recoloring algorithm is at leAstThese bounds are tight.
However, for hexagon graphs or their powers, tight lowerratsuare not known. A
straightforward lower bound is the clique bound [10]: clgatl nodes in any clique
in the graph need disjoint sets of channels. Thus the maxiouamnall cliques in the
graph over the total weight of the clique is a lower bound iermumber of channels
needed. Another lower bound is given by odd cycles [37]: ath ogtle withn
nodes needs at Iea% colors wherd¥ is the sum of weights of all nodes in the
cycle. Most of the known algorithms are deterministic, dmellower bounds are for
deterministic algorithms as well. Randomized algorithmesgiven in [27, 48], and
the simulation results are promising, but no performanasts are proved.

Arelated problem to the channel assignment problem is fratline call control
Suppose the size of the available spectrum is fixed G.b€hen given a sequence of
weighted graphs, the call control problem is to assign cakrio the nodes so as to
maximize the total number of calls admitted. In this casmesoalls may actually be

rejected, so the number of channels assigned to a node i atizp may be less than
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its weight. An algorithm for channel assignment can gehebs converted to one
for online call control. Moreover, the performance bounddbannel assignment
also translates to a condition for blocking in the case oinentontrol. Suppose an
algorithm always produces a channel assignment with at mbsthannels when
given a weighted graph, whet@ is the clique bound mentioned above. Then it
is easy to see that given a spectrum witlchannels, the algorithm will not block
unless there is a weighted clique in the graph with total twemore tharnC'/k. A
few recent papers study the call control problem [4, 28, B%]dth static and online
versions. The static version is very similar to the maximaodependent set problem.
For the online version, Caragianrés al. [4] give a randomized algorithm with
competitive ratio 2.934 in hexagon graphs, and also givevaidound of 1.857 on
the competitive ratio of any randomized algorithm for thelgem on such graphs.
It is assumed that a single frequency channel is available.

Another related problem is the problemlist coloring[8]. In this problem, every
node of the graph has associated with it a list of colors winiabur case is the list
of available frequency channels. The problem is to find a @raploring of nodes
such that each node is colored with a color from its list. A bemof sequential
solutions are known [1, 22, 44]. The relationship to chamisslgnment was noticed
in [11, 31], and a distributed protocol was given in [11].

The rest of the chapter is organized as follows. Section é&fides the terms we
use. Section 1.3 outlines the basic types of algorithmsqwegin the literature, and
Section 1.4 summarizes the known lower bound results. @edtb discusses the
static version of the problem, and Section 1.6 the onlinsisar We conclude with

a discussion of open problems in Section 1.7.

1.2 PRELIMINARIES

1.2.1 Graph-theoretic preliminaries

Let G = (V, F) denote arinterferencegraph, where the node skt denotes cells
or base stations that require call service, and the edge sgppresents geographical

proximity of cells and therefore the possibility of co-chahinterference. Aveighted
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graphis a pair(G,w) where@G is an interference graph and is a weight vector
indexed by the nodes a¥, andw(v) represents the number of calls to be served
at nodev. A static snapshot of the network at a fixed instant of timeiemgy by a
weighted grapi{G, w). The goal of an algorithm for thgtatic channel assignment
problem, at that instant in time, is to be able to alloeate) > 0 distinct channels
to each node € V such that no two adjacent nodes have channels in common. In
graph-theoretic parlance, what is requiredjps@ermulticoloring of G with distinct
colors representing distinct channels.

Formally, a proper multicoloring of the weighted grajth w) whereG = (V, E)
consists of a set of colo® and a functionf that assigns to each € V' a subset
f(v) of C such that

e Vv, |f(v)] = w(v): each node gets(v) distinct colors, and

e Y(u,v) € E, f(u)N f(v) = ¢: two neighboring nodes get disjoint sets of

colors.

Thus, a proper multicoloring is equivalent to a valid chdmssignment and vice-
versa. We use the terreslorsandchannelsnterchangeably in the sequel. Many of
the algorithms use a base coloring of the underlying unwetjgraph’; it should
be clear from the context when the base color of a node is brefiegred to, rather
than the channels it is assigned. It is convenient to treaséh of available channels
to be a set of natural numbers. We further assume withoutliogasnerality that any
such set can be suitably reordered or partitioned. Sganof a channel assignment
is the cardinality of the sef'.

For theonline channel assignmeptoblem, the set of calls to be served changes
with time. Furthermore, calls cannot always be considen¢er¢hangeable, and
therefore, the identities of individual calls may be relgvaVe define &all graphto
be apai(G, C) whereG is an interference graph adtlis a call vector indexed by the
nodes of the graphC'(v) represents the set of ongoing and new calls requiring servic
at a node at a particular instant of time. A call graph has atorane correspondence
with a weighted graph, where(v) = |C(v)|. We model the changes in the set of

calls over time as an ordered sequence of call grg6sC;) : ¢t > 0}, where
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C; represents the set of calls to be serviced at imat time instantt, an online
algorithm must arrange to perform an assignment for thegraph(G, C;) before
moving on to the call graptG, C;1) at the next time instant+ 1. It must perform
this assignment with no knowledge of the later graphs in¢loqgence. As mentioned
in the introduction, an algorithm for the online problem ni@recoloringor non-
recoloring A recoloring algorithm can change the channels assignadt#dl while
the call is in progress, whereas in a non-recoloring algorjta call keeps the channel
it is initially assigned for its entire duration.

