
Sets

We discuss an informal (naive) set theory as needed in Computer

Science.

It was introduced by G. Cantor in the second half of the nine-

teenth century.

Most students have seen sets before. This is intended to give:

• a review of basic notation,

• an introduction to some less common set operations,

• the relationship between set theory and logic.
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Set ... a collection of objects.

Objects in the collection are called members of the set.

To specify a set, you can:

• list all elements of the set between { }.

Example: a set of binary digits: {0,1}

• list all elements of the set between { },indicate the continu-

ation of a pattern by . . .

Example: {. . . ,−2,−1,0,1,2,3, . . .} is the set of all integers.

• state the property all elements in the set satisfy.: set builder

notation {x | P(x)}.
Example: {x | x is a student in this class}
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Definitions

x ∈ A ⇐⇒ x is a member of A.

x /∈ A ⇐⇒ ¬(x ∈ A)

A ⊆ B ⇐⇒ [∀x (x ∈ A) → (x ∈ B)]

A = B ⇐⇒ (A ⊆ B) ∧ (B ⊆ A)

A ⊂ B ⇐⇒ (A ⊆ B) ∧ ¬(A = B)

[∃x x ∈ ∅] ⇐⇒ F

[∀x x ∈ U ] ⇐⇒ T
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Cardinality

A set with exactly k distinct elements for some natural num-

ber k is called a finite set and k is its cardinality (or cardinal

number). We say |A| = k.

If A is not finite then A is infinite.

Example 1: Let A = {i ∈ Z | 1 ≤ i ≤ 26}.
Then |A| = 26.

Example 2: Let B = {i ∈ Z | i is a prime number }.
Then B is infinite.
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P(A), the power set of A is the

set of all subsets of A.

P({1,2,3}) = {⊘, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

The cartesian product of sets A and B is the set of ordered

pairs of A and B,

A × B = {(a, b) | a ∈ A and b ∈ B}

If A = {1,2}, B = {x, y, z} then

A × B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}

(1, x) ∈ A × B (x,1) 6∈ A × B
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Set operations

Definitions: Let A and B be sets.

The union of A and B is the set consisting of all elements in A
and all elements in B.

A ∪ B = {x | (x ∈ A) ∨ (x ∈ B)}

The intersection of A and B is the set consisting of all elements

in both A and B.

A ∩ B = {x | (x ∈ A) ∧ (x ∈ B)}

The difference of A and B is the set consisting of all elements

in A but not in B.

A − B = {x | (x ∈ A) ∧ (x 6∈ B)}

Let U be the universal set. The complement of A is the set

consisting of all elements in U but not in A
A = U − A
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Venn diagram

A graphical representation of sets, that helps us to visualize the

results of set operations.
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Partitions

Sets A, B are called disjoint if A ∩ B = ∅.
Sets A1, A2, . . . An are called mutually disjoint or pairwise dis-

joint if for all i, j ∈ {1,2, . . . n}, Ai ∩ Aj = ∅ whenever i 6= j.

A collection of non-empty sets {A1, A2, . . . An} is a partition of

a set A if:

1. A = A1 ∪ A2 ∪ . . . ∪ An

2. A1, A2, . . . , An are mutually disjoint.
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Properties of subsets

1. Inclusion of intersection.

• A ∩ B ⊆ A

• A ∩ B ⊆ B

2. Inclusion in union.

• A ⊆ A ∪ B

• B ⊆ A ∪ B

3. Transitive property of subsets

(A ⊆ B) ∧ (B ⊆ C) ⇒ (A ⊆ C)
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Set identity Name

A ∪ ∅ = A identity
A ∩ U = A

A ∪ U = U domination
A ∩ ∅ = ∅

A ∪ A = A idempotent
A ∩ A = A

(A) = A complement

A ∪ B = B ∪ A commutative
A ∩ B = B ∩ A

(A ∪ B) ∪ C = A ∪ (B ∪ C) associative
(A ∩ B) ∩ C = A ∩ (B ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) distributive
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

(A ∩ B) = A ∪ B de Morgan

(A ∪ B) = A ∩ B
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Other useful identities

A ∪ A = U

A ∩ A = ∅

A − B = A ∩ B
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Showing set identities

• Using set builder notation and logical equivalences (element

proof).

