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Cellular data and communication networks are usually modeled as graphs with each node

representing a base station in a cell in the network, and edges representing geographical

adjacency of cells. The problem of channel assignment in such networks can be seen as

a graph multicoloring problem. We survey the models, algorithms, and lower bounds for

this problem.

—

1.1 INTRODUCTION

In a cellular network, there are ongoing requests for communication links from

mobiles in each cell to the base stations responsible for thecell. In FDMA or TDMA

networks, the available spectrum is divided into narrow frequency channels, and each

communication request is served by the assignment of a frequencychannel. Spectrum

is a scarce resource, and careful assignment of channels to calls is critical to being

able to maximize the number of users in the network. Cellularnetworks employ

a low power transmitter in every cell, which makes it possible to reuse the same

frequency channel in different cells. Frequency reuse, however, is limited by twoD R A F T February 1, 2002, 10:34am D R A F T
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kinds of radio interference.Co-channel interferenceis caused by two simultaneous

transmissions on the same channel. To avoid this, once a channel is assigned to a

certain call, it should not be reused by another call in an area where it may cause

significant interference.Adjacent channel interferenceis the result of signal energy

from an adjacent channel spilling over into the current channel.

In this chapter, we model cellular data and communicationnetworks as graphs with

each node representing a base station in a cell in the network, and edges representing

geographical adjacency of cells. Associated with each nodev in the graph at any time

is a setC(v) which is the set of calls or active mobiles in the cell served by v. The

size of the setC(v), is denotedw(v), and called the weight of the nodev. Co-channel

interference constraints are modeled in terms of reuse distance; it is assumed that the

same channel can be assigned to two different nodes in the graph if and only if their

graph distance is at leastr. We do not deal with adjacent channel interference in this

chapter; see [20] (in this book) for models and solutions forthis problem. For our

purposes, the objective of an algorithm for thechannel assignment problemis, at time

instantt, to assignwt(v) channels to each nodev in the network, wherewt(v) is the

weight of the nodev at timet, in such a way that co-channel interference constraints

are respected, and the total number of channels used over allnodes in the network is

minimized. The problem can thus be seen as a graph multicoloring problem.

The channel assignment problem has been studied extensively in the last two

decades. A look at an online research index turns up hundredsof papers on the

subject. The communities involved include radio and electrical engineers, operations

researchers, graph theorists, and computer scientists of all stripes. In this chapter,

we limit ourselves to papers taking a graph-theoretic approach to the problem, and

furthermore, to results that prove some bounds on the performance of the proposed

algorithms. A comprehensive survey of channel assignment strategies proposed in

the engineering literature is given in [26] and techniques used in operations research

can be found in [21]. The relationship to graph coloring and multicoloring was

set out in detail in [13]. We use the competitive analysis framework to analyze

algorithms. Basic definitions are given in Section 1.2; see [3] for more details on

competitive analysis and [2] on graph theory. A large part ofour focus will be onD R A F T February 1, 2002, 10:34am D R A F T



INTRODUCTION iii

r g b r g b r

r r

r rr

r r

g g g

g g g

g g g

b b b

bb

b b b

Fig. 1.1 A hexagon graph with a 3-coloring.

the so-called hexagon graphs (see Figure 1.1). It is well-known these are a very

imperfect approximation of real-life cells; neverthelessthey provide a convenient

idealization that continues to be useful in practice. We will look at different values

of the reuse distance parameter; this amounts to multicoloring powers of hexagon

graphs. We will also look at the results on unit disk graphs. These are the intersection

graphs of equal-sized disks in the plane, where a disk represents a transceiver and its

transmission area. Finally we will mention a few results on graphs where adjacent

cells have some overlapping areas.

Since the processing of calls and assignment of frequenciesis an ongoing process,

and present decisions can influence future ones, the channelassignment problem is

best modeled in an online fashion. The graph to be multicolored changes over time.

These changes can be modeled as an ordered sequence of graph-call vector pairsf(G;Ct) : t � 0g whereCt is the set of new and ongoing calls to be serviced at timet. ClearlyCt \ Ct+1 may not be empty. This brings us to an important issue, which

concerns whether or not a node, when allocating channels forthe next time step, can

change the channels it has already assigned to its ongoing local calls on previous

steps. An algorithm said to benon-recoloringif once having assigned a channel in

response to a particular new call it never changes that assignment (i.e., recolors the

call).

The available technology, however, allows for a limited rearrangement of fre-

quency channels. It is interesting therefore, to consider also algorithms that allowD R A F T February 1, 2002, 10:34am D R A F T
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recoloring of calls. In this case, the actual set of calls at any given time step is no

longer relevant; just the number of calls at any step sufficesto specify the problem.

Thus, the problem can now be modeled as multicoloring a sequence of weighted

graphs given byf(G;wt) : t � 0g. If arbitrary recoloring is allowed, it is not

difficult to see that the competitive ratio of any algorithm for this online problem

is no better than the performance ratio of an algorithm for the static version of the

problem. Essentially, at every time step, run the algorithmfor the static version of

the problem, with no concern for how many calls get recolored. Another motivation

for studying the static problem is that the weight of a node can be considered to

represent the expected traffic in the corresponding cell, and an offline solution then

gives a non-uniform precomputed fixed assignment to be used in the online setting.

It is intuitively clear that recoloring is a very powerful tool, and algorithms that

are allowed to recolor are more powerful than those that are not. Upper and lower

bounds that confirm this are reported in the later sections. An interesting challenge

would be to develop algorithms that do allow recoloring but only a limited amount.

Alternatively, there could be a cost associated with recoloring, and the algorithm

would have to minimize this cost along with other objectives, or keep the cost below

a specified allowable limit. As far as the author is aware, there has not been significant

work in this area.

Another important issue concerns whether the algorithm uses centralized or dis-

tributed control. Some algorithms are inherently centralized: they require knowledge

of all nodes and their current assignments before being ableto make an assignment.

The strategy in [35] for reuse distance2, and the algorithm with competitive ratio 2

for reuse distance 3 given in [9] are centralized strategies. A commonly used strat-

egy precomputes channels to be assigned to different cells;new calls are assigned

channels from these precomputed sets. This strategy is completely distributed and

requires no online communication with neighbors. There areyet other algorithms

which can be implemented in a distributed manner, but require a limited amount of

communication with nearby base stations to ensure that no conflict occurs. To limit

the amount of information about other nodes that needs to be collected to aid in

decision-making, the concept of thelocality of an algorithm was introduced in [19].D R A F T February 1, 2002, 10:34am D R A F T
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An algorithm is said to bek-local, if the only information available to a node apart

from its own history, is the current weights of nodes that arewithin graph distancek from it. A certain amount of precomputed information independent of the weight

sequence, such as a base coloring of the graph, is also allowable. This model makes

sense for recoloring algorithms; indeed knowing the weightof a neighbor also gives

some knowledge about the decisions the neighbor would make in the current time

step. However, for non-recoloring algorithms, it would make more sense to allow ak-local algorithm to also collect information about the current color assignments of

nodes in itsk-locality. The distributed algorithms described in this chapter are for the

most part, synchronous. They proceed in rounds, and a mechanism to synchronize

the rounds is assumed. In [41], however, the algorithm is asynchronous, and is proved

to be free of deadlock and starvation. No bounds are proved onperformance, as in

the number of channels used in the average case or worst case.