If unlimited recoloring is allowed, the online problem bewes equivalent to the
static problem, as an algorithm for the static problem candeel at every time step of
the online algorithm. In this case, since the calisbe considered interchangeable,
it is the numberof calls at a node that is the relevant parameter. Thus itasigim
to consider the sequence of weighted grap, w;) : ¢ > 0} corresponding to
the sequence of call graphs, and in fact, it suffices to censdch element of this
sequence completely independently of the others. In p@dtiough, it is generally
desirable to reassign channels to calls as little as pessibl

We refer to finite induced subgraphs of the infinite trianglééice ashexagon
graphs(see Figure 1.1). Anit disk graphis the intersection graph of disks of equal
diameter in the plane. They can also be described in termist@indte or proximity
models, which consist of a valuke> 0 and an embedding of nodes in the plane such
that (u,v) is an edge if and only if the Euclidean distance betweemduv in the
specified embedding is at mast For each fixed pair or real valuess > 0 a graph
G can be drawn iR? in an (r, s)-civilized manner if its nodes can be mapped to
points inR¢ so that the length of each edge is at mosind the distance between
any two points is at least

An independentor, stablg set inG is a setl’’ C V such that for any, v € V',
(u,v) ¢ E. Note that a proper multicoloring @f is essentially a covering @f with
stable sets; each stable set of nodes corresponds to a ndlerrrodes appears in
exactlyw(v) such sets. Theeighted chromatic numbef a weighted grapbG, w),
denotedy (G, w), is the smallest numbern such that there exists a multicoloring

of G of spanm, i.e. x(G,w) is theoptimalnumber of colors required to properly
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multicolor G. Let the weight of a maximal clique ifG,w) be defined as the sum
of the weights of the nodes belonging to the clique; notewranG is a hexagon
graph, the only maximal cliques are isolated nodes, edgemogles. Theaveighted
clique numberdenotedv (G, w) is the maximum weight of any maximal clique in
the graph. The weighted chromatic number and clique numbarcall graph are
defined in an analogous fashion. For integers 1, we define thek-locality of

a nodev to be the induced subgraph consisting of those nodé€s whose graph
distance fromv is less than or equal to.

GivenG = (V, E),thegraplG” = (V, E')isdefined by’ = EUE?U.. .UE™ 1.
Thus any pair of nodes at distancec r in G is connected by an edge (#". The
problem of channel assignment in a weighted gr&@hw) with reuse distance
is thus the same as multicoloring the graph Theunweighted clique numbef
G" is the maximum size of any clique ", and is denoted(G"). Similarly, the
chromatic numbeof G”, the minimum number of colors needed to col@f, is
denoted byy(G"). Itis known that wherG is a hexagon graphy(G") = w(G")
(see Section 1.5.3), and an optimal coloring can be comppuifsalynomial time. We
assume that such an optimal coloring of the gr&fihs available; thus every node in
G" is assigned a color from the sft, 2,..., x(G")}. If G is a hexagon graph, we
say thatG? is asquare graph Figure 1.1 shows a base coloring with red, blue, and
green colors for a hexagon graph. It is easy to see that aesguaph can be base
colored with seven colors; Figure 1.8 shows such a colohitg defineN,.(v) to be
all neighbors ofv in G, andH,.(v) to bew(v) + ¥,cn, (»yw(u). Finally, given a
assignment of channels 0, (v), RC,(v) is defined to be the number of channels
assigned to more than one node\ip(v). ThusRC,(v) is a measure of the reuse of

channels withinV,.(v).

1.2.2 Performance measures

An approximation algorithm for the static channel assigntm@oblem is said to
have performance ratioif on any weighted grapfi7, w), the algorithm uses at most
rx(G,w) + O(1) channels. We use a standard yardstick for measuring theffic

of online algorithms: that ofompetitive ratiog25, 3]. Given an online algorithm
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P that processes a sequencelofcall graphs(G,C:), ¢ = 0,..., N, let S(P;)

denote the span of the channel assignment (multicolorimgputed byP after step
t, i.e. after graph(G, C;) has been processed. L&t (P) = max;{S(F;)} and
xn~(G) = max {x(G, C;)}. We say thatP is ac-competitivealgorithm if and only

if there is a constaritindependent ofV such that for any input sequence,

Sn(P) < ¢ xn(G)+b.

In other words, a-competitive algorithm uses at mastimes as many channels
(colors) overall as the optimal offline algorithm would. Weta that all of the

algorithms discussed in this chapter in fact satisfy thietstrrequirement
SP) < ¢ x(G,Cy)+b

forall ¢ > 0, i.e. they approximate the optimal span within a factor @it all times
while still processing the input sequence online. All of ier bounds mentioned
in this chapter hold for the above definition ecompetitive (and therefore imply

lower bounds on algorithms satisfying the stricter requieat).

1.3 BASIC TYPES OF ALGORITHMS

In this section, we describe the basic types of algorithmeldped for channel

assignment seen as a graph multicoloring problem.

Fixed Assignment

Fixed assignment (FA) is a very simple, non-recoloringtstyg for channel assign-
ment. In this strategy, the nodes are partitioned into irddpnt sets, and each such
set is assigned a separate set of channels [30]. It is eaggtihat this works very
well when the traffic is described by a uniform distributioHowever, it behaves
quite poorly in the worst case. In particular, the algoritisrh-competitive wheré:

is the chromatic number of the underlying graph. In [17]sishown that this is the

best possible for arbitrary-colorable graphs.
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Borrowing algorithms

To improve the performance of FA, one idea has been to assignnal sets of
channels as with FA, but allow borrowing of available chdsijé, 18, 37, 35]. A
simple method is to have a two phase algorithm. In the firssphavery node uses
as many channels as it needs from its own nominal set of ckanhethe second
phase, a node borrows channels if necessary from its neighdets of channels.
Some mechanism to avoid conflicts caused by two neighbargttp borrow the
same channel from a mutual neighbor in the second phase adlyuseeded. One
such mechanism might be to restrict the borrowing in some Wway example, red
nodes can only borrow green channels, green nodes can ambnbolue channels,

and blue nodes can only borrow red channels.