• Using set identities (algebraic proof).

• Using membership tables.
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An element proof

Example: Show that A ∪ (B − A) = A ∪ B.

A ∪ (B − A) = {x | (x ∈ A) ∨ (x ∈ B − A)}
= {x | (x ∈ A) ∨ ((x ∈ B) ∧ (x /∈ A))}
= {x | ((x ∈ A) ∨ (x ∈ B)) ∧ ((x ∈ A) ∨ (x /∈ A))}
= {x | ((x ∈ A) ∨ (x ∈ B)) ∧ T}
= {x | (x ∈ A) ∨ (x ∈ B)}
= {x | x ∈ A ∪ B}
= A ∪ B
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An algebraic proof

A ∪ (B − A)

= A ∪ (B ∩ A) shown earlier

= (A ∪ B) ∩ (A ∪ A) distributive law

= (A ∪ B) ∩ U shown earlier

= A ∪ B identity laws
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Computer Representation of Sets

Let U = {a1, a2, a3, . . . , ak} be a finite set with k distinct elements.

We fix an order of elements for the computer representation.

ai .... ith element of the set

Represent any subset T ⊆ U by a binary string of length k.

bit at position i = 1 iff ai ∈ T ,

bit at position i = 0 iff ai 6∈ T .

0010010...010 = {a3, a6, ak−1}
1111...11 represents U ,

0000...00 represents ∅.

16



Example:

U = {a, e, i, o, u} ... k = |U | = 5

11111 ... {a, e, i, o, u}
01101 ... {e, i, u}
10010 ... {a, o}
00000 ... ∅

We store in the computer:

• the list of elements in U (to convert between a binary string

representation and the usual representation).

• a binary string of length k for each set.
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Each set operation corresponds to a logical operation on the

corresponding bit strings representing the sets.

∩ ........ bitwise and ... ∧
∪ ........ bitwise or .... ∨
X ........ bitwise negation ... ¬

Logical operations on computer words are basic operations in

any computer, thus they are efficient.
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Everybody should know:

the definition of a set;

the meaning of ∈, =, ⊆, ⊂, ∅, U , cardinality.

Set operations:

the power set, ×, ∩, ∪, complement,

set difference.

Basic set equivalences.

How to prove set properties using

set equivalences and

using a translation into logic.
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Functions

Motivation: Functions are basic components of program design.

Definition: For sets A and B, a function f from A to B is an

assignment of exactly one element of B to each element of A.

f : A → B

f(x) denotes the element assigned by f to x.

The symbol → is being used here to express from A to B and is

not a conditional operator.

(This is an example of operator overloading, which is the use

of a symbol for several purposes. The correct meaning can be

deduced from the context.)
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Three items are needed to specify a function:

domain, codomain, and action.

Example:

function f

Domain A = {Montreal,Toronto,Ottawa,Boston,Buffalo}
Co-domain B = {1,2,3,4,5}

f : A → B

f is the following assignment:

Boston . . .5

Buffalo . . .3

Montreal . . .4

Ottawa . . .2

Toronto . . .1

We write f(Montreal) = 4, f(Boston) = 5, etc.
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The arrow diagram of a function
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Definitions

f : A → B

A is the domain of f ,

B is the codomain of f .

If f(a) = b

b is the image of a under f , or the value of f at a.

a is the preimage of b under f .

The range of f is {f(a) | a ∈ A}.
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Example:

f(Toronto) = 1

f(Ottawa) = 2

f(Buffalo) = 3

f(Montreal) = 4

f(Boston) = 5

Therefore, by function f :

4 is the image of Montreal,

1 is the image of Toronto, etc.

Montreal is the preimage of 4,

Toronto is the preimage of 1, etc.
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To specify a function f : A → B:

• for each element in A, specify an element in B. (This is

possible when the domain is finite.)

