
What is discrete mathematics?

Discrete mathematics is devoted to the study of discrete or

distinct unconnected objects.

Classical mathematics deals with functions on real numbers.

Real numbers form a continuous line.

Some calculus techniques apply only to continuous functions.

Dealing with discrete objects requires techniques different from

classical mathematics.
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Motivation to study discrete mathematics

Computers typically work with discrete information. Examples:

bits

integers

letters

employee records

passwords

This is why a course in Discrete mathematics is standard in

Computer Science or Software Engineering programmes.
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Applications of discrete mathematics

The techniques of discrete mathematics help us solve many kinds

of problems. For example:

• What is the shortest route to go from point A to point B

given a map marked with all distances between points?

• How many different ways are there of choosing a valid pass-

word in a system?

• What is the most efficient way to multiply a given sequence

of matrices?

• How should you schedule a given collection of tasks on a set

of computers, so that all tasks finish as soon as possible?
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Applications of discrete mathematics

Discrete mathematics provides the foundations for many fields:

1. Computer security and cryptography.

2. Automata theory: the theory behind compilers.

3. Algorithms and data structures.

4. Database theory.

5. Routing and other problems in computer networks.

6. Scheduling theory.
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Logic

Logic deals with the methods of reasoning. The rules of logic

give precise meaning to mathematical statements.

It deals with objects having two values.

true .... T ..... 1

false .... F ..... 0

We call these values truth values.

Proposition or Statement

A declarative sentence which is either true or false but not both.

(We say its truth value is either T or F.)
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Examples of propositions

Montreal is a city in Canada ..... truth value is T.

Concordia is located near a metro station .... truth value is T.

7 < 4 ... truth value is F.

Examples of things that are not propositions

Don’t do that! .... not a declarative sentence.

What is the time? ... not a declarative sentence.

x < 4 ... truth value depends on x.
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Compound propositions

Propositions obtained from other propositions using logical op-

erators or connectives.

We give names to propositions, such as p, q, r, . . .

Examples:

p: It is raining today.

q: Montreal is the capital of Canada.

r: 2 + 3 = 5.

Propositions can be combined using logical connectives, such as

negation, or, and, etc.
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Logical operators

negation of p

It is not the case that p

¬p

If the proposition p is true then the negation of p is false.

If the proposition p is false then the negation of p is true.

Example:

p: It is raining today.

¬p: It is not the case that it is raining today.

or

It is not raining today.
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Truth tables

We use a truth table to show the truth values of compound

propositions in terms of the component parts.

p ¬ p

T F
F T

The truth table of negation.
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Disjunction

p ∨ q ( p or q)
is true only if at least one of p, q is true
(also known as inclusive or).

Example: q: Montreal is the capital of Canada.

r: 2 + 3 = 5.

q ∨ r: Montreal is the capital of Canada or 2 + 3 = 5.

p q p ∨ q
T T T
T F T
F T T
F F F
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Conjunction

p ∧ q ( p and q)

is true only if both p, q are true.

Example: p: It is raining.

q: It is dark outside.

p ∧ q: It is raining and it is dark outside.

p q p ∧ q
T T T
T F F
F T F
F F F
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Exclusive or

p⊕ q ( p exclusive or q)

is true only if exactly one of p, q is true and the other is false.

Example: p: I will have soup.

q: I will have salad.

p⊕ q: I will have soup or salad but not both.

p q p⊕ q
T T F
T F T
F T T
F F F
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Classroom exercise:

13



Conditional

p→ q ( if p then q)

is false only when p is true and q is false.

p is called the hypothesis or antecedent

and q is called the conclusion or consequence.

Example: p→ q: If today is Monday, then I have to go to school.

p q p→ q
T T T
T F F
F T T
F F T
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Biconditional

p↔ q ( p if and only if q)

is true only if p, q have the same truth values.