Hybrid Channel Assignment

Another variation of FA is to assign nominal sets of chantelsodes, but divide
these sets inteservedandborrowablechannels. The node may use all the channels
from its own set, both reserved and borrowable ones, but migyuse the borrowable
channels from its neighbors, provided they are not beind bg@ny of the neighbors.
Many hybrid strategies have been studied in the literatede47], but performance
bounds are not generally given. Jordan and Schwabe [23}yznal simple hybrid
channel assignment strategy; the results for small valfiesise distance are not as

good as the borrowing strategies.

Dynamic Channel Assignment

The main characteristic common to all dynamic channel agsant (DCA) schemes
is that all channels are kept in a central pool and are assigpeamically to radio
cells as new calls arrive in the system. A channel is eligfbleuse in any cell,
provided interference constraints are met. DCA strategaeg in the criterion used
to selectthe channel to be assigned from the set of all &ighmnnels. They also vary
in whether they are centralized or distributed, and the lsgondzation mechanism

used in the latter case. A wide variety of selection critési@hoose the assigned
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channel can be found in the literature. For example, in [¢#8},algorithm tries to
maximize the amount of reuse: roughly, the channel that éas bsed the most often
at distance but least often at distances- 1 andr + 2 is used. A number of recently
proposed DCA schemes are based on measurement of sigmagjtetfeom various
eligible channels, and aim to increase the reusability ahclels (see for example,
[43]). A commonly used strategy [5, 15, 41], is the purgigedystrategy of using
the minimum numbered channel among those eligible. Thiriehly DCA strategy

for which bounds on the competitive ratio are known.

1.4 LOWER BOUNDS

Graph multicoloring is well known to be NP-hard for arbiyrgraphs. Mcdiarmid
and Reed showed that it is also NP-hard to multicolor a hexagaph with reuse
distance 2 [35]; the proof can be adapted for other valuesusfe distance as well. It
is also known that multicoloring unit disk graphs is NP-ha@e for example, [12].
Janssen and Kilakos [17] showed that fok-golorable graph, any non-recoloring
algorithm has competitive ratio at ledstand anyl-local recoloring algorithm has
competitive ratio at least/2.

As mentioned earlier, the clique boundG, w) is always a lower bound on the
minimum number of channels needed to multicol6f, w) [10]. Another lower
bound is provided by odd cycles. Since the maximum size ohdapgendent set in
ann-node odd cycle ign — 1)/2, any color can be assigned to at mast— 1)/2
nodes. Therefore, the minimum number of channels needezhfodd cycle with
n nodes and reuse distance 2 is at Ie7;é{§é§p colors wherd¥ is the sum of weights
of all nodes in the cycle. Thus, a 9-cycle with equal weightatimodes requires at
least9w (G, w)/8 channels, and in fact this number suffices. Since the smalties
cycle that is a hexagon graph is of length 9, no algorithm fanmel assignment
with reuse distance 2 can guarantee using less thdry, w)/8 channels on all
weighted hexagon graphs. For higher values of reuse distdhere are hexagon

graphsG such thatG" is an induced-cycle (see Figure 1.2). Therefore for reuse
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Fig. 1.2 (a) 5-cycle for reuse distance 3, and (b) 5-cycle for reusedce 4.

distance 3 or higher, no algorithm for channel assignmemtgeerantee using less
than5w(G, w) /4 channels on all weighted hexagon graphs.

In [19], a lower bound for the competitive ratio of any reaahg algorithm was
shown. The constraint that recoloring can only occur in oasg to a change in
demand within a node’s immediate neighborhood is added.céloeing algorithm
is said to haveecoloring distance: if a node recolors its calls during a time step
only if a change of weight has occurred within itdocality.

The following technical lemma aids the proof of the lower bdu

Lemma 1.4.1[19] Let P be a path of lengtlf, with weightn on each of it + 1
nodes. Then the minimal number of colors required to cdtosuch that the end
nodes have exactly colors in common, is at leagt + f%‘] when/ is odd, and at

least2n + M when/ is even.

Let P, n and/ be as in the statement of the lemma. Letndv be the end nodes
of P, and letu’ andv’ be the neighbors af andv, respectively (See Figure 1.3a).
ThenP' is constructed fron® as follows. Node is split into two connected nodes,
uy, andus, which are assigned weightandn — «, respectively. Similarly, node
is split into the connected nodes andwv,, with weighta andn — «, respectively
(Figure 1.3b). Obviously, coloring® such thatu andv have exactlyx colors in
common is equivalent to coloring’ such thatu; andwv; receive the same colors,
andus andv; receive completely different colors. Next, the grdphis constructed
from P’ as follows. Nodes:; andwv, are identified into one nodev,, and nodes

uy andwv, are joined by an edge (Figure 1.3c). It is easy to see that@loyicg of
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Fig. 1.3 Multicoloring a path where the endpoints have colors in camm

P" is equivalent to a coloring aP’ in whichu; andu; receive the same colors, and
ugs andwvq receive different colors, which in turn is equivalent to docmg of P as
required by the lemma.

