
Proof strategies

Constructing proofs is a learned skill. There is no mechanical

method to tell you which proof method to use. But with practice,

it will become easier to see your way. Here is how you might

approach it:

• Write down an accurate statement of what you are trying to

prove.

• Does forward reasoning work? Can you write a direct proof?

• Does the contrapositive give a better starting point?
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• Backward reasoning: If you can’t prove statement p, can you

find a statement q so that you can prove q and q =⇒ p?

• Would it help to break down the proof into cases? What are

the relevant cases?

• Can you adapt a proof you have already seen?

• Proof/Disproof: Conjecture and proof.

• Proof/Disproof: Conjecture and counter-examples.
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Example: Prove that the square of any integer has the form 4k

or 4k + 1 for some integer k.

Proof. Suppose n is an integer. By the division algorithm, n

can be written in one of the forms

4q or 4q + 1 or 4q + 2 or 4q + 3

for some integer q.

Case 1 (n = 4q): Since n = 4q

n2 = (4q)2 = 16q2 = 4(4q2).

Let k = 4q2. Then n2 = 4k.

Case 2 (n = 4q + 1): Since n = 4q + 1

n2 = (4q + 1)2 = 16q2 + 8q + 1 = 4(4q2 + 2q) + 1.

Let k = 4q2 + 2q. Then n = 4k + 1.
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Case 3 (n = 4q + 2): Since n = 4q + 2

n2 = (4q + 2)2 = 16q2 + 16q + 4 = 4(4q2 + 4q + 1).

Let k = 4q2 + 4q + 1. Then n = 4k.

Case 4 (n = 4q + 3): Since n = 4q + 3

n2 = (4q + 3)2 = 16q2 + 24q + 9 = 4(4q2 + 6q + 2) + 1.

Let k = 4q2 + 6q + 2. Then n = 4k + 1.

In each case, we have shown that there is an integer k such that

n = 4k or n = 4k + 1 as desired.
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Theorem: There is no integer n > 3 such that n,n+2 and n+4

are all prime numbers.

Proof (by contradiction). Assume n, n+2 and n+4 are primes

> 3. If n is prime and n > 3 then n mod 3 = 1 or n mod 3 = 2.

If n mod 3 = 1 then (n + 2) mod 3 = 0 and n + 2 > 3 is not a

prime, a contradiction.

If n mod 3 = 2 then (n + 4) mod 3 = 0 and

n + 4 > 3 is not a prime, a contradiction.
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Theorem

There are infinitely many primes.

Assume that there are only finitely many primes, i.e. there is an

integer n such that the prime numbers are the set {p1, p2, p3, . . . , pn}

Assume without loss of generality that pn is the largest among

them.

=⇒ If m is an integer and m > pn then m must be a composite

number.

=⇒ If m is an integer and m > pn then there exists i, 1 ≤ i ≤ n

such that pi divides m.

Consider the integer (p1 · p2 · p3 · . . . · pn) + 1
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(p1 · p2 · p3 · . . . · pn)+1 is greater that pn, so it should be divisible

by at least one of the primes.

However, none of pi, 1 ≤ i ≤ n divides it, since (p1 · p2 · p3 · . . . ·

pn) + 1 mod pi = 1.

A contradiction.

Thus, the assumption of having finitely many primes is false.

Conclusion: There are infinitely many prime numbers. (Book 9

of Euclid)
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Proof by Mathematical Induction

Mathematical induction is a proof technique that is used to prove

a property of a set of positive integers.

General example:

P(n) is true for all integers n ≥ c.

Specific examples:

Show that 2n > n2 for all integers n > 4.

Show that 1 + 2 + 3 + · · · + n = n(n + 1)/2

for all integers n ≥ 1
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Mathematical induction has great applicability in computer sci-

ence and can be used to prove:

• Properties of strings (induction on the lengths of strings).

• Correctness of computer programs (induction on the number

of steps in a program, number of iterations of a loop).

• Theorems about graphs and trees.

• Theorems about the complexity of algorithms.
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To show that

P(n) is true for all integers n ≥ c,

we do the following steps

1. Basis step Show that P(c) is true

(where c is the smallest element).

2. Inductive step Show that P(n) → P(n + 1). is true for all

n ≥ c, i.e.

show that P(n) =⇒ P(n+1). (Assume P(n) is true and show

that P(n + 1) is true.)

A proof by mathematical induction follows a fixed pattern.
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Theorem: For any positive integer n, when a 6= 1,

1 + a + a2 + a3 + . . . + an = an+1−1
a−1 .

Proof.

Basis Step: n = 1

lhs: 1 + a

rhs: a2−1
a−1 = (a−1)(a+1)

a−1 = a + 1

So it is true for n = 1.

Inductive Step:

Assume that for some integer n,

1 + a + a2 + a3 + . . . + an = an+1−1
a−1

We have to show that

1 + a + a2 + a3 + . . . + an + an+1 = an+2−1
a−1
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1 + a + a2 + a3 + . . . + an + an+1

= an+1−1
a−1 + an+1

= an+1−1+a·an+1−an+1

a−1

= an+2−1
a−1

Thus, the formula is valid for n+1. By mathematical induction,

the formula is valid for every integer n ≥ 1.
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Theorem: 6 divides n3 − n for any integer n ≥ 1.