Example:

q ↔ r: I go to school if and only if the weather is good.

p q p↔ q
T T T
T F F
F T F
F F T
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The conditional p→ q can be expressed in English in many ways:

if p then q

p implies q

p only if q

p is sufficient for q

q is necessary for p

q if p

q whenever p
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Classroom exercise:
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Propositional Equivalences

Definitions

A tautology

is a compound proposition that is true

for all truth values of the propositions in it.

Example: p ∨ ¬p

A contradiction

is a compound proposition that is false

for all truth values of the propositions in it.

Example: p ∧ ¬p

A contingency

is a proposition which is neither a tautology nor a contradiction.

Example: p ∨ q
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Logical equivalence

Two compound propositions p, q are logically equivalent if they

have the same truth table.

p ≡ q

Definition

Two compound propositions p, q are

logically equivalent if p←→ q is a tautology.
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Example 1: Is the proposition p → q logically equivalent to the

proposition ¬p ∨ q?

a b
p q ¬ p ¬ p ∨ q p → q a ↔ b

T T F T T T
T F F F F T
F T T T T T
F F T T T T

Thus, p→ q ≡ ¬p ∨ q
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Example 2: Are the compound propositions (p → q) ∧ (q → p)

and p↔ q

logically equivalent?

a b
p q p → q q → p a ∧ b p ↔ q

T T T T T T
T F F T F F
F T T F F F
F F T T T T

Conclusion:

(p→ q) ∧ (q → p) ≡ p↔ q
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Example 3: Show that

(p ∧ q) ∨ (¬p ∧ ¬q) ≡ p↔ q.

a b c d
p q ¬ p ¬ q p ∧ q a ∧ b c ∨ d p ↔ q

T T F F T F T T
T F F T F F F F
F T T F F F F F
F F T T F T T T

Conclusion:

(p ∧ q) ∨ (¬p ∧ ¬q) ≡ p↔ q
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Example 4: Using truth tables, determine whether the following
proposition is a tautology, contradiction or a contingency.

((p→ q)→ r)↔ ((p→ q) ∧ (p→ r))

A B C D
p q r p → q p → r A → r A ∧ B C ↔ D

T T T T T T T T
T T F T F F F T
T F T F T T F F
T F F F F T F F
F T T T T T T T
F T F T T F T F
F F T T T T T T
F F F T T F T F

Since the last column contains both T’s and F’s, it is a contin-
gency.
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Example 5:

((¬(q → p)) ∧ ¬r)
?≡ (¬p ∨ (¬q ∨ r))

A B C D H G I J
p q r q → p ¬ r ¬ A C ∧ B ¬ p ¬ q ¬ q ∨ r H ∨ I

T T T T F F F F F T T
T T F T T F F F F F F
T F T T F F F F T T T
T F F T T F F F T T T
F T T F F T F F F T T
F T F F T T T T F F T
F F T T F F F T T T T
F F F T T F F T T T T

No!
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Basic logical equivalences

equivalence law

p ∧ T ≡ p Identity
p ∨ F ≡ p

p ∨ T ≡ T Domination
p ∧ F ≡ F

p ∨ p ≡ p Idempotent
p ∧ p ≡ p

¬(¬ p ) ≡ p Double negation

p ∨ q ≡ q ∨ p Commutative
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative
(p ∧ q)∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡( ¬ p ∨¬ q) de Morgan
¬(p ∨ q) ≡ (¬ p ∧¬ q) 25



Other useful equivalences

Negation laws :

{

(¬p) ∨ p ≡ T
(¬p) ∧ p ≡ F

Absorption laws :

{

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

A proof of the last equivalence:

p ∨ (p ∧ q)

≡ (p ∧ T) ∨ (p ∧ q) identity law

≡ p ∧ (T ∨ q) distributive law

≡ p ∧ T domination law

≡ p identity

Use brackets to avoid ambiguity!
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Classroom exercise:

27



Contrapositive, converse

and inverse

Consider the proposition p→ q.

q → p is called the converse of p→ q

¬q → ¬p is called the contrapositive of p→ q

¬p→ ¬q is called the inverse of p→ q
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Example: If you are a Computer Science student, you can take

COMP 232.