To determine a lower bound on the minimal number of colorsledeo colorP”,
observe the following. I¥ is odd, then the subgraph &' induced by all nodes
exceptus andwvs is an odd cycle of length. The sum of the weights on this cycle is
(¢ — 1)n + a, and the maximum size of an independent set in this cycl¢ds- 1).

Hence the minimum number of colors needed to célbiis at least

-1)n+a o + 20

o4 20
-1 71

If £is even, therP” consists of an odd cycle of lengtht 1, plus a nodev),
which is joined to four consecutive nodes of this cycle. Se tmaximal size of
an independent set i’ is £¢. The sum of the weights on the nodes®f is
({—1)n+a+2(n—-a)=(+1)n— a Hence the minimum number of colors
needed to coloP” is at least

(E-I—ll)nfa — o+ 2(n — a)
14 14
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as claimed in the lemma.

The above lemma can be used to prove a lower bound on any @ifjoathm
with recoloring distancé, using an adversary argument. The adversary chooses a
hexagon graph, and at any step caise or increase the weight at any node. The
algorithm must respond by assigning colors corresponditigd increased weight.

The following argument is from [19]. Fix an online algorithwith recoloring
distancek > 0. There is a strategy for the adversary which forces the dlgorto
use at leastn + ﬁ colors, while the offline algorithm never needs more than
2n colors. The graph used by the adversary is shown in Fig 1.4u badv be two
nodes at distance 3 of each other along one of the axis of te §he adversary
starts by raising the weight anandv ton. If £ > 0, the adversary continues to raise
the weight ton on all nodes along two parallel axes of length- 1 which make an
angle ofZ with the axisuv, and which start at andv, respectively. The algorithm
may color and recolor as desired.

Letu’ andv’ be the last nodes of the axis growing outwoéndwv, respectively,
on which the weight has been raised. Nodéandv' have distancé — 1 from u
andwv, respectively. Next, the adversary raises the weight tm two nodesg and
b, situated as follows. Node is a neighbor ofu’, situated along the axigu', at
distancek from u. Nodeb is a neighbor o' and lies at distanck from v, but is
situated at an anglg from the axisvv’, and thus lies at distance 2 from nad¢See
Fig 1.4).

The next moves of the adversary will only involve nodes atagise greater than
k from u andw, so the colors om andv are now fixed. Letx be the number of
colors thatu andv have in common. The strategy of the adversary now depends
ona. If @ > n/2, then the adversary raises the weighiiton the nodes andd,
which can be observed to have distance greaterkharbothu andv. The nodes of
positive weight now lie on a path of lengd#t + 3. By Lemma 1.4.1 the algorithm
must now use at leagh + ;7 colors. Ifa < n/2, the adversary raises the weight
of nodee, the common neighbor aof andb to n. By Lemma 1.4.1, the algorithm
will have to use at leastn + ﬁ colors. The number of colors needed by the
off-line algorithm is2n. The above construction can be repeated as many times as
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Fig. 1.4 Graph used by adversary to show a lower bound on any onlireitdg with

recoloring distancé.

desired, proving that there are infinitely long sequencestuioh the ratio bound of
1+ m is achieved.

For the special case = 0, a better bound can be proved [19]. Jansseal also
show a lower bound on the competitive ratio for any non-redog online algorithm.
For such algorithms, the adversary can specify which cdlwsalgorithm should
drop, by which it can force the remaining colors to stay. Tétasnger lower bounds
can be obtained for non-recoloring algorithms. A graph asdgquence of requests
can be created such that the offline algorithm could alwaysr¢he graph using
n colors, but any non-recoloring online algorithm is forceduse2n colors. The

following theorem summarizes the lower bound results if:[19

Theorem 1.4.2 1. Any online algorithm with recoloring distande > 0 has

competitive ratio at least + 1y -

2. Any online algorithm with recoloring distan¢e acting on a hexagon graph

of diameter at leas?, has competitive ratio at leagt+ 2/7.

3. Any non-recoloring online algorithm has competitiveoatt least2.
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1.5 THE STATIC CASE

In this section, we describe the results on static chanse@asent. The algorithms
described here can be used as recoloring algorithms in tleecsetting as well.
Hexagon graphs, unit disk graphs, odd cycles and outenptaaphs are The best

known upper bounds for the various classes of graphs are aumed in Table 1.1.

Graph Competitive ratio of

best known algorithm

Odd cycles 1[37]
Outerplanar graphs 1[37]
Hexagon graphs; = 2 3 [37,35]
Hexagon graphs; = 3 9
Hexagon graphs; > 3 4 [23]
Unit disk graphs 3[12, 32, 40]
k-colorable graphs Ean

Table 1.1 Best known upper bounds for recoloring algorithms

1.5.1 Reuse distance 2 in hexagon graphs

As stated in the introduction, for this case, FA has a cortipetiatio of 3. To see
that this is a tight bound, consider a network with a red nbtles node, and green
node, no two of which are adjacent to each other, and eachiochvias a weight of
w. Itis easy to see that(G, w) = w(G,w), while FA must use different colors for

each, and therefore usgsimes the number of colors required.

Borrowing strategies. There is a simple borrowing strategy calléiged Preference
Allocation (FPA)that cuts the number of channels used by FA down by a factor of
two. The key idea is as follows: Divide the channels into étsets of w(G, w)/2]
channels each. A red node takes as many red channels asst seting from the

first, and if it still needs more channels, takes green charstarting from the end.
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Similarly, blue nodes borrow from red if necessary, and gneedes borrow from
blue. Suppose this assignment of channels causes a coefiieeén a green node
and a red node that are neighbors. Then their combined weig$itbe greater than
w(G,w), a contradiction. Thus, the assignment is conflict-fred,the algorithm is
3.competitive.