Example: the function f just studied

• give an expression that specifies the

assignment for all values in the domain.

Example 1:

f : N → N

f(n) = 2n + 1

Example 2:

g : N → N

g(n) =

{

2n + 1 if n is odd,
n/2 if n is even.
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Let f1, f2 be functions whose codomain is R.

(f1 + f2)(x) = f1(x) + f2(x)

(f1 f2)(x) = f1(x)f2(x)

Example:

f : N → N f(n) = 2n + 1

g : N → N g(n) = 3n + 2

(f + g)(3) = f(3) + g(3) = 7 + 11 = 18

(f g)(3) = f(3) · g(3) = 7 · 11 = 77

Let f : A → B and S be a subset of A.

f(S) = {f(s) | s ∈ S}
Example: g({1,3,4,11}) = {5,11,14,35}
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Definition: A function f : A → B is one-to-one, or injective if

for any two distinct elements x, y ∈ A we have f(x) 6= f(y).

f is one-to one ⇐⇒ ∀x ∀y [x 6= y → f(x) 6= f(y)]

where A is the universe of discourse for x, y.

Example 1: f1 : N → N f1(n) = 2n + 1

If x 6= y then 2x + 1 6= 2y + 1. Thus, f1 is one-to-one.

Example 2: f2 : Z → N f2(x) = x2

f2(−1) = 1 = f2(1). Thus, f2 is not one-to-one.

Example 3: For a function R → R, if f is strictly increasing or

strictly decreasing then f is one-to-one.
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Definition: A function f : A → B is onto, or surjective if for any
element y ∈ B there exists an element x ∈ A so that f(x) = y.

f is onto ⇐⇒ ∀y ∃x [f(x) = y] where the u. of discourse for y
and x are B and A respectively.

Example 1: f1 : N → N f1(n) = 2n + 1
If y is even then no element of N is mapped to y.
Thus, f1 is not onto.

Example 2: f2 : N → N f2(x) = x2 For y = 2, there is no
integer x such that x2 = 2.
Thus, f2 is not onto.

Example 3: f3 : R → R f3(n) = 2n + 1
For any y, the function f3 maps y−1

2 to y.
Thus, f3 is onto.
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Definition: A function f is a one-to-one correspondence or a

bijection if it is both one-to-one and onto.

A B
1

e

1

2

3

4

5

4

c

b

therefore, a one−to−one correspondence

one−to−one ontoand
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Examples:

f3 : R → R f3(n) = 2n + 1

f3 is a one-to-one correspondence.

The ASCII mapping of computer characters to

the set {0,1,2, . . .255}
is a one-to-one correspondence.

The identity function iA on a set A:

∀x ∈ A [iA(x) = x]

iA is a bijection.
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Graph of a function

A function f : A → B assigns to each element of A an element
of B.

f may be interpreted as a set of pairs {(a, f(a)) | a ∈ A}

So f may be interpreted as a subset of A × B.

Definition: The graph of f is
a display of pairs in {(a, f(a)) | a ∈ A} in a plane representation
of A × B:

Put all points of A on a horizontal line,
put all points of B on a vertical line.

Elements of A×B correspond to points in the plane. We display
just those points which belong to f .
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Functions used in calculus are from R to R.

f : R → R, f(x) = 2x + 1
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f(x) = 2x+1
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Inverse functions

Definition: Let f be a one-to-one correspondence from A to B.

The inverse function of f is the function that assigns to each

element b ∈ B the element a ∈ A such that f(a) = b.

The inverse of f is denoted f−1

f−1(b) = a ⇐⇒ f(a) = b

A function f is called invertible iff it is one-to-one and onto.
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Example 1:

f1 : R → R f1(n) = 2n + 1

f1 is a one-to-one correspondence.

f−1
1 (y) = y−1

2

Example 2:

f2 : N → N f2(x) = x2

f2 is not onto and therefore f2 is not invertible.

Note this property is domain dependent.

For a function from R to R, invertibility can often be seen from

its graph.
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Example 3: Define f3 : Z × Z → Z × Z by

f3(m, n) = (m + n, m − n).