There are very few lower bounds known for this problem, for either recoloring

or non-recoloring algorithms. Janssen and Kilakos [17] show that for generalk-

colorable graphs, the competitive ratio of any1-local recoloring algorithm is at leastk=2 and that of any non-recoloring algorithm is at leastk. These bounds are tight.

However, for hexagon graphs or their powers, tight lower bounds are not known. A

straightforward lower bound is the clique bound [10]: clearly all nodes in any clique

in the graph need disjoint sets of channels. Thus the maximumover all cliques in the

graph over the total weight of the clique is a lower bound for the number of channels

needed. Another lower bound is given by odd cycles [37]: an odd cycle withn
nodes needs at least2Wn�1 colors whereW is the sum of weights of all nodes in the

cycle. Most of the known algorithms are deterministic, and the lower bounds are for

deterministic algorithms as well. Randomized algorithms are given in [27, 48], and

the simulation results are promising, but no performance bounds are proved.

A related problem to the channel assignment problem is that of online call control.

Suppose the size of the available spectrum is fixed to beC. Then given a sequence of

weighted graphs, the call control problem is to assign channels to the nodes so as to

maximize the total number of calls admitted. In this case, some calls may actually be

rejected, so the number of channels assigned to a node in a time step may be less thanD R A F T February 1, 2002, 10:34am D R A F T
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its weight. An algorithm for channel assignment can generally be converted to one

for online call control. Moreover, the performance bound for channel assignment

also translates to a condition for blocking in the case of online control. Suppose an

algorithm always produces a channel assignment with at mostkD channels when

given a weighted graph, whereD is the clique bound mentioned above. Then it

is easy to see that given a spectrum withC channels, the algorithm will not block

unless there is a weighted clique in the graph with total weight more thanC=k. A

few recent papers study the call control problem [4, 28, 39] in both static and online

versions. The static version is very similar to the maximum independent set problem.

For the online version, Caragianniset al. [4] give a randomized algorithm with

competitive ratio 2.934 in hexagon graphs, and also give a lower bound of 1.857 on

the competitive ratio of any randomized algorithm for the problem on such graphs.

It is assumed that a single frequency channel is available.

Another related problem is the problem oflist coloring [8]. In this problem, every

node of the graph has associated with it a list of colors whichin our case is the list

of available frequency channels. The problem is to find a proper coloring of nodes

such that each node is colored with a color from its list. A number of sequential

solutions are known [1, 22, 44]. The relationship to channelassignment was noticed

in [11, 31], and a distributed protocol was given in [11].

The rest of the chapter is organized as follows. Section 1.2 defines the terms we

use. Section 1.3 outlines the basic types of algorithms proposed in the literature, and

Section 1.4 summarizes the known lower bound results. Section 1.5 discusses the

static version of the problem, and Section 1.6 the online version. We conclude with

a discussion of open problems in Section 1.7.

1.2 PRELIMINARIES

1.2.1 Graph-theoretic preliminaries

Let G = (V;E) denote aninterferencegraph, where the node setV denotes cells

or base stations that require call service, and the edge setE represents geographical

proximity of cells and therefore the possibility of co-channel interference. AweightedD R A F T February 1, 2002, 10:34am D R A F T
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graph is a pair(G;w) whereG is an interference graph andw is a weight vector

indexed by the nodes ofG, andw(v) represents the number of calls to be served

at nodev. A static snapshot of the network at a fixed instant of time is given by a

weighted graph(G;w). The goal of an algorithm for thestatic channel assignment

problem, at that instant in time, is to be able to allocatew(v) � 0 distinct channels

to each nodev 2 V such that no two adjacent nodes have channels in common. In

graph-theoretic parlance, what is required is apropermulticoloring ofGwith distinct

colors representing distinct channels.

Formally, a proper multicoloring of the weighted graph(G;w) whereG = (V;E)
consists of a set of colorsC and a functionf that assigns to eachv 2 V a subsetf(v) of C such that� 8v; jf(v)j = w(v): each node getsw(v) distinct colors, and� 8(u; v) 2 E; f(u) \ f(v) = �: two neighboring nodes get disjoint sets of

colors.

Thus, a proper multicoloring is equivalent to a valid channel assignment and vice-

versa. We use the termscolorsandchannelsinterchangeably in the sequel. Many of

the algorithms use a base coloring of the underlying unweighted graphG; it should

be clear from the context when the base color of a node is beingreferred to, rather

than the channels it is assigned. It is convenient to treat the set of available channels

to be a set of natural numbers. We further assume without lossof generality that any

such set can be suitably reordered or partitioned. Thespanof a channel assignment

is the cardinality of the setC.

For theonline channel assignmentproblem, the set of calls to be served changes

with time. Furthermore, calls cannot always be considered interchangeable, and

therefore, the identities of individual calls may be relevant. We define acall graphto

be a pair(G;C)whereG is an interference graph andC is a call vector indexed by the

nodes of the graph.C(v) represents the set of ongoing and new calls requiring service

at a node at a particular instant of time. A call graph has a one-to-one correspondence

with a weighted graph, wherew(v) = jC(v)j. We model the changes in the set of

calls over time as an ordered sequence of call graphsf(G;Ct) : t � 0g, whereD R A F T February 1, 2002, 10:34am D R A F T
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algorithm must arrange to perform an assignment for the callgraph(G;Ct) before

moving on to the call graph(G;Ct+1) at the next time instantt+1. It must perform

this assignment with no knowledge of the later graphs in the sequence. As mentioned

in the introduction, an algorithm for the online problem maybe recoloringor non-

recoloring. A recoloring algorithm can change the channels assigned toa call while

the call is in progress, whereas in a non-recoloring algorithm, a call keeps the channel

it is initially assigned for its entire duration.

If unlimited recoloring is allowed, the online problem becomes equivalent to the

static problem, as an algorithm for the static problem can beused at every time step of

the online algorithm. In this case, since the callscanbe considered interchangeable,

it is thenumberof calls at a node that is the relevant parameter. Thus it is enough

to consider the sequence of weighted graphsf(G;wt) : t � 0g corresponding to

the sequence of call graphs, and in fact, it suffices to consider each element of this

sequence completely independently of the others. In practice, though, it is generally

desirable to reassign channels to calls as little as possible.