However, the best known algorithms have a competitive m‘tié [37, 35, 42],
and all make use of the structure of the hexagon graph. Thogitdms in [35, 42]
have slightly different descriptions, but are identicaidacentralized. Narayanan
and Shende [37] give a different algorithm that can be impletad in a distributed
fashion. Furthermore, it was modified and implemented ircall;manner, as shown
in [19]. The general idea in all is as follows. The algorithamsists of three phases.
At the end of the first phase, the resulting graph is triarfigde: At the end of the
second phase, the resulting graph is bipartite. The thiad@finishes up by assigning
channels to the bipartite graph.

We go on to describe the algorithm in detail now. I2t= 3[w(G, w)/3]; we
divide the channels into 4 sets 6f/3 channels each. The four sets will be called
the red, blue, green and purple sets of channels. As statherghe algorithm can
be divided into three phases. In the first phase, each nods tskmany channels
as needed from its nominal set of channels. For example,sddstake as many
red channels as needed and decrease their weight accgrddugisider the resulting
graph induced by nodes of positive weight. Suppose theretisamgle in this graph.
This means all three nodes had weight greater @8, a contradiction. Thus the
remaining graph idgriangle-free This implies, furthermore, that any node in the
graph with degree 3 has all neighbors of the same color, andrity way it has two
neighbors of different colors is if they are all instraight line (see Figure 1.5 for
different types of nodes of degree at least 2). We call a naaereer nodéf it is of
degree 2 or 3, and all its neighbors are of the same color.

The second phase is a borrowing phase, where nodes borrowafrgpecified
color set, and only borrow channels that are unused at agybeis. In particular,
red corner nodes with green neighbors borrow available thagnels, blue corner

nodes with red neighbors borrow available green channetsgeeen corner nodes
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Fig. 1.5 A non-corner node of degree 2, a corner node of degree 2, antharcnode of

degree 3
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Fig. 1.6 The orientations of corner nodes. After the second phaseecaodes of the type

in the second row drop out.

with blue neighbors borrow available red channels. It isdifficult to see that all
such corner nodes receive enough channels to completeagségnment, and drop
out of the next phase.

From Figure 1.6, itis obvious that the resulting graph iretlioy nodes of positive
weight at this stage cannot have a cycle, and is thus bipaRitrthermore, any edge
in this bipartite graph has weight at mast/3, and all nodes that are endpoints of
these edges can be assigned channels from the purple set fimdgh phase. An
isolated node with remaining weight at mdsf3 can use purple channels, and one

with remaining weight at leadb /3 can be shown to have neighbors that are light
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enough so that it can finish its assignment using borrowedretla from neighbors

and purple channels.

The greedy strategy. The greedy strategy is generally understood to be a non-
recoloring strategy in the online setting. However, it m@kense also for the static
problem, and a distributed recoloring version of the gresdytegy was formulated
and analyzed in [38]. Recall that in the greedy strategyyerestep, every node is
assigned the minimum numbered channels not being usedisidgtsbors. Some or-
dering of the nodes must be used in order to perform the asgigh In a distributed
implementation, the ordering must take care to avoid twghsbrs performing the
assignment simultaneously, thereby deciding that a péatichannel is available
and claiming it. Prakasét al. [41] give a distributed implementation which focuses
on how this mutual exclusion type of problem is solved, buhdbgive any bounds
on the number of channels needed. In [38], the authors stiggesiple synchro-
nization strategy based on rounds: first red nodes assigmels followed by blue
nodes, which are followed by green nodes. In this recolovargion of the greedy
strategy, the red nodes do not have to consider any othesnelige performing
their assignment, the blue nodes have to consider only thaades, and the green
nodes have to consider all neighbors.

The key lemma used in [38] to analyze the maximum number afrobla used by

the greedy algorithm for an arbitrary graph and reuse dist@sithe following:

Lemma 1.5.1 Let mc(v) be the highest channel used by the nade For the
greedy algorithm, and for any node mc(v) < min{H,(v) — RC,(v),w(v) +

Maz,en, (vyme(u)}.

The number of distinct channels used by nodesVir{v) is at mostH,(v) —
w(v) — RC,(v). Thereforep will never use a channel higher théh. (v) — RC,.(v).
Also, if u is a node inN,.(v) that uses the highest channeliis neighborhoody
will never use more than the nex{v) channels.

For the case of reuse distance 2 in hexagon graphs, the abowga can be used
to show that the greedy algorithm can never use a channethigan5w(G, w)/3.

To see this, observe first that red and blue nodes can nevarasmnnel higher than
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Fig. 1.7 An example where the greedy algorithm uSeg G, w)/3 channels.

w(G,w). For a green node, if w(v) < 2w(G,w)/3, then since no neighbor af
uses a channel higher thatiG, w), we havemnc(v) < w(G,w) + w(v). If instead
w(v) > 2w(G,w)/3, thenme(v) < Hay(v) < 5w(G,w)/3. Finally, this is a tight
bound, as shown by Figure 1.7. The reader can verify ¢i{ét, w) = 3k, and
that there is an optimal assignment usigchannels, but the greedy algorithm will
use5k channels. Thus, the greedy algorithm usg3 times the optimal number of

channels required.