Contrapositive: If you cannot take COMP 232, you are not a

Computer Science student.

Converse: If you can take COMP 232, you are a Computer Sci-

ence student.

Inverse: If you are not a Computer Science student, you cannot

take COMP 232.
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The proposition p→ q is logically equivalent to its contrapositive

¬q → ¬p.

p→ q

≡ ¬p ∨ q (Example 1 above)

≡ q ∨ ¬p (commutative law)

≡ ¬(¬q) ∨ ¬p (double negation law)

≡ ¬q → ¬p (Example 1 above)

However, neither the inverse nor the converse of p→ q is logically

equivalent to it.
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Everyone should know:

the definition of a

proposition, tautology, contradiction, contingency,

all logical operations,

basic logical equivalences,

how to construct a truth table,

how to use logical equivalences.
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Predicates and Quantifiers

Statements involving variables, like

x2 ≥ x + 2

“The American city is polluted.”

are not propositions, since their truth values depend on the values

of the variable involved.

For what value of x?

Which city?
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Nevertheless, we sometimes wish to make general statements:

“All American cities are polluted.”

“Some cats do not chase mice.”

For this, we need to introduce new terminology.
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Predicates

Consider a statement involving an integer variable:

x2 ≥ x + 2

Here x is the variable

and x2 ≥ x + 2, the predicate, is a property of x.

We denote x2 ≥ x + 2 by P(x).

P is called a propositional function,

its value depends on the value assigned to x.
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P(x) ≡ x2 > x + 2.

Assigning a specific value to x in P(x) yields a proposition.

P(0) ≡ 0 ≥ 0 + 2 false

P(5) ≡ 25 ≥ 5 + 2 true

P(−10) ≡ 100 ≥ −10 + 2 true
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Quantifiers

Another way to make a proposition out of a propositional function

is to use statements about how general the validity of a propo-

sitional function is.

This method is called quantification.

For the predicate P(x), the universe of discourse specifies all

possible values of x.

We study universal quantification

and existential quantification.
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Universal quantification of P (x)

∀x P(x)

Read ∀x as For All x.

True when P(x) is true for all values of x in the univ. of discourse.

Example 1: When the universe of discourse is integers

∀x (x2 ≥ x + 2)

is a false proposition since 02 ≥ 0 + 2 is false.

Example 2: Let Q(x) be the predicate x2 ≥ x.

Q(x) is true for all integers.

Therefore, ∀x (x2 ≥ x) is a true proposition.
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Existential quantification of P (x)

∃x P(x)

∃ should be read There Exists.

It is true when there exists a value of x in the universe of discourse

such that P(x) is true.

Example 1: ∃x (x2 ≥ x + 2)

is a true proposition since it is true when x = 4

Example 2: ∃x (x2 ≥ x)

is a true proposition, since it is true when x = 0.

38



Classroom exercise:
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Universal conditional statements

Statements of the form ∀x P(x)→ Q(x)

Example: If a number is an integer, it is a rational number.

∀x if x ∈ Z then x ∈ Q.

∀x x ∈ Z → x ∈ Q

Alternatively, every integer is a rational number.

∀x ∈ Z, Rational(x).
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Implicit quantification

Sometimes, the quantifier is not explicitly present, but instead is

implicit.

The notation P(x) =⇒ Q(x) is equivalent to ∀x P(x)→ Q(x). It

means P(x) logically implies Q(x).

Example: x ∈ Z =⇒ x ∈ Q ≡ ∀x x ∈ Z → x ∈ Q.

The notation P(x)⇐⇒ Q(x) is equivalent to ∀x P(x)↔ Q(x). It

means P(x) is logically equivalent to Q(x).