Show that f3 is one-to-one but not onto.

Proof. (i) First we show that f3 is one-to-one.

Suppose f3(m1, n1) = f3(m2, n2).

Then (m1 + n1, m1 − n1) = (m2 + n2, m2 − n2).

That is, m1 + n1 = m2 + n2

and m1 − n1 = m2 − n2.

Add the equations to find that m1 = m2 and subtract one from

the other to find that n1 = n2.

Thus, (m1, n1) = (m2, n2) and f3 is one-to-one.
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(ii) Next we show that f3 is not onto.

Take arbitrary (a, b) ∈ Z × Z. Does it have a pre-image?

Let f3(m, n) = (a, b).

Then m + n = a and m − n = b.

Solving the simultaneous equations, we get:

m = (a + b)/2 and n = (a − b)/2.

But if a = 1 and b = 2, then m and n are not integers. Thus, f3
is not onto.

If f3 is same as above, but defined as:

f3 : R × R → R × R

then it is a bijection.
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Problem: Give an example of a bijection between Z and N .

0 -1 1 -2 2 -3 3 -4 4

0 1 2 3 4 5 6 7 8

f(n) =

{

2n if n ≥ 0
−(2n + 1) if n < 0

Exercise: What is f−1?
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Composition of functions

g : A → B f : B → C
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Thus,     f(g(2)) = f(e) = w
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Composition of functions

Definition: Let g : A → B and f : B → C.

The composition of the functions f and g,

denoted

f ◦ g

is defined by

(f ◦ g)(a) = f(g(a))

f ◦ g : A → C

Important: To get f ◦ g we need

codomain of g = domain of f

Generally, f ◦ g 6= g ◦ f

and sometimes one or both may not exist at all.
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Example 1:

g : set of items → N

It assigns to each item its bar code.

f : N → R

It assigns to each bar code a price.

f ◦ g

A function that assigns to each item a price.

g ◦ f does not exist, since

codomain of f 6= domain of g
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Example 2: g : Z → Z

g(x) = 2x + 3

f : Z → Z

f(x) = (x + 1)2

codomain of g = domain of f =⇒ f ◦ g exists.

(f ◦ g)(x) = f(g(x)) = f(2x + 3) =

(2x + 3 + 1)2 = 4x2 + 16x + 16

codomain of f = domain of g =⇒ g ◦ f exists.

(g ◦ f)(x) = g(f(x)) = g((x + 1)2) =

g(x2 + 2x + 1) = 2(x2 + 2x + 1) + 3 = 2x2 + 4x + 5
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Inverse and composition

Let f : A → B be an invertible function. Then f−1 : B → A.

(f−1 ◦ f) : A → A and (f ◦ f−1) : B → B

f(a) = b ⇐⇒ f−1(b) = a

(f−1 ◦ f)(a) = f−1(f(a)) = f−1(b) = a

(f ◦ f−1)(b) = f(f−1(b)) = f(a) = b

So, (f−1 ◦ f) = iA, the identity function on A,

(f ◦ f−1) = iB, the identity function on B.

46



If f and f ◦ g are one-to-one,

does it follow that g is one-to-one?

If g and f ◦ g are one-to-one,

does it follow that f is one-to-one?

If g and f ◦ g are onto,

does it follow that f is onto?

If f and f ◦ g are onto,

does it follow that g is onto?
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Floor function

The floor function ⌊x⌋ is a function from R to Z

Its value is the largest integer ≤ x

⌊3.6⌋ = 3 ⌊12.1⌋ = 12

⌊15⌋ = 15 ⌊−3.4⌋ = −4
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Ceiling function

The ceiling function ⌈x⌉ is

a function from R to Z

Its value is the smallest integer ≥ x

⌈3.6⌉ = 4 ⌈12.1⌉ = 13

⌈15⌉ = 15 ⌈−3.4⌋ = −3
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Problem 1: Assume that in each word of computer memory we

can store k bytes. Find a function w : N → N

that specifies the number of words needed to store n bytes.