We refer to finite induced subgraphs of the infinite triangular lattice ashexagon

graphs(see Figure 1.1). Aunit disk graphis the intersection graph of disks of equal

diameter in the plane. They can also be described in terms of distance or proximity

models, which consist of a valued � 0 and an embedding of nodes in the plane such

that (u; v) is an edge if and only if the Euclidean distance betweenu andv in the

specified embedding is at mostd. For each fixed pair or real valuesr; s > 0 a graphG can be drawn inRd in an (r; s)-civilized manner if its nodes can be mapped to

points inRd so that the length of each edge is at mostr and the distance between

any two points is at leasts.
An independent(or, stable) set inG is a setV 0 � V such that for anyu; v 2 V 0,(u; v) =2 E. Note that a proper multicoloring ofG is essentially a covering ofG with

stable sets; each stable set of nodes corresponds to a color and a nodev appears in

exactlyw(v) such sets. Theweighted chromatic numberof a weighted graph(G;w),
denoted�(G;w), is the smallest numberm such that there exists a multicoloring

of G of spanm, i.e. �(G;w) is theoptimalnumber of colors required to properlyD R A F T February 1, 2002, 10:34am D R A F T
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multicolorG. Let the weight of a maximal clique in(G;w) be defined as the sum

of the weights of the nodes belonging to the clique; note thatwhenG is a hexagon

graph, the only maximal cliques are isolated nodes, edges ortriangles. Theweighted

clique number, denoted!(G;w) is the maximum weight of any maximal clique in

the graph. The weighted chromatic number and clique number of a call graph are

defined in an analogous fashion. For integersk � 1, we define thek-locality of

a nodev to be the induced subgraph consisting of those nodes inG whose graph

distance fromv is less than or equal tok.

GivenG = (V;E), the graphGr = (V;E0) is defined byE0 = E[E2[: : :[Er�1.
Thus any pair of nodes at distancei < r in G is connected by an edge inGr. The

problem of channel assignment in a weighted graph(G;w) with reuse distancer
is thus the same as multicoloring the graphGr. Theunweighted clique numberofGr is the maximum size of any clique inGr, and is denoted!(Gr). Similarly, the

chromatic numberof Gr, the minimum number of colors needed to colorGr, is

denoted by�(Gr). It is known that whenG is a hexagon graph,�(Gr) = !(Gr)
(see Section 1.5.3), and an optimal coloring can be computedin polynomial time. We

assume that such an optimal coloring of the graphGr is available; thus every node inGr is assigned a color from the setf1; 2; : : : ; �(Gr)g. If G is a hexagon graph, we

say thatG2 is asquare graph. Figure 1.1 shows a base coloring with red, blue, and

green colors for a hexagon graph. It is easy to see that a square graph can be base

colored with seven colors; Figure 1.8 shows such a coloring.We defineNr(v) to be

all neighbors ofv in Gr, andHr(v) to bew(v) + �u2Nr(v)w(u). Finally, given a

assignment of channels toNr(v), RCr(v) is defined to be the number of channels

assigned to more than one node inNr(v). ThusRCr(v) is a measure of the reuse of

channels withinNr(v).
1.2.2 Performance measures

An approximation algorithm for the static channel assignment problem is said to

have performance ratior if on any weighted graph(G;w), the algorithm uses at mostr�(G;w) + O(1) channels. We use a standard yardstick for measuring the efficacy

of online algorithms: that ofcompetitive ratios[25, 3]. Given an online algorithmD R A F T February 1, 2002, 10:34am D R A F T



x CHANNEL ASSIGNMENT AND GRAPH MULTICOLORINGP that processes a sequence ofN call graphs(G;Ct), t = 0; : : : ; N , let S(Pt)
denote the span of the channel assignment (multicoloring) computed byP after stept, i.e. after graph(G;Ct) has been processed. LetSN (P ) = maxtfS(Pt)g and�N (G) = maxtf�(G;Ct)g. We say thatP is a
-competitivealgorithm if and only

if there is a constantb independent ofN such that for any input sequence,SN (P ) � 
 � �N (G) + b:
In other words, a
-competitive algorithm uses at most
 times as many channels

(colors) overall as the optimal offline algorithm would. We note that all of the

algorithms discussed in this chapter in fact satisfy the stricter requirementS(Pt) � 
 � �(G;Ct) + b
for all t � 0, i.e. they approximate the optimal span within a factor of
 at all times

while still processing the input sequence online. All of thelower bounds mentioned

in this chapter hold for the above definition of
-competitive (and therefore imply

lower bounds on algorithms satisfying the stricter requirement).

1.3 BASIC TYPES OF ALGORITHMS

In this section, we describe the basic types of algorithms developed for channel

assignment seen as a graph multicoloring problem.

Fixed Assignment

Fixed assignment (FA) is a very simple, non-recoloring strategy for channel assign-

ment. In this strategy, the nodes are partitioned into independent sets, and each such

set is assigned a separate set of channels [30]. It is easy to see that this works very

well when the traffic is described by a uniform distribution.However, it behaves

quite poorly in the worst case. In particular, the algorithmis k-competitive wherek
is the chromatic number of the underlying graph. In [17], it is shown that this is the

best possible for arbitraryk-colorable graphs.

D R A F T February 1, 2002, 10:34am D R A F T
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Borrowing algorithms

To improve the performance of FA, one idea has been to assign nominal sets of

channels as with FA, but allow borrowing of available channels [7, 18, 37, 35]. A

simple method is to have a two phase algorithm. In the first phase, every node uses

as many channels as it needs from its own nominal set of channels. In the second

phase, a node borrows channels if necessary from its neighbors’ sets of channels.

Some mechanism to avoid conflicts caused by two neighbors trying to borrow the

same channel from a mutual neighbor in the second phase is usually needed. One

such mechanism might be to restrict the borrowing in some way. For example, red

nodes can only borrow green channels, green nodes can only borrow blue channels,

and blue nodes can only borrow red channels.

Hybrid Channel Assignment

Another variation of FA is to assign nominal sets of channelsto nodes, but divide

these sets intoreservedandborrowablechannels. The node may use all the channels

from its own set, both reserved and borrowable ones, but may only use the borrowable

channels from its neighbors, provided they are not being used by any of the neighbors.

Many hybrid strategies have been studied in the literature [24, 47], but performance

bounds are not generally given. Jordan and Schwabe [23] analyze a simple hybrid

channel assignment strategy; the results for small values of reuse distance are not as

good as the borrowing strategies.