Example: x is even ⇐⇒ x2 is even ≡
∀x x is even ↔ x2 is even.
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Negations of quantifications

Suppose the universe of discourse is all Canadians, and let P(x)

be the predicate x is a good driver.

Then the statement:

All Canadians are good drivers.

can be written as: ∀x P(x).

The negation of this statement is:

It is not the case that all Canadians are good drivers.

There are Canadians who are not good drivers.

∃x (¬P(x))
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Negations of quantifications

The following equivalences hold:

¬∀ x P(x)⇐⇒ ∃ x (¬P(x))

¬∃ x P(x)⇐⇒ ∀ x (¬P(x))

Note that these statements are implicitly quantified over all pred-

icates P .
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Let the universe of discourse be all pigs

and P(x) be the predicate x can fly.

Then the statement “Some pigs can fly” can be written as

∃x P(x)

Some ... There are ... There is at least one.

The negation of this is:

It is not the case that some pigs can fly.

There are no pigs that can fly.

For every pig, it is not the case that it can fly.

∀ x (¬P(x)).
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Example: Let P(x), Q(x), and R(x) be the statements “x is

a professor,” “x is ignorant,” and “x is vain,” respectively. Ex-

press the following using logical connectives and quantifiers. The

universe of discourse for x is the set of all people.

1. No professors are ignorant.

There is no one who is both a professor and ignorant.

¬∃x (P(x) ∧Q(x)) ≡ ∀x (¬P(x) ∨ ¬Q(x))

2. All ignorant people are vain.

If someone is ignorant, then he/she is vain.

∀x (Q(x)→ R(x))
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Classroom exercise:
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Propositional functions of two variables

Example:

Let R(x, y) be the predicate x2 ≥ x + y.

R(1,0) ≡ 12 ≥ 1 + 0 true

R(5,2) ≡ 52 ≥ 5 + 2 true

R(0,2) ≡ 02 ≥ 0 + 2 false

We need multiple quantifiers to turn a propositional function of

many variables into a proposition.

When there are multiple quantifers, they must be considered

from left to right:

∀x ∃y R(x, y)

For every x there exists some y such that R(x, y).
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Classroom exercise:
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Propositions:

∀y ∀x R(x, y)

∃y ∀x R(x, y)

∀y ∃x R(x, y)

∃y ∃x R(x, y)

∀x ∀y R(x, y)

∃x ∀y R(x, y)

∀x ∃y R(x, y)

∃x ∃y R(x, y)

Changing the order of the quantifiers may change the proposi-

tion.

Note that ∀x R(x, y) or ∃y R(x, y) are propositional functions of

one variable.
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In general,

∀x ∃y R(x, y) 6⇔ ∃y∀x R(x, y)

Example: Universe of discourse is integers.

Consider the proposition

∀x ∃y (x < y)

true, since it means:

For every integer x there exists an integer y greater than x.

Consider the proposition

∃y ∀x (x < y)

false, since it means:

There is an integer y that is larger than any other integer.
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Translation of sentences into logical expressions

Example 1: Some applications can malfunction if they are not

properly terminated.

Some .... there are .... there exists

need to introduce names

universe of discourse: computer applications

variable X representing a computer application

pt(X) ... X is properly terminated

mf(X) .... X can malfunction
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Some applications can malfunction if they are not properly ter-

minated.

There exists an application X such that X can malfunction if X

is not properly terminated.

There exists an application X such that if X is not properly

terminated then X can malfunction.

∃X [(¬pt(X))→ mf(X)]
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Example 2: Every student is assigned an id number.

introduce names

For every student s there exists a number n such that n is the

id of s.

s .... universe of discourse is students

n .... universe of discourse is integers

id(n, s) .... n is the id of s

∀s∃n id(n, s)
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What happens if ∀ and ∃ are reversed?

∃n∀s id(n, s)

There exists a number n such that for every student s,

the number n is the id of s.

That is, all students have the same id number.
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Example 3:

Every student is assigned a unique id number.

unique .... the id number of a student s cannot be the id number

of any other student.