Solution: w(n) = ⌈n
k⌉

Problem 2: A bank must round the calculations involving money

to cents.

i.e., 5.33453 is rounded to 5.33 and

5.13618 is rounded to 5.14

Give a function round : R → R that rounds any real number to

2 decimal points.

Solution: round(x) = (⌊(x ∗ 100 + 0.5)⌋)/100
52



Properties of floor and ceiling functions

For all real numbers x and integers m

1. x − 1 ≤ ⌊x⌋ ≤ x ≤ ⌈x⌉ ≤ x + 1

2. ⌈−x⌉ = −⌊x⌋

3. ⌊−x⌋ = −⌈x⌉

4. ⌊x + m⌋ = ⌊x⌋ + m

5. ⌈x + m⌉ = ⌈x⌉ + m
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Everybody should know

• The definition of a function

• The definition of

domain, codomain, range, image, preimage,

one-to-one, onto function,

one-to-one correspondence (bijection),

inverse function, composition of functions.

• Given a function, determine its type.

• Given two functions, find their composition.

• Properties of floor and ceiling functions.
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Integers and Division

We review basic elements of number theory and introduce some

notions needed later.

Some elements of number theory are needed in:

Data structures,

Random number generation,

Encryption of data for secure data transmission,

Scheduling, etc.
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For integers a and b with a 6= 0 we define

a divides b iff ∃ an integer c such that

b = ac

a divides b is written as a | b

3 | 15
3 6 | 16
4 | 16
16 6 | 4

a 6= 0 and a | b is equivalent to each of:

a is a factor of b

b is a multiple of a
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Theorem: Let a, b, and c be integers. Then

(1) if a | b and a | c then a | (b + c).

(2) if a | b then a | bc for all integers c.

(3) if a | b and b | c then a | c.
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Prime and composite numbers

A prime is a positive integer p that has only two distinct positive

factors, 1 and p.

Examples: 2,3,5,7,11,13,29,53,997,7951, . . .

We will often use the term positive integer.

A positive integer is greater than 0.

(0 is neither negative nor positive.)

A positive integer greater that 1 which is not a prime is called

composite.

Examples: 6 = 2 · 3, 35 = 5 · 7, 57 = 3 · 19, etc.
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Fundamental Theorem of Arithmetic

Every positive integer can be written uniquely as a product of

primes, where the prime factors are written in order of their size.

40 = 2 · 2 · 2 · 5 = 23 · 5

42 = 2 · 3 · 7

780 = 2 · 2 · 3 · 5 · 13 = 22 · 3 · 5 · 13

550 = 2 · 5 · 5 · 11 = 2 · 52 · 11
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Theorem If n is a composite number then n has a factor ≤ √
n.

This is an important bound when trying to find a factorization

of a number.

Note that factors come in pairs, {k, n/k}.

Example 1: n = 311

√
311

.
= 17.6

Test division by 2, 3, 5, 7, 11, 13, 17.

If none of these divides 311, it is a prime,

otherwise we have found a factor.
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Example 2: n = 253

√
253

.
= 15.9

Test division by 2, 3, 5, 7, 11, 13.

253 = 11*23

Factorization of very large numbers by computers is a difficult
problem.

This fact is used by some encryption systems.
RSA encryption system, named after the inventors Rivest,
Shamir, and Adelman.

Breaking a code would require factoring numbers with 250 to
500 digits that have only two prime factors, both large primes.
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GCD and LCM

Definition: GCD(a, b), called the greatest common divisor of a
and b, is the largest factor of a and b.

GCD(18,24) = 6

GCD(18,13) = 1

When GCD(a, b) = 1, we say that a and b are relatively prime

(or coprime).

Definition: LCM(a, b) is the least common multiple of a and b.
It is the smallest integer having a and b as factors.

LCM(8,6) = 24

LCM(8,12) = 24
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GCD and LCM

The prime factorization of a and b can be used to find GCD(a, b)

or LCM(a, b):

780 = 2 · 2 · 3 · 5 · 13 = 22 · 3 · 5 · 13

550 = 2 · 5 · 5 · 11 = 2 · 52 · 11

GCD(780,550) = 2 · 5 = 10

take the factors common to both numbers.