Dynamic Channel Assignment

The main characteristic common to all dynamic channel assignment (DCA) schemes

is that all channels are kept in a central pool and are assigned dynamically to radio

cells as new calls arrive in the system. A channel is eligiblefor use in any cell,

provided interference constraints are met. DCA strategiesvary in the criterion used

to select the channel to be assigned from the set of all eligible channels. They also vary

in whether they are centralized or distributed, and the synchronization mechanism

used in the latter case. A wide variety of selection criteriato choose the assignedD R A F T February 1, 2002, 10:34am D R A F T
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channel can be found in the literature. For example, in [49],the algorithm tries to

maximize the amount of reuse: roughly, the channel that has been used the most often

at distancer but least often at distancesr+1 andr+2 is used. A number of recently

proposed DCA schemes are based on measurement of signal strength from various

eligible channels, and aim to increase the reusability of channels (see for example,

[43]). A commonly used strategy [5, 15, 41], is the purelygreedystrategy of using

the minimum numbered channel among those eligible. This is the only DCA strategy

for which bounds on the competitive ratio are known.

1.4 LOWER BOUNDS

Graph multicoloring is well known to be NP-hard for arbitrary graphs. Mcdiarmid

and Reed showed that it is also NP-hard to multicolor a hexagon graph with reuse

distance 2 [35]; the proof can be adapted for other values of reuse distance as well. It

is also known that multicoloring unit disk graphs is NP-hard; see for example, [12].

Janssen and Kilakos [17] showed that for ak-colorable graph, any non-recoloring

algorithm has competitive ratio at leastk, and any1-local recoloring algorithm has

competitive ratio at leastk=2.

As mentioned earlier, the clique bound!(G;w) is always a lower bound on the

minimum number of channels needed to multicolor(G;w) [10]. Another lower

bound is provided by odd cycles. Since the maximum size of an independent set in

ann-node odd cycle is(n � 1)=2, any color can be assigned to at most(n � 1)=2
nodes. Therefore, the minimum number of channels needed foran odd cycle withn nodes and reuse distance 2 is at least2Wn�1 colors whereW is the sum of weights

of all nodes in the cycle. Thus, a 9-cycle with equal weight onall nodes requires at

least9!(G;w)=8 channels, and in fact this number suffices. Since the smallest odd

cycle that is a hexagon graph is of length 9, no algorithm for channel assignment

with reuse distance 2 can guarantee using less than9!(G;w)=8 channels on all

weighted hexagon graphs. For higher values of reuse distance, there are hexagon

graphsG such thatGr is an induced5-cycle (see Figure 1.2). Therefore for reuse

D R A F T February 1, 2002, 10:34am D R A F T
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Fig. 1.2 (a) 5-cycle for reuse distance 3, and (b) 5-cycle for reuse distance 4.

distance 3 or higher, no algorithm for channel assignment can guarantee using less

than5!(G;w)=4 channels on all weighted hexagon graphs.

In [19], a lower bound for the competitive ratio of any recoloring algorithm was

shown. The constraint that recoloring can only occur in response to a change in

demand within a node’s immediate neighborhood is added. A recoloring algorithm

is said to haverecoloring distancek if a node recolors its calls during a time step

only if a change of weight has occurred within itsk-locality.

The following technical lemma aids the proof of the lower bound.

Lemma 1.4.1 [19] Let P be a path of length̀, with weightn on each of its̀ + 1
nodes. Then the minimal number of colors required to colorP such that the end

nodes have exactly� colors in common, is at least2n+ 2�`�1 when` is odd, and at

least2n+ 2(n��)` when` is even.

LetP , n and` be as in the statement of the lemma. Letu andv be the end nodes

of P , and letu0 andv0 be the neighbors ofu andv, respectively (See Figure 1.3a).

ThenP 0 is constructed fromP as follows. Nodeu is split into two connected nodes,u1 andu2, which are assigned weight� andn � �, respectively. Similarly, nodev
is split into the connected nodesv1 andv2, with weight� andn � �, respectively

(Figure 1.3b). Obviously, coloringP such thatu andv have exactly� colors in

common is equivalent to coloringP 0 such thatu1 andv1 receive the same colors,

andu2 andv2 receive completely different colors. Next, the graphP 00 is constructed

from P 0 as follows. Nodesu1 andv1 are identified into one nodeuv1, and nodesu2 andv2 are joined by an edge (Figure 1.3c). It is easy to see that any coloring ofD R A F T February 1, 2002, 10:34am D R A F T
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Fig. 1.3 Multicoloring a path where the endpoints have colors in commonP 00 is equivalent to a coloring ofP 0 in whichu1 andu2 receive the same colors, andu2 andv2 receive different colors, which in turn is equivalent to a coloring of P as

required by the lemma.

To determine a lower bound on the minimal number of colors needed to colorP 00,
observe the following. If̀ is odd, then the subgraph ofP 00 induced by all nodes

exceptu2 andv2 is an odd cycle of length̀. The sum of the weights on this cycle is(`� 1)n+ �, and the maximum size of an independent set in this cycle is12 (`� 1).
Hence the minimum number of colors needed to colorP 00 is at least(`� 1)n+ �12 (`� 1) = 2n+ 2�`� 1

If ` is even, thenP 00 consists of an odd cycle of length` + 1, plus a node (uv1),
which is joined to four consecutive nodes of this cycle. So the maximal size of

an independent set inP 00 is 12`. The sum of the weights on the nodes ofP 00 is(` � 1)n + � + 2(n � �) = (` + 1)n � �. Hence the minimum number of colors

needed to colorP 00 is at least(`+ 1)n� �12` = 2n+ 2(n� �)`D R A F T February 1, 2002, 10:34am D R A F T
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as claimed in the lemma.

The above lemma can be used to prove a lower bound on any onlinealgorithm

with recoloring distancek, using an adversary argument. The adversary chooses a

hexagon graph, and at any step canraise or increase the weight at any node. The

algorithm must respond by assigning colors corresponding to the increased weight.

The following argument is from [19]. Fix an online algorithmwith recoloring

distancek � 0. There is a strategy for the adversary which forces the algorithm to

use at least2n + n2(k+1) colors, while the offline algorithm never needs more than2n colors. The graph used by the adversary is shown in Fig 1.4. Let u andv be two

nodes at distance 3 of each other along one of the axis of the grid. The adversary

starts by raising the weight onu andv ton. If k > 0, the adversary continues to raise

the weight ton on all nodes along two parallel axes of lengthk � 1 which make an

angle of�3 with the axisuv, and which start atu andv, respectively. The algorithm

may color and recolor as desired.

Let u0 andv0 be the last nodes of the axis growing out ofu andv, respectively,

on which the weight has been raised. Nodesu0 andv0 have distancek � 1 from u
andv, respectively. Next, the adversary raises the weight ton on two nodes,a andb, situated as follows. Nodea is a neighbor ofu0, situated along the axisuu0, at

distancek from u. Nodeb is a neighbor ofv0 and lies at distancek from v, but is

situated at an angle�3 from the axisvv0, and thus lies at distance 2 from nodea (See

Fig 1.4).