Distributed algorithms.  Janssewt al. [19] give a framework to analyze distributed
algorithms. In particular, an algorithm is said to béocal, if the only information
available to a node apart from its own history, is the curvggights of nodes that are
within graph distancé from it. However, since the nodes themselves communicate
via a wireline network, it is reasonable to allow nodes tohexme other information
with nodes in theik-locality. In particular, a node may send the list of chasrites
using to the nodes in itk-locality. By this revised definition, the greedy algorithm
and FPA can be seen to bdocal. While thet/3-approximation algorithm described
earlier is not distributed, two distributed implementasoof the algorithm in [37]
are given in [19]. Algorithms with better competitive ratiare shown for increasing
values of locality. The best known results fotocal algorithms for small values of
k are summarized in Table 1.2. The corresponding lower bothat<ollow from

Theorem 1.4.2 are also given for comparison.
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Recoloring Lower bound on Best known

distance  competitive ratio

O-local 9/7 3
1-local 9/8 3/2
2-local 13/12 17/12
4-local 21/20 4/3

Table 1.2 Best knownk-local algorithms

1.5.2 Reuse distance 3 in hexagon graphs

For reuse distancs, since there is a 7-coloring for any square graph, FA has a
competitive ratio of7. The borrowing strategy given by [17] has a competitiveorati
of 3.5. The best known algorithm was given by Feder and Shende [8]d&Scribe it
briefly here. The graph is divided into seven independest aetording to the base
coloring, and each set is assigned a nominal sétafannels. Call a nodeeavy

if its weight is greater thad and light otherwise. The algorithm proceeds in two
phases. In the first phase, each node takes as many channebdasl from its own
nominal set. All light nodes are done in this phase and drapladhe second phase,
any remaining (heavy) node borrows as many unused chansi@lseled from its
neighbors’ nominal sets.

It remains to show that the unused channels in a heavy nsdeeighborhood
suffice to finishu's assignment. Note that the neighborhood of any nodan be
covered by four cliques (see Figure 1.8). Thus the total testhe neighborhood
of v is at mos#w(G, w) — 3w(v), and this forms an upper bound on the number of
channels needed for the algorithm to work. Fet 2w(G,w)/5, for example, it is
clear thatlw(G, w) — 3w(v) < 7¢ for any heavy node. However, this would give
an algorithm with performance ratib8.

The authors perform a more careful analysis of the neigtdmatiof a heavy node
v to show that = w(G, w)/3 suffices. For instance, they observe that a nodé

base colof has three neighbors of each base céar but many of the channels used
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Fig. 1.8 The neighborhood of a node contains exactly three nodes of each base color

different fromv’s, and can be covered with three cliques.

are the same. Thus some of the weight of the two lighter neightan be charged
to the heaviest neighbor of that color. This means that f@avj nodey, if all three
of its neighbors of a particular base color are light, thely one of them counts, and
the other two can be considered to be of zero weight, sindbalthannels assigned
to them would also be assigned to the heaviest neighbor.h&nabservation is that
there cannot be too many heavy nodes in the neighborhood edaymodev. In
particular, there can either be at most four heavy node$ @érabuterneighbors of
v (see Figure 1.8), or at most three if one of them isrerer neighbor ofv.

Thus there are only four possibilities fofs neighborhood: It contains (a) at
most one node of each distinct base color, except for twe phineavy nodes, each
corresponding to a base color different frefe and from each other (b) at most one
node of each distinct base color except for a triple of heades, all of the same
color (c) at most one node of each distinct color and (d) attrone node of each
distinct color, except for a pair of heavy nodes of a colofedént fromo’s. In the
first two cases, there are two nodes whose demand can edfgdie reduced by
w(G, w)/3 since this corresponds to reused channels. Thus, the teightofv’s
neighborhood is at mostv(G, w) — 3w(v) — 2w(G,w)/3 < Tw(G,w)/3, which

implies that there are sufficient channelsddo borrow to complete its assignment.
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The other cases are more complicated, but lead to the sanckisimm. See [9] for
details.

Itis possible to construct a square grapisuch thaty (G, 2) = w(G, w), but the
algorithm need$w (G, w) /3 channels, thus the competitive ratio of the algorithm is
exactly7/3.

We note here that Feder and Shende mention a centralizéeigstifar this case
that has competitive ratio at most 2. This uses a simple iwgaving a convex hull
technique. The algorithm follows from the following simpbservation. Consider
an embedding of the square graph on the triangular latticgéra&t a node on the
convex hull of the graph. It is easy to see that its neighbodrean be covered with
two cliques. Hence if every node irs neighborhood is already assigned channels
from the sef1,...,2w(G,w)], thenv can also find channels from this set without
conflicting with any neighbors. Therefore, the algorithrstftonstructs an ordering
of nodes by computing the convex hull of the nodes, removitglanode, and
repeating this process on the remaining nodes. Finallyesade assigned channels
in the reverse of this ordering. It is clear ti2at(G, w) channels suffice.

In [38], the authors show that the recoloring greedy stratess a competitive
ratio betweery/3 and23/8 for reuse distance 3 in hexagon graphs, and thus for the

recoloring case, the borrowing strategy is at least as gsdideagreedy strategy.