∀s∃n [id(n, s) ∧ ∀t[s 6= t→ ¬id(n, t)]]

universe of discourse for s, t is all students,

universe of discourse for n is integers.
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Example 4: Assume the universe of discourse is students.

All comp. sci. students have a cs computer account.

comp sci(s) .... s is a comp.sci. student.

cs account(s) ... s has a cs computer account.

correct solution:

∀ s [comp sci(s)→ cs account(s)]

incorrect solution: ∀ s [ comp sci(s) ∧ cs account(s)
︸ ︷︷ ︸

]

false when s is not a comp sci student.
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Remember: the logical operation → is used to restrict applica-

bility of a property to a part of the universe of discourse when

using ∀.
if p is valid then q is valid.
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Example 5: Assume the universe of discourse is students.

Some computer science students like to dance.

comp sci(s) ... s is a computer science student.

dance(s) ... s likes to dance.

correct solution:

∃ s [comp sci(s) ∧ dance(s)].

incorrect solution:

∃ s [comp sci(s)→ dance(s)]
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Classroom exercise:
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Quantifiers of the same type can be reversed without changing

the truth value, i.e.,

∀x ∀y P(x, y) ≡ ∀y∀x P(x, y)

∃x ∃y P(x, y) ≡ ∃y∃x P(x, y)

Example:

∀x ∀y : x + y = y + x is equivalent to ∀y ∀x : x + y = y + x

∃x ∃y : 5x = 3y is equivalent to ∃y ∃x : 5x = 3y
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Quantifiers and logical operations

¬( ∃x P(x)) ≡ ∀x (¬P(x))

¬( ∀x P(x)) ≡ ∃x (¬P(x))

∃x (P(x) ∨Q(x)) ≡ (∃x P(x)) ∨ (∃x Q(x))

Example: There is a student in this class who is from Bangladesh

or from Korea.

is the same as

There is a student in this class who is from Bangladesh or there

is a student in this class who is from Korea.

∀x(P(x) ∧Q(x)) ≡ (∀xP(x)) ∧ (∀xQ(x))
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However, in many cases

∃x (P(x) ∧Q(x)) 6≡ (∃x P(x)) ∧ (∃x Q(x))

Example: Some students speak Spanish and some students speak

Italian.

is not the same as

Some students speak Spanish and Italian.

Similarly,

∀x(P(x) ∨Q(x)) 6≡ (∀xP(x)) ∨ (∀xQ(x))
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Rewriting propositions

Example 1: Every prime number greater than 2 is odd.

Universe of discourse is integers.

For every number x, if x is prime and x > 2 then x is odd.

∀x [(prime(x) ∧ (x > 2))→ odd(x)]
≡ ∀x [¬(prime(x) ∧ (x > 2)) ∨ odd(x)]
≡ ∀x [¬(prime(x) ∧ (x > 2)) ∨ ¬even(x)]
≡ ∀x [¬((prime(x) ∧ (x > 2)) ∧ even(x))]
≡ ¬∃x [(prime(x) ∧ (x > 2)) ∧ even(x)]

≡ It is not true that there exists a prime number that is greater

than 2 and is even.

63



Example 2: Nobody is right all the time

≡ It is not true that there exists a person x such that x is right

all the time.

≡ It is not true that there exists a person x such that at any

time t, person x is right at time t.

right(x, t).... x is right at time t.

¬∃ x ∀ t right(x, t)

≡ ∀ x ¬(∀ t right(x, t)

≡ ∀ x ∃ t ¬ right(x, t)

≡ ∀ x ∃ t wrong(x, t)

Every person is sometimes wrong.
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Every student should know the definition of a:

universal quantifier,

existential quantifier.

and how to:

operate with logical operations and

quantifiers.

translate a quantified expression into an English sentence.

translate an English sentence into a quantified expression.
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Valid and Invalid Arguments

An argument is a sequence of statements.