The next moves of the adversary will only involve nodes at distance greater thank from u andv, so the colors onu andv are now fixed. Let� be the number of

colors thatu andv have in common. The strategy of the adversary now depends

on�. If � � n=2, then the adversary raises the weight ton on the nodes
 andd,

which can be observed to have distance greater thank to bothu andv. The nodes of

positive weight now lie on a path of length2k + 3. By Lemma 1.4.1 the algorithm

must now use at least2n+ n2k+2 colors. If� < n=2, the adversary raises the weight

of nodee, the common neighbor ofa andb to n. By Lemma 1.4.1, the algorithm

will have to use at least2n + n2(k+1) colors. The number of colors needed by the

off-line algorithm is2n. The above construction can be repeated as many times asD R A F T February 1, 2002, 10:34am D R A F T
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k-1

k-1

u v

u’ v’

a b

Fig. 2

Fig. 1.4 Graph used by adversary to show a lower bound on any online algorithm with

recoloring distancek.

desired, proving that there are infinitely long sequences onwhich the ratio bound of1 + 14(k+1) is achieved.

For the special casek = 0, a better bound can be proved [19]. Janssenet al also

show a lower bound on the competitive ratio for any non-recoloring online algorithm.

For such algorithms, the adversary can specify which colorsthe algorithm should

drop, by which it can force the remaining colors to stay. Thusstronger lower bounds

can be obtained for non-recoloring algorithms. A graph and asequence of requests

can be created such that the offline algorithm could always color the graph usingn colors, but any non-recoloring online algorithm is forced to use2n colors. The

following theorem summarizes the lower bound results in [19]:

Theorem 1.4.2 1. Any online algorithm with recoloring distancek � 0 has

competitive ratio at least1 + 14(k+1) .
2. Any online algorithm with recoloring distance0, acting on a hexagon graph

of diameter at least3, has competitive ratio at least1 + 2=7.

3. Any non-recoloring online algorithm has competitive ratio at least2.D R A F T February 1, 2002, 10:34am D R A F T
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1.5 THE STATIC CASE

In this section, we describe the results on static channel assignment. The algorithms

described here can be used as recoloring algorithms in the online setting as well.

Hexagon graphs, unit disk graphs, odd cycles and outerplanar graphs are The best

known upper bounds for the various classes of graphs are summarized in Table 1.1.

Graph Competitive ratio of

best known algorithm

Odd cycles 1 [37]

Outerplanar graphs 1 [37]

Hexagon graphs,r = 2 43 [37, 35]

Hexagon graphs,r = 3 73 [9]

Hexagon graphs,r > 3 4 [23]

Unit disk graphs 3 [12, 32, 40]k-colorable graphs k2 [17]

Table 1.1 Best known upper bounds for recoloring algorithms

1.5.1 Reuse distance 2 in hexagon graphs

As stated in the introduction, for this case, FA has a competitive ratio of 3. To see

that this is a tight bound, consider a network with a red node,blue node, and green

node, no two of which are adjacent to each other, and each of which has a weight ofw. It is easy to see that�(G;w) = !(G;w), while FA must use different colors for

each, and therefore uses3 times the number of colors required.

Borrowing strategies. There is a simple borrowing strategy calledFixed Preference

Allocation (FPA)that cuts the number of channels used by FA down by a factor of

two. The key idea is as follows: Divide the channels into three sets ofd!(G;w)=2e
channels each. A red node takes as many red channels as it needs, starting from the

first, and if it still needs more channels, takes green channels starting from the end.D R A F T February 1, 2002, 10:34am D R A F T
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Similarly, blue nodes borrow from red if necessary, and green nodes borrow from

blue. Suppose this assignment of channels causes a conflict between a green node

and a red node that are neighbors. Then their combined weightmust be greater than!(G;w), a contradiction. Thus, the assignment is conflict-free, and the algorithm is32 -competitive.

However, the best known algorithms have a competitive ratioof 43 [37, 35, 42],

and all make use of the structure of the hexagon graph. The algorithms in [35, 42]

have slightly different descriptions, but are identical, and centralized. Narayanan

and Shende [37] give a different algorithm that can be implemented in a distributed

fashion. Furthermore, it was modified and implemented in a local manner, as shown

in [19]. The general idea in all is as follows. The algorithm consists of three phases.

At the end of the first phase, the resulting graph is triangle-free. At the end of the

second phase, the resulting graph is bipartite. The third phase finishes up by assigning

channels to the bipartite graph.

We go on to describe the algorithm in detail now. LetD = 3d!(G;w)=3e; we

divide the channels into 4 sets ofD=3 channels each. The four sets will be called

the red, blue, green and purple sets of channels. As stated earlier, the algorithm can

be divided into three phases. In the first phase, each node takes as many channels

as needed from its nominal set of channels. For example, red nodes take as many

red channels as needed and decrease their weight accordingly. Consider the resulting

graph induced by nodes of positive weight. Suppose there is an triangle in this graph.

This means all three nodes had weight greater thanD=3, a contradiction. Thus the

remaining graph istriangle-free. This implies, furthermore, that any node in the

graph with degree 3 has all neighbors of the same color, and the only way it has two

neighbors of different colors is if they are all in astraight line (see Figure 1.5 for

different types of nodes of degree at least 2). We call a node acorner nodeif it is of

degree 2 or 3, and all its neighbors are of the same color.

The second phase is a borrowing phase, where nodes borrow from a specified

color set, and only borrow channels that are unused at any neighbors. In particular,

red corner nodes with green neighbors borrow available bluechannels, blue corner

nodes with red neighbors borrow available green channels, and green corner nodesD R A F T February 1, 2002, 10:34am D R A F T
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Fig. 1.5 A non-corner node of degree 2, a corner node of degree 2, and a corner node of

degree 3
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Fig. 1.6 The orientations of corner nodes. After the second phase, corner nodes of the type

in the second row drop out.

with blue neighbors borrow available red channels. It is notdifficult to see that all

such corner nodes receive enough channels to complete theirassignment, and drop

out of the next phase.

From Figure 1.6, it is obvious that the resulting graph induced by nodes of positive

weight at this stage cannot have a cycle, and is thus bipartite. Furthermore, any edge

in this bipartite graph has weight at mostD=3, and all nodes that are endpoints of

these edges can be assigned channels from the purple set in the final phase. An

isolated node with remaining weight at mostD=3 can use purple channels, and one

with remaining weight at leastD=3 can be shown to have neighbors that are lightD R A F T February 1, 2002, 10:34am D R A F T
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enough so that it can finish its assignment using borrowed channels from neighbors

and purple channels.