1.5.3 Arbitrary graphs

Janssen and Kilakos [17] show that for genérablorable graphs, a generalization
of the FPA strategy discussed earlier has a performancenfdty/2. In what follows,
we discuss some specific classes of graphs that have beégdsitudhe context of
radio channel assignment. These include odd cycles andptartar graphs, graphs
derived from hexagon graphs, either by considering anyitteuse distance in such
graphs, or by considering networks that have a certain atmfusverlap between
adjacent cells. Another interesting class of graphs is ttiedisk graphs and graphs

that can be drawn in afr, s)-civilized manner.
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Odd cycles and outerplanar graphs Odd cycles and outerplanar graphs can be
multicolored optimally using simple linear time sequekdigorithms. The chromatic
number of an odd cycle witim + 1 nodes isnaz{w(G,w), [W/m]} whereW

is the sum of the weights of all nodes in the cycle. The cemedlalgorithm given

in [37] first finds the minimum inde% such that2?* 7w, < kx(G,w). Such an
index must exist, because satisfies the above property. Then the algorithm uses
contiguous colors in a cyclic manner from the coldrsy (G, w)] to color noded to

2k. The remaining nodes are colored based on their parity asipaatite graph. The
optimal algorithm for odd cycles is extended in [37] to deran optimal algorithm

to multicolor outerplanar graphs.

Arbitrary reuse distance in hexagon graphs. We consider the case of arbitrary
reuse distance for hexagon graphs. The problem of charsighasent in a hexagon
graph(G,w) with reuse distance is equivalent to multicoloring the gragly”, w).
As stated in Section 1.4, there exist graflis., w) which requiresw(G", w)/4
channels. An upper bound éffor the performance ratio of the greedy strategy
follows from the observation that the neighborhood of angenim a graphG”™ can
always be covered with 6 cliques. However, a borrowing stpasimilar to the one
in [9] for reuse distance 3 has a better upper bound. In pdaticas shown in [35]
and [45], for a hexagon graggh with reuse distance, w(G") = x(G") = 34L2 if ris
even ano‘”i—“ otherwise. This was used in [38] to derive an algorithm faaratel
assignment with performance rat;};@% if 7 is even, anc&% whenr is odd.

The best known performance ratio for channel assignmeng¢ime distance > 3
is achieved by an algorithm calleduster partitioningin [23]. The key idea is to
partition the graph into clusters which are maximal cliqueswith FA. However,
unlike FA, where identical sets of channels are assigneataesponding cells in
different clusters, here, sets &f channels are assigned to entire clusters, in such
a way that any pair of clusters containing cells that are iwitlistancer — 1 are
assigned different sets. Calls arising in any cluster asgasd channels from its
nominal set of channels. Furthermore, it turns out that piassible to color the

clusters with 4 colors such that any two clusters that hadeswithin distance — 1
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of each other get different colors. Thus four sets of chanseffice, which implies

a performance ratio of for the algorithm.

Overlapping cells. Matulaet al. [34] define a model for channel assignment in
cellular networks that include overlapping cell segmeritsparticular, instead of
assuming the network to consist of disjoint hexagonal celish served by a single
base station, they assume that adjacent cells include atapwegion that can be
covered by both transceivers. Cell segments thus fall imtocdlasses: those that can
be covered by a single transceiver and those that can colvgiieb . The channel
assignment problem is then modeled by a regular tripartéaptywith three sets of
nodes: (a) transceiver nodes with degree 7, (b) cell segnoeles with degree 1, and
(c) cell segment nodes with degree 2. There is an edge betinsesteiver node
and cell segment if transceiver node covers the segmeyit A channel assignment
is an assignment of integers to edges such that the totahtvesgigned to all edges
outgoing from a transceiver node is at most the number ofreblarit holds, and the
total weight on all edges incoming to a cell segment is equidled number of mobiles
in the cell segment. Using network flow techniques, they sa@apacity-Demand
theorem, which states that a channel assignment is alwashpe unless there is
a connected sub-region of cell segments containing monenethaequests than the
total capacity of all transceivers within or on the boundafythe subregion and
covering any part of the subregion with an overlapping segme

A subsequent paper [6] uses the same model as described. abbgeauthors
propose a new load balancing algorithm calleddhuster algorithmand show that it

has a competitive ratio af when applied to the channel assignment problem.

Unitdiskgraphs. Unitdisk graphs are the intersection graphs of equal sida th
the plane. Itis easy to see that, given the distance modédicwlaring is equivalent
to coloring for unit disk graphs: a node with weightcan be replaced witly nodes

of weight1 in close proximity of each other. Such graphs can be seen asr@ m

1if the overlap segments are larger, then there is a third ofegment which can be covered by three

transceivers.
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general model of cellular networks. Also, a hexagon graplafty reuse distance
is a unit disk graph.

Unit disk graphs can be used to model broadcast networksenthernodes are
transceivers of equal power and two nodes that are withirsinéssion range of each
other are within each other’s disks and are therefore neightiNeighboring nodes
may not broadcast simultaneously; coloring a unit disk s gives a broadcast
schedule for the corresponding adhoc network. The numbaslofs required is the
number of rounds required in the broadcast schedule.

In [12], it is shown that the coloring problem for unit diskagphs is NP-complete,
for any fixed number of coloré > 3, even if the distance model is given. 3-
approximation algorithms for the problem are given in [12, 80]. The algorithm
in [12] works as follows. Divide the part of the plane contamthe unit disk graph
into strips of widthy/3/2. The induced subgraph in each strip is a co-comparability
graph, and can therefore be colored optimally usifi§, w) colors. Furthermore, a
node in a given strip may be a neighbor of a node in its own,siri@djacent strip or
a node that is 2 strips away, but no other nodes in the grapéreldre, three disjoint
sets ofv (G, w) colors can be used to color the nodes in three adjacent,strigghen
the sets of colors can be reused. Marahal. [32] use an algorithm by Hochbaum
[14] for coloring arbitrary graphs in(G) + 1 colors (whered(G) is the maximum
0 such thatG contains a subgraph in which every node has degree atdpasid
prove that it has performance ratio 3 for unit disk graphset&s [40] has shown
that coloring the nodes greedily and sequentially usinggdgraphic ordering of
the nodes also achieves a performance ratio of 3.