Example:

p

q

r

∴ s

Here p, q, and r are called premises and s is called the conclusion.

An argument is called valid if the truth of the conclusion follows

necessarily (by logical form alone) from the truth of its premises.

When an argument is valid, and the premises are true, then the

conclusion must be true.
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A valid argument form

Consider the following argument:

If I drink coffee, I feel sick.

I am drinking coffee.

Therefore I feel sick.

This has the argument form:

p→ q

p

∴ q
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premise premise conclusion
p q p → q p q

T T T T T
T F F T F
F T T F T
F F T F F

Note that when the premises are both true, the conclusion is also

true. This is a valid argument form. It is called modus ponens.
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An invalid argument form

The following argument form is invalid:

p→ q

q → p

∴ p ∨ q

premise premise conclusion
p q p → q q → p p ∨ q

T T T T T
T F F T T
F T T F T
F F T T F

In the last row, both premises are true, but the conclusion is

false.
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Rules of inference

Valid argument forms that are commonly used.

They give a justification for obtaining a conclusion from facts

that are known or can be assumed.

An inference rule

A
·̇· B

is the tautology A→ B. It should be read as

If A is true, then we conclude that B is true.

A is called the hypothesis or premise,

B is called the conclusion.
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rule
of inference tautology name

p p→ (p ∨ q) addition

·̇· p ∨ q
p ∧ q (p ∧ q)→ p simplification

·̇· p
p ((p) ∧ (q))→ (p ∧ q) conjunction
q

·̇· p ∧ q
p

p→ q [p ∧ (p→ q)]→ q modus ponens

·̇· q
¬q

p→ q [¬q ∧ (p→ q)]→ ¬p modus tollens

·̇· ¬p
p→ q hypothetical
q → r [(p→ q) ∧ (q → r)] syllogism

·̇· p→ r → (p→ r)
p ∨ q disjunctive
¬p [(p ∨ q) ∧ ¬p]→ q syllogism

·̇· q
∨ resolution
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Contradiction rule

¬p→ F

∴ p

Basis of the method of proof by contradiction.

p ¬ p ¬ p → F (¬ p → F) → p

T F T T
F T F T

If an assumption leads to a contradiction, then the assumption

must be false.
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Exercise: Proof by cases rule

p ∨ q

p→ r

q → r

∴ r
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Fallacies

The use of an incorrect inference may lead to an incorrect con-

clusion, called a fallacy.

Converse error:

p→ q is true and q is true

Thus, p is true.

This is a false argument.

Example:

If the butler did it he has blood on his hands.

The butler has blood on his hands.

Therefore, the butler did it.
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Inverse error:

p→ q is true and p is false

Thus, q is false.

This is a false argument.

Example:

If the butler is nervous, he did it.

The butler is calm.

Therefore, the butler didn’t do it.
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Fallacy of begging the question:

When a step of the proof is based on the truth of the statement

being proved.

This is a false argument.

Example:

The number log2 3 is irrational if it is not the ratio of 2 integers.

Therefore, since log2 3 cannot be written in the form a/b where

a and b are integers, it is irrational.
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We are given the following premises:

(1) If it does not rain or it is not foggy then the lifesaving demon-

stration will go on and a sailing race will be held.

(2) If the sailing race is held then a trophy is awarded.

(3) The trophy was not awarded

Show that using these premises, we can conclude that it rained.
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p .... it rains

q .... it is foggy

r .... lifesaving demonstration will go on

s .... sailing race will be held.

t .... trophy is awarded

We know:

(1) If it does not rain or it is not foggy then the lifesaving demon-

stration will go on and a sailing race will be held.

(¬p ∨ ¬q)→ (r ∧ s)

(2) If the sailing race is held then a trophy is awarded.

s→ t

(3) The trophy was not awarded.