The greedy strategy. The greedy strategy is generally understood to be a non-

recoloring strategy in the online setting. However, it makes sense also for the static

problem, and a distributed recoloring version of the greedystrategy was formulated

and analyzed in [38]. Recall that in the greedy strategy, in every step, every node is

assigned the minimum numbered channels not being used by itsneighbors. Some or-

dering of the nodes must be used in order to perform the assignment. In a distributed

implementation, the ordering must take care to avoid two neighbors performing the

assignment simultaneously, thereby deciding that a particular channel is available

and claiming it. Prakashet al. [41] give a distributed implementation which focuses

on how this mutual exclusion type of problem is solved, but donot give any bounds

on the number of channels needed. In [38], the authors suggest a simple synchro-

nization strategy based on rounds: first red nodes assign channels, followed by blue

nodes, which are followed by green nodes. In this recoloringversion of the greedy

strategy, the red nodes do not have to consider any other nodes while performing

their assignment, the blue nodes have to consider only the red nodes, and the green

nodes have to consider all neighbors.

The key lemma used in [38] to analyze the maximum number of channels used by

the greedy algorithm for an arbitrary graph and reuse distance is the following:

Lemma 1.5.1 Let m
(v) be the highest channel used by the nodev. For the

greedy algorithm, and for any nodev, m
(v) � minfHr(v) � RCr(v); w(v) +maxu2Nr(v)m
(u)g.

The number of distinct channels used by nodes inNr(v) is at mostHr(v) �w(v)�RCr(v). Therefore,v will never use a channel higher thanHr(v)�RCr(v).
Also, if u is a node inNr(v) that uses the highest channel inv’s neighborhood,v
will never use more than the nextw(v) channels.

For the case of reuse distance 2 in hexagon graphs, the above lemma can be used

to show that the greedy algorithm can never use a channel higher than5!(G;w)=3.

To see this, observe first that red and blue nodes can never usea channel higher thanD R A F T February 1, 2002, 10:34am D R A F T



THE STATIC CASE xxi

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
��
��
��
��
��
��

��
��
��
��
��
����
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

����������������������

����������������������

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�  Node weighted k

Node weighted 2k
g1

r1

r2

b1

b2

b3

Fig. 1.7 An example where the greedy algorithm uses5!(G;w)=3 channels.

!(G;w). For a green nodev, if w(v) � 2!(G;w)=3, then since no neighbor ofv
uses a channel higher than!(G;w), we havem
(v) � !(G;w) + w(v). If insteadw(v) > 2!(G;w)=3, thenm
(v) � H2(v) � 5!(G;w)=3. Finally, this is a tight

bound, as shown by Figure 1.7. The reader can verify that!(G;w) = 3k, and

that there is an optimal assignment using3k channels, but the greedy algorithm will

use5k channels. Thus, the greedy algorithm uses5=3 times the optimal number of

channels required.

Distributed algorithms. Janssenet al. [19] give a framework to analyze distributed

algorithms. In particular, an algorithm is said to bek-local, if the only information

available to a node apart from its own history, is the currentweights of nodes that are

within graph distancek from it. However, since the nodes themselves communicate

via a wireline network, it is reasonable to allow nodes to exchange other information

with nodes in theirk-locality. In particular, a node may send the list of channels it is

using to the nodes in itsk-locality. By this revised definition, the greedy algorithm

and FPA can be seen to be1-local. While the4=3-approximationalgorithm described

earlier is not distributed, two distributed implementations of the algorithm in [37]

are given in [19]. Algorithms with better competitive ratios are shown for increasing

values of locality. The best known results fork local algorithms for small values ofk are summarized in Table 1.2. The corresponding lower boundsthat follow from

Theorem 1.4.2 are also given for comparison.D R A F T February 1, 2002, 10:34am D R A F T
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Recoloring Lower bound on Best known

distance competitive ratio

0-local 9/7 3

1-local 9/8 3/2

2-local 13/12 17/12

4-local 21/20 4/3

Table 1.2 Best knownk-local algorithms

1.5.2 Reuse distance 3 in hexagon graphs

For reuse distance3, since there is a 7-coloring for any square graph, FA has a

competitive ratio of7. The borrowing strategy given by [17] has a competitive ratio

of 3:5. The best known algorithm was given by Feder and Shende [9]. We describe it

briefly here. The graph is divided into seven independent sets, according to the base

coloring, and each set is assigned a nominal set of` channels. Call a nodeheavy

if its weight is greater thaǹ and light otherwise. The algorithm proceeds in two

phases. In the first phase, each node takes as many channels asneeded from its own

nominal set. All light nodes are done in this phase and drop out. In the second phase,

any remaining (heavy) node borrows as many unused channels as needed from its

neighbors’ nominal sets.

It remains to show that the unused channels in a heavy nodev’s neighborhood

suffice to finishv’s assignment. Note that the neighborhood of any nodev can be

covered by four cliques (see Figure 1.8). Thus the total weight of the neighborhood

of v is at most4!(G;w)� 3w(v), and this forms an upper bound on the number of

channels needed for the algorithm to work. For` = 2!(G;w)=5, for example, it is

clear that4!(G;w) � 3w(v) � 7` for any heavy nodev. However, this would give

an algorithm with performance ratio2:8.

The authors perform a more careful analysis of the neighborhood of a heavy nodev to show that̀ = !(G;w)=3 suffices. For instance, they observe that a nodev of

base colori has three neighbors of each base color6= i, but many of the channels usedD R A F T February 1, 2002, 10:34am D R A F T



THE STATIC CASE xxiii

y
3

4

3

3x

5

6x

2
x

z4

z5 z6
y
7

y

y
z

x

26y y

x4

x7

5

v1 z
7

z
2

y
3

4

2
3

7

3x

5

6x

2
x

z4

z5 z6
y
7

z

y
z

y
z

x

26y y

v1
x4

x7

5

Fig. 1.8 The neighborhood of a nodev contains exactly three nodes of each base color

different fromv’s, and can be covered with three cliques.

are the same. Thus some of the weight of the two lighter neighbors can be charged

to the heaviest neighbor of that color. This means that for a heavy nodev, if all three

of its neighbors of a particular base color are light, then only one of them counts, and

the other two can be considered to be of zero weight, since allthe channels assigned

to them would also be assigned to the heaviest neighbor. Another observation is that

there cannot be too many heavy nodes in the neighborhood of a heavy nodev. In

particular, there can either be at most four heavy nodes if all areouterneighbors ofv (see Figure 1.8), or at most three if one of them is aninnerneighbor ofv.