McDiarmid and Reed [36] study the case when the number of idiafinite.
For V' a countable set of points in the plane, thygper densityof V' is defined as
inf.~of(x) wheref(x) is the supremum of the ratj®’ N S|/z* over all open: x x
squaresS with sides aligned with the axes. They show that for any calletset
of pointsV' in the plane with a finite positive upper density, the ratichbfomatic
number by clique number tends to2¢/3 /7 which is aboutl.103 as the radius of
the disks tends to infinity.
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Maratheet al. [33] give approximation algorithms for the coloring andtdizce

2-coloring problem in graphs that can be drawn in(an)-civilized manner.

1.6 THE ONLINE CASE

In this section, we describe algorithms for online chanmssignment that do not
perform reassignment of channels. Once a call is assignkdrael, it “keeps” the
channel for its entire duration. While there has been a lavark on online graph
coloring (see, for example, [16, 29, 46]), there has been Mtle work on online
graph multicoloring. The best known upper bounds for théouesrclasses of graphs

are summarized in Table 1.3.

Graph Competitive ratio of

best known algorithm

Hexagon graphs; = 2 3 [30]
Hexagon graphs, = 3 419]
Hexagon graphs; > 3 4 [23]
Unit disk graphs 6 [32]
k-colorable graphs kE[17]

Table 1.3 Best known upper bounds for non-recoloring algothms

1.6.1 Reuse distance 2 in hexagon graphs

FA is a non-recoloring strategy that has a competitive rati®. A lower bound of
2 for this case was derived in [19] for the competitive ratfcany non-recoloring
strategy. The only other non-recoloring strategy to havenbiavestigated in terms
of its competitive ratio is the greedy strategy. In this aitpon, every node simply
uses the lowest numbered channels that are not being useshityiby any of its
neighbors. In [4], a careful case-by-case analysis of tighberhood of a node was

used to show an upper boundd$w (G, w) for the number of channels used by this
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algorithm, under the restriction that calls are of infiniteation. In contrast, in [38],
a graph and sequence of weight vectors was given to showhihgréedy algorithm
would use2.5w (G, w) channels while the optimal offline algorithm would use only
w(G, w) channels. Thus the competitive ratio of the greedy algoritias shown to

be at leasR.5.

1.6.2 Reuse distance 3 in hexagon graphs

FA has a competitive ratio af for this case. The only other non-recoloring strategy
to have been studied for this case is the greedy strategye $ie neighborhood
of any node can be covered with 4 cliques (see Figure 1.83, éaby to see that
4w (G, w) channels will suffice for the greedy strategy. In [38], a loweund of 3

is shown on the competitive ratio of the greedy strategy:aplgand a sequence of
weight vectors are given on which the greedy strategy usk=ast three times the

number of channels needed by an offline algorithm.

1.6.3 Arbitrary graphs

For ak-colorable graph, FA has a competitive ratiokofFor a hexagon graph with
arbitrary reuse distance, as already mentioned, the neibbbd of a node can be
covered with 6 cliques. Thus, the greedy strategy has a ciitivpeatio of at most
6 for this case. The greedy strategy is also shown to have aetitiap ratio of6 for
unit disk graphsin [32]. The cluster partitioning algonitihas a competitive ratio of

4 for hexagon graphs with arbitrary reuse distance [23].

1.7 DISCUSSION AND OPEN PROBLEMS

The problem of channel assignment has been extensivelgdtader the last decade.
However, many key questions remain unanswered as yet. Hee mistance 2, in
the static case, what is a tight bound on the number of chamaguired in the
worst case? It is known thdt(G, w)/3 channels suffice, and that there is a graph

requiring9w (G, w) /8 channels. In the online case, where once assigned a channel,
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a call retains it for its duration, what is a tight bound on toenpetitive ratio of an
online algorithm? It is known that 2 is a lower bound, while fireedy algorithm
achieves a competitive ratio of 2.5. Table 1.2 demonstthtgor increasing values
of k, distributed algorithms in which nodes have access to iné&bion about their
k-localities can achieve better competitive ratios. At tame time, the limitations
posed by restricting the locality of an algorithm are not ptetely understood yet.

For reuse distance 3, very little is known, and the gap betiee known lower
bound and best known upper bound is quite wide. While a fetwaathave proposed
randomized algorithms, there are no known bounds on the etitiwp ratios of these
algorithms.

Prakashet al. [41] propose several desirable features of channel assighm
algorithms. Some of these are features such as minimizingesion set-up time,
and energy conservation at mobile hosts, which would be afuthe distributed
algorithms studied here. Another quality that is considémgoortant is minimizing
the number of hand-offs. While inter-cell handoffs were taden into account by
any of the algorithms described here, clearly the non-mroa algorithms do not
create any intra-cell handoffs. On the other hand, the oceity algorithms can
potentially force many intra-cell handoffs to occur. Desity algorithms that would
limit the number of such handoffs would be an interestingiaedfor future research.
Finally, adaptability to load distributions is a desirafgdature of channel assignment
algorithms. While it is clear that dynamic channel allooattdoes better than fixed
allocation in this regard, it would be useful to know where borrowing strategies

stand in the picture.
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