¬t
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Premises: (¬p ∨ ¬q)→ (r ∧ s)

s→ t

¬t

1. ¬t

s→ t modus tollens

∴ ¬s

2. ¬s addition

∴ ¬s ∨ ¬r ≡ ¬(r ∧ s)

3. ¬(r ∧ s)

(¬p ∨ ¬q)→ (r ∧ s) modus tollens

∴ ¬(¬p ∨ ¬q) ≡ p ∧ q

4. (p ∧ q) simplification

∴ p

p .... it rained.
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Rules of Inference for Quantified Statements

rule of inference name

∀x P(x) Universal instantiation

·̇· P(c) if c ∈ U

P(c) for arbitrary c ∈ U Universal generalization

·̇· ∀x P(x)

∃x P(x) Existential instantiation

·̇· P(c) for some c ∈ U

P(c) for some c ∈ U Existential generalization

·̇· ∃x P(x)

∀x P(x)→ Q(x) Universal
P(c) for specific c ∈ U modus ponens

·̇·Q(c)

∀x P(x)→ Q(x) Universal
¬Q(c) for specific c ∈ U modus tollens

·̇·¬P(c)
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Methods of Proofs

Methods that can be used to verify that a given proposition is

true.

Proofs are used mostly in mathematics, but there is also a need

for proofs in software development.

Examples of propositions from software development:

Software A works according to its specifications.

System B cannot stall.

The output values of computer control C are in an acceptable

range.

Software segments in D communicate with each other correctly.
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Examples of costly software problems:

• NASA probe sent to Mars. Cost: $130 000 000 U.S.

• Y2K problem. Billions were spent on it worldwide.

• Denver Airport baggage handling system. Cost: several tens

of millions.

• US warship system shutdown. Several years ago, all com-

puter systems on the ship crashed, including the propulsion

and steering.
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Lesson learned: Software developers must use methods that

ensure software correctness.

Tools:

• Better software design techniques, discussed in software en-

gineering courses.

• Proof techniques from mathematics.

Proof techniques

It would be very difficult to prove correctness for large and com-

plex systems, but

• proof techniques can be used to prove correctness of

small critical components,

• the reasoning used in proof techniques can be used to verify

correctness of larger software systems informally.
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Basic terminology

A theorem is a statement that can be proved to be true.

The statement
(p→ q)⇐⇒ (¬p ∨ q)

is a theorem, since we have shown that the truth tables for both
expressions are the same.

The statement
There is life on the moon Europa of Jupiter

is not a theorem since we cannot show it to be true.

(This statement, or its negation might become a theorem even-
tually.)
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A proof is a finite sequence of statements that show the cor-

rectness of a theorem.

A proof of statement s is a sequence of statements:

s1, s2, s3, . . . , sn, s

where each si is one of:

• an axiom,

• a definition,

• an assumption of the theorem,

• a previously proven theorem,

• a statement derived using rules of inference
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An axiom is a statement that is accepted as

a basic true property.

Example of an axiom in geometry:

In the plane, there is exactly one straight line going through any

two distinct points.

Example of an axiom in logic:

Any proposition is either true or false, but not both.
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Methods of proofs can be divided into several basic types.

• Direct proof

• Indirect proof

• Proof by contradiction

• Proof by cases

• Mathematical Induction
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Direct proof

We are to prove

p =⇒ q

We need to prove that

When p is true then q is true.

Assume that p is true and derive from p a sequence of inferences

that ends with q being true.

p =⇒ q1 =⇒ q2 =⇒ q3 =⇒ · · · =⇒ qn =⇒ q

In each step we use a rule of inference, a known theorem, an

axiom, etc.
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Definition

m is even ⇐⇒ ∃ i ∈ Z such that m = 2i

m is odd ⇐⇒ ∃ i ∈ Z such that m = 2i + 1

Problem

Show that for every integer n, if n is even then n2 is even.

even(n) =⇒ even(n2)

Proof: Suppose n is even.

=⇒ n = 2i for some integer i.

=⇒ n2 = (2i)2 = 22 · i2 = 2(2i2).