Thus there are only four possibilities forv’s neighborhood: It contains (a) at

most one node of each distinct base color, except for two pairs of heavy nodes, each

corresponding to a base color different fromv’s and from each other (b) at most one

node of each distinct base color except for a triple of heavy nodes, all of the same

color (c) at most one node of each distinct color and (d) at most one node of each

distinct color, except for a pair of heavy nodes of a color different fromv’s. In the

first two cases, there are two nodes whose demand can effectively be reduced by!(G;w)=3 since this corresponds to reused channels. Thus, the total weight ofv’s

neighborhood is at most4!(G;w) � 3w(v) � 2!(G;w)=3 � 7!(G;w)=3, which

implies that there are sufficient channels forv to borrow to complete its assignment.D R A F T February 1, 2002, 10:34am D R A F T
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The other cases are more complicated, but lead to the same conclusion. See [9] for

details.

It is possible to construct a square graphG such that�(G; 2) = !(G;w), but the

algorithm needs7!(G;w)=3 channels, thus the competitive ratio of the algorithm is

exactly7=3.

We note here that Feder and Shende mention a centralized strategy for this case

that has competitive ratio at most 2. This uses a simple idea involving a convex hull

technique. The algorithm follows from the following simpleobservation. Consider

an embedding of the square graph on the triangular lattice. Extract a node on the

convex hull of the graph. It is easy to see that its neighborhood can be covered with

two cliques. Hence if every node inv’s neighborhood is already assigned channels

from the set[1; : : : ; 2!(G;w)℄, thenv can also find channels from this set without

conflicting with any neighbors. Therefore, the algorithm first constructs an ordering

of nodes by computing the convex hull of the nodes, removing ahull node, and

repeating this process on the remaining nodes. Finally, nodes are assigned channels

in the reverse of this ordering. It is clear that2!(G;w) channels suffice.

In [38], the authors show that the recoloring greedy strategy has a competitive

ratio between7=3 and23=8 for reuse distance 3 in hexagon graphs, and thus for the

recoloring case, the borrowing strategy is at least as good as the greedy strategy.

1.5.3 Arbitrary graphs

Janssen and Kilakos [17] show that for generalk-colorable graphs, a generalization

of the FPA strategy discussed earlier has a performance ratio ofk=2. In what follows,

we discuss some specific classes of graphs that have been studied in the context of

radio channel assignment. These include odd cycles and outerplanar graphs, graphs

derived from hexagon graphs, either by considering arbitrary reuse distance in such

graphs, or by considering networks that have a certain amount of overlap between

adjacent cells. Another interesting class of graphs is the unit disk graphs and graphs

that can be drawn in an(r; s)-civilized manner.

D R A F T February 1, 2002, 10:34am D R A F T
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Odd cycles and outerplanar graphs Odd cycles and outerplanar graphs can be

multicolored optimally using simple linear time sequential algorithms. The chromatic

number of an odd cycle with2m + 1 nodes ismaxf!(G;w); dW=meg whereW
is the sum of the weights of all nodes in the cycle. The centralized algorithm given

in [37] first finds the minimum indexk such that�2k+1i=1 wi � k�(G;w). Such an

index must exist, becausem satisfies the above property. Then the algorithm uses

contiguous colors in a cyclic manner from the colors[1; �(G;w)℄ to color nodes1 to2k. The remaining nodes are colored based on their parity as in abipartite graph. The

optimal algorithm for odd cycles is extended in [37] to derive an optimal algorithm

to multicolor outerplanar graphs.

Arbitrary reuse distance in hexagon graphs. We consider the case of arbitrary

reuse distance for hexagon graphs. The problem of channel assignment in a hexagon

graph(G;w) with reuse distancer is equivalent to multicoloring the graph(Gr; w).
As stated in Section 1.4, there exist graphs(Gr; w) which require5!(Gr; w)=4
channels. An upper bound of6 for the performance ratio of the greedy strategy

follows from the observation that the neighborhood of any node in a graphGr can

always be covered with 6 cliques. However, a borrowing strategy similar to the one

in [9] for reuse distance 3 has a better upper bound. In particular, as shown in [35]

and [45], for a hexagon graphG with reuse distancer, !(Gr) = �(Gr) = 3r24 if r is

even and3r2+14 otherwise. This was used in [38] to derive an algorithm for channel

assignment with performance ratio18r23r2+20 if r is even, and18r2+63r2+21 whenr is odd.

The best known performance ratio for channel assignment forreuse distancer > 3
is achieved by an algorithm calledcluster partitioningin [23]. The key idea is to

partition the graph into clusters which are maximal cliques, as with FA. However,

unlike FA, where identical sets of channels are assigned to corresponding cells in

different clusters, here, sets ofD channels are assigned to entire clusters, in such

a way that any pair of clusters containing cells that are within distancer � 1 are

assigned different sets. Calls arising in any cluster are assigned channels from its

nominal set of channels. Furthermore, it turns out that it ispossible to color the

clusters with 4 colors such that any two clusters that have nodes within distancer�1
D R A F T February 1, 2002, 10:34am D R A F T
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of each other get different colors. Thus four sets of channels suffice, which implies

a performance ratio of4 for the algorithm.

Overlapping cells. Matula et al. [34] define a model for channel assignment in

cellular networks that include overlapping cell segments.In particular, instead of

assuming the network to consist of disjoint hexagonal cells, each served by a single

base station, they assume that adjacent cells include an overlap region that can be

covered by both transceivers. Cell segments thus fall into two classes: those that can

be covered by a single transceiver and those that can coveredby two 1. The channel

assignment problem is then modeled by a regular tripartite graph with three sets of

nodes: (a) transceiver nodes with degree 7, (b) cell segmentnodes with degree 1, and

(c) cell segment nodes with degree 2. There is an edge betweentransceiver nodei
and cell segmentj if transceiver nodei covers the segmentj. A channel assignment

is an assignment of integers to edges such that the total weight assigned to all edges

outgoing from a transceiver node is at most the number of channels it holds, and the

total weight on all edges incoming to a cell segment is equal to the number of mobiles

in the cell segment. Using network flow techniques, they showa Capacity-Demand

theorem, which states that a channel assignment is always possible unless there is

a connected sub-region of cell segments containing more channel requests than the

total capacity of all transceivers within or on the boundaryof the subregion and

covering any part of the subregion with an overlapping segment.

A subsequent paper [6] uses the same model as described above. The authors

propose a new load balancing algorithm called thecluster algorithmand show that it

has a competitive ratio of4 when applied to the channel assignment problem.

Unit disk graphs. Unit disk graphs are the intersection graphs of equal sized disks in

the plane. It is easy to see that, given the distance model, multicoloring is equivalent

to coloring for unit disk graphs: a node with weightw can be replaced withw nodes

of weight 1 in close proximity of each other. Such graphs can be seen as a more

1If the overlap segments are larger, then there is a third typeof segment which can be covered by three

transceivers.D R A F T February 1, 2002, 10:34am D R A F T
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general model of cellular networks. Also, a hexagon graph for any reuse distancer
is a unit disk graph.