LCM(780,550) = 22 · 3 · 52 · 11 · 13 = 42900

take all factors in both numbers with highest exponent.
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If a = p
a1
1 p

a2
2 · · · pan

n and b = p
b1
1 p

b2
2 · · · pbn

n

gcd(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(an,bn)

n

lcm(a, b) = p
max(a1,b1)
1 p

max(a2,b2)
2 · · · pmax(an,bn)

n

Note that min(ai, bi) + max(ai, bi) = ai + bi, leading to

Theorem Let a and b be positive integers. Then

ab = gcd(a, b) · lcm(a, b)

Example:

GCD(780,550) = 2 · 5 = 10

780 · 550 = 429000

LCM(780,550) = 42900
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Co-prime integers

Definition: The integers a and b are said to be co-prime or

relatively prime if gcd(a, b) = 1.

Example 1:

6 and 25 are co-prime, as gcd(6,25) = 1.

Example 2:

6 and 27 are not co-prime, since gcd(6,27) = 3 6= 1.

Example 3:

Any two distinct prime numbers are relatively prime.
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The Division Algorithm

Let a be an integer and d a positive integer. Then there exist

unique integers q and r,

0 ≤ r < d, such that

a = dq + r

a is called the dividend

d is called the divisor

r is called the remainder

q is called the quotient.
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Modular Arithmetic

Let a be an integer and m be a positive integer.

a mod m

is defined as the remainder when a is divided by m.

0 ≤ (a mod m) < m

8 mod 7 = 1

12 mod 7 = 5

30 mod 7 = 2

−3 mod 7 = 4 since −3 = −1 · 7 + 4

−22 mod 6 = 2 since −22 = −4 · 6 + 2
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Example of the use of mod:

We have processors 1,2,3,4,5

and jobs 1,2,3,4,5,6,7,8,9,10,11,12,13, ...

Scheduling: Given a job number, select a processor on which to

execute the job.

Round-robin scheduling:

jobs 1,6,11,16,21, ... are done on processor 2

jobs 2,7,12,17,22, ... are done on processor 3

jobs 3,8,13,18,23, ... are done on processor 4

jobs 4,9,14,19,24, ... are done on processor 5

jobs 5,10,15,20,25, ... are done on processor 1

job i is assigned to processor (i mod 5) + 1
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Congruences

Definition: Let a and b be integers and m be a positive integer.

We say that a is congruent to b modulo m if m | (a − b).

a ≡ b (mod m)

Examples:

5 | (14 − 9) ⇐⇒ 14 ≡ 9 (mod 5)

5 | (19 − 9) ⇐⇒ 19 ≡ 9 (mod 5)

5 | (32 − 12) ⇐⇒ 32 ≡ 12 (mod 5)

7 | (14 − 7) ⇐⇒ 14 ≡ 7 (mod 7)

Theorem Let a and b be integers and m be a positive integer.

a ≡ b (mod m) ⇐⇒ (a mod m) = (b mod m)
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Theorem

Let a and b be integers and m be a positive integer.

a ≡ b (mod m) iff a = b + km for some integer k

Problem: Find all integers congruent to 7 modulo 6.

The answer is the infinite set {a : a = 7 + 6k, k ∈ Z}.
7 ≡ 13 (mod 6) 7 ≡ 19 (mod 6)

7 ≡ 37 (mod 6) 7 ≡ 1 (mod 6)

7 ≡ −5 (mod 6) 7 ≡ −11 (mod 6)

Theorem Let m be a positive integer.

If a ≡ b (mod m) and c ≡ d (mod m) then

a + c ≡ b + d (mod m)

a · c ≡ b · d (mod m)
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Everybody should know

• Definition of a | b, factor, multiple, prime and composite

numbers.

• The fundamental theorem of arithmetic and how to do

prime factorizations.

• GCD and LCM.

• The Euclidean algorithm for computing the GCD.

• The division algorithm.

• The definition of a mod m and the notion of

congruence modulo m.
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