=⇒ n2 = 2j , where j = (2i2).

=⇒ n2 is even, by definition, since j is an integer.
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Indirect proof

It can be used when we are to prove an implication.

We are to prove

p =⇒ q

Do instead a direct proof of the contrapositive

¬q =⇒ ¬p

namely,

¬q =⇒ q1 =⇒ q2 =⇒ q3 =⇒ · · · =⇒ qn =⇒ ¬p

We use the fact that

p =⇒ q ≡ ¬q =⇒ ¬p
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Problem: Show that for every integer n, if n2 is an even integer

than n is an even integer.

even(n2) =⇒ even(n)

Idea: Show instead that

(¬(n is even )) =⇒ (¬(n2 is even))

⇐⇒ (n is odd ) =⇒ (n2 is odd))

Proof: Suppose n is odd.

=⇒ n = 2i + 1 for some integer i.

=⇒ n2 = (2i + 1)2 = 2(2i2 + 2i) + 1.

=⇒ n2 is odd, since 2i2 + 2i is an integer. This proves the re-

quired statement, since

odd(n) =⇒ odd(n2) ≡ even(n2) =⇒ even(n).
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Important:

To prove that

p⇐⇒ q

we usually have to do two proofs:

Prove

p =⇒ q

and prove

q =⇒ p
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Example: Prove that

n is even ⇐⇒ n2 is even

Proof: We show that

(i) even(n) =⇒ even(n2)

(ii) even(n2) =⇒ even(n)
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Proof by contradiction

(also called reductio ad absurdum)

Uses the contradiction rule.

(a) We are to prove the correctness of a statement p.

To show that

p is true,

it is sufficient to show that

¬p implies a contradiction.
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Rational numbers : integers and fractions such as

. . .− 2,−1,0,1,2,3, . . . and . . . , 2
3, 5

7, 7
4, 15

2 , . . .

A number is irrational if it cannot be expressed as an integer or

a fraction a
b where a and b are integers, and b 6= 0.
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Problem: Show that
√

2 is an irrational number.

Proof: Assume that
√

2 is a rational number.

=⇒

√
2 = a

b where a and b are integers that do not have a

common factor.

=⇒ 2 = a2

b2
=⇒ 2b2 = a2

=⇒ a2 is an even number.

=⇒ a is an even number.

=⇒ a = 2i for some integer i.

=⇒ 2b2 = 22i2

=⇒ b2 = 2i2

=⇒ b2 is an even number.

=⇒ b is an even number.

=⇒ a and b are both even.

=⇒ a and b have a common factor,

a contradiction to our assumption.
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Proof by contradiction

(b) We are to prove the correctness of

a logical implication.

p =⇒ q

Use the fact that (p ∧ ¬q → F) ≡ (p→ q)

Assume that p ∧ ¬q is true and derive from p ∧ ¬q a sequence of

inferences that ends with a contradiction.

p ∧ ¬q =⇒ q1 =⇒ q2 =⇒ q3 =⇒ · · · =⇒ qn =⇒ F
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Problem: Show that if 3n + 2 is odd, then n is odd.

Proof: Assume that 3n + 2 is odd and that n is even.

=⇒ n = 2k for some integer k

=⇒ 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)

=⇒ 3n + 2 is even, since it is a multiple of 2.

This contradicts the assumption that 3n + 2 is odd, completing

the proof.

98



Proof by cases

Uses the rule of inference of the same name.

Show the following:

A1 ∨ A2 ∨ . . . An

A1→ C

A2→ C

...

An→ C

and conclude that C is true.
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Example: Show that

max(x, y) + min(x, y) = x + y

Proof. We consider the following cases:

x ≥ y: Then max(x, y) = x and min(x, y) = y.

Thus max(x, y) + min(x, y) = x + y.

x < y: Then max(x, y) = y and min(x, y) = x.

Thus max(x, y) + min(x, y) = y + x = x + y.

Since these are the only two possible cases, the equality holds.
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