Unit disk graphs can be used to model broadcast networks where the nodes are

transceivers of equal power and two nodes that are within transmission range of each

other are within each other’s disks and are therefore neighbors. Neighboring nodes

may not broadcast simultaneously; coloring a unit disk graph thus gives a broadcast

schedule for the corresponding adhoc network. The number ofcolors required is the

number of rounds required in the broadcast schedule.

In [12], it is shown that the coloring problem for unit disk graphs is NP-complete,

for any fixed number of colorsk � 3, even if the distance model is given. 3-

approximation algorithms for the problem are given in [12, 32, 40]. The algorithm

in [12] works as follows. Divide the part of the plane containing the unit disk graph

into strips of width
p3=2. The induced subgraph in each strip is a co-comparability

graph, and can therefore be colored optimally using!(G;w) colors. Furthermore, a

node in a given strip may be a neighbor of a node in its own strip, an adjacent strip or

a node that is 2 strips away, but no other nodes in the graph. Therefore, three disjoint

sets of!(G;w) colors can be used to color the nodes in three adjacent strips, and then

the sets of colors can be reused. Maratheet al. [32] use an algorithm by Hochbaum

[14] for coloring arbitrary graphs inÆ(G) + 1 colors (whereÆ(G) is the maximumÆ such thatG contains a subgraph in which every node has degree at leastÆ) and

prove that it has performance ratio 3 for unit disk graphs. Peeters [40] has shown

that coloring the nodes greedily and sequentially using a lexicographic ordering of

the nodes also achieves a performance ratio of 3.

McDiarmid and Reed [36] study the case when the number of nodes is infinite.

For V a countable set of points in the plane, theupper densityof V is defined asinfx>0f(x) wheref(x) is the supremum of the ratiojV \Sj=x2 over all openx�x
squaresS with sides aligned with the axes. They show that for any countable set

of pointsV in the plane with a finite positive upper density, the ratio ofchromatic

number by clique number tends to to2p3=� which is about1:103 as the radius of

the disks tends to infinity.
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Maratheet al. [33] give approximation algorithms for the coloring and distance

2-coloring problem in graphs that can be drawn in an(r; s)-civilized manner.

1.6 THE ONLINE CASE

In this section, we describe algorithms for online channel assignment that do not

perform reassignment of channels. Once a call is assigned a channel, it “keeps” the

channel for its entire duration. While there has been a lot ofwork on online graph

coloring (see, for example, [16, 29, 46]), there has been very little work on online

graph multicoloring. The best known upper bounds for the various classes of graphs

are summarized in Table 1.3.

Graph Competitive ratio of

best known algorithm

Hexagon graphs,r = 2 3 [30]

Hexagon graphs,r = 3 4 [9]

Hexagon graphs,r > 3 4 [23]

Unit disk graphs 6 [32]k-colorable graphs k [17]

Table 1.3 Best known upper bounds for non-recoloring algorithms

1.6.1 Reuse distance 2 in hexagon graphs

FA is a non-recoloring strategy that has a competitive ratioof 3. A lower bound of

2 for this case was derived in [19] for the competitive ratio of any non-recoloring

strategy. The only other non-recoloring strategy to have been investigated in terms

of its competitive ratio is the greedy strategy. In this algorithm, every node simply

uses the lowest numbered channels that are not being used currently by any of its

neighbors. In [4], a careful case-by-case analysis of the neighborhood of a node was

used to show an upper bound of2:5!(G;w) for the number of channels used by thisD R A F T February 1, 2002, 10:34am D R A F T
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algorithm, under the restriction that calls are of infinite duration. In contrast, in [38],

a graph and sequence of weight vectors was given to show that the greedy algorithm

would use2:5!(G;w) channels while the optimal offline algorithm would use only!(G;w) channels. Thus the competitive ratio of the greedy algorithm was shown to

be at least2:5.

1.6.2 Reuse distance 3 in hexagon graphs

FA has a competitive ratio of7 for this case. The only other non-recoloring strategy

to have been studied for this case is the greedy strategy. Since the neighborhood

of any node can be covered with 4 cliques (see Figure 1.8), it is easy to see that4!(G;w) channels will suffice for the greedy strategy. In [38], a lower bound of 3

is shown on the competitive ratio of the greedy strategy: a graph and a sequence of

weight vectors are given on which the greedy strategy uses atleast three times the

number of channels needed by an offline algorithm.

1.6.3 Arbitrary graphs

For ak-colorable graph, FA has a competitive ratio ofk. For a hexagon graph with

arbitrary reuse distance, as already mentioned, the neighborhood of a node can be

covered with 6 cliques. Thus, the greedy strategy has a competitive ratio of at most6 for this case. The greedy strategy is also shown to have a competitive ratio of6 for

unit disk graphs in [32]. The cluster partitioning algorithm has a competitive ratio of4 for hexagon graphs with arbitrary reuse distance [23].

1.7 DISCUSSION AND OPEN PROBLEMS

The problem of channel assignment has been extensively studied over the last decade.

However, many key questions remain unanswered as yet. For reuse distance 2, in

the static case, what is a tight bound on the number of channels required in the

worst case? It is known that4!(G;w)=3 channels suffice, and that there is a graph

requiring9!(G;w)=8 channels. In the online case, where once assigned a channel,
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a call retains it for its duration, what is a tight bound on thecompetitive ratio of an

online algorithm? It is known that 2 is a lower bound, while the greedy algorithm

achieves a competitive ratio of 2.5. Table 1.2 demonstratesthat for increasing values

of k, distributed algorithms in which nodes have access to information about theirk-localities can achieve better competitive ratios. At the same time, the limitations

posed by restricting the locality of an algorithm are not completely understood yet.

For reuse distance 3, very little is known, and the gap between the known lower

bound and best known upper bound is quite wide. While a few authors have proposed

randomized algorithms, there are no known bounds on the competitive ratios of these

algorithms.

Prakashet al. [41] propose several desirable features of channel assignment

algorithms. Some of these are features such as minimizing connection set-up time,

and energy conservation at mobile hosts, which would be trueof the distributed

algorithms studied here. Another quality that is considered important is minimizing

the number of hand-offs. While inter-cell handoffs were nottaken into account by

any of the algorithms described here, clearly the non-recoloring algorithms do not

create any intra-cell handoffs. On the other hand, the recoloring algorithms can

potentially force many intra-cell handoffs to occur. Designing algorithms that would

limit the number of such handoffs would be an interesting avenue for future research.

Finally, adaptability to load distributions is a desirablefeature of channel assignment

algorithms. While it is clear that dynamic channel allocation does better than fixed

allocation in this regard, it would be useful to know where the borrowing strategies

stand in the picture.
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