Proof.

Basis Step: n = 1

For n = 1, n3 − n = 1 − 1 = 0 and 6|0

Inductive Step:

Assume that for some integer n,

6 divides n3 − n, i.e. n3 − n = 6i for some integer i.

We have to show that

6 divides (n + 1)3 − (n + 1).
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(n + 1)3 − (n + 1)

= n3 + 3n2 + 3n + 1 − n − 1

= (n3 − n) + 3(n2 + n)

= (n3 − n) + 3 · n · (n + 1)

Now, (n3 − n) is divisible by 6, and

3 ·n · (n +1) is divisible by 3 and also by 2, since one of n, n +1

must be even.

If 6|a and 6|b then 6|(a + b).

Thus 6|((n + 1)3 − (n + 1)).
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Problem: Show that 2n > n2 for any integer n > 4.

Proof.

Basis Step: n = 5

25 = 32 > 25 = 52

Inductive Step: Assume that 2n > n2 for some integer n.

We have to show that 2n+1 > (n + 1)2

(n + 1)2 = n2 + 2n + 1

< n2 + 2n + n
= n2 + 3n
< n2 + n · n
= n2 + n2

< 2n + 2n

= 2n+1

Thus, the inequality is valid for n + 1.
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Problem: Show that for any integer n > 1

1 +
1

4
+

1

9
+

1

16
+ · · · +

1

n2
< 2 −

1

n

Proof.

Basis Step: n = 2

1 + 1
4 = 5

4 < 6
4 = 2 − 1

2

Inductive Step:
Assume that for some n,

1 + 1
4 + 1

9 + 1
16 + · · · + 1

n2 < 2 − 1
n

We have to show that

1 + 1
4 + 1

9 + 1
16 + · · · + 1

n2 + 1
(n+1)2

< 2 − 1
n+1
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lhs = 1 + 1
4 + 1

9 + 1
16 + · · · + 1

n2 + 1
(n+1)2

<

2 − 1
n + 1

(n+1)2
= 2n(n+1)2−(n+1)2+n

n(n+1)2

= 2n3+4n2+2n−n2−2n−1+n
n(n+1)2

= 2n3+3n2+n−1
n(n+1)2

The right-hand side of the inequality is

2 − 1
n+1 = 2n+2−1

n+1 = 2n2+n
n(n+1)

= 2n3+3n2+n
n(n+1)2

Thus,

lhs < 2n3+3n2+n−1
n(n+1)2

< 2n3+3n2+n
n(n+1)2

= 2 − 1
n+1

Therefore the inequality is valid for n + 1.
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We are to show

P(n) is true for any integer n ≥ c.

In some cases, we cannot prove the validity of P(n + 1) from

the validity of P(n). But we could prove the validity of P(n+1)

from the validity of P(n) ∧ P(n − 1) ∧ P(n − 2) ∧ · · · ∧ P(c).

We need to use a

generalized form of induction
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Strong Mathematical Induction

(also called generalized induction)

1. Basis step: Show that P(c) is true

(where c is the smallest element).

2. Inductive step: Show that

P(c) ∧ P(c + 1) ∧ · · · ∧ P(n) =⇒ P(n + 1) if n ≥ c.

Assume P(c)∧P(c+1)∧P(c+2)∧· · ·∧P(n) is true and show

that P(n + 1) is true.
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Example: Show that for every integer n ≥ 2,

n is a prime or a product of primes.

Basis step: n = 2 is a prime.

Inductive step: Assume that for some integer n, every integer i,
2 ≤ i ≤ n is either a prime or i = p1 · p2 · · · pmi where

pk is a prime for 1 ≤ k ≤ mi.

Consider n + 1. If n + 1 is a prime than we are done.

If n + 1 is not a prime than n + 1 = a · b where 2 ≤ a ≤ n and

2 ≤ b ≤ n.

By the hypothesis, either a is a prime or a = p1 · p2 · · · pma

and either b is a prime or b = q1 · q2 · · · qmb

where all p1, p2, . . . and q1, q2, . . . are primes.

Since n + 1 = a · b, in all cases, n + 1 is a product of primes.
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Theorem: Show that the number of subsets of an n-element

set is 2n.

Proof:

Basis: The statement is true for n = 0, since the empty set (the

only set with 0 elements) has exactly 20 = 1 subset, namely,

itself.

Inductive step: Assume that every set with n elements has ex-

actly 2n subsets. Let T be a set with n +1 elements. Then it is

possible to write T = S ∪ {a} where a ∈ T and a /∈ S.

For each subset X of S there are exactly two subsets of T :

X itself, and X ∪ {a}. These constitute all the subsets of T
and are all distinct. Since there are 2n subsets of S, there are

2(2n) = 2n+1 subsets of T . This finishes the proof.
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Recursive Definitions

Sometimes it is not easy to find a direct definition of a function

f(n), i.e., to give an explicit formula for f(n).

However, it may be possible to define f(n) by:

(1) giving an explicit definition of f(n) for small values of n,

and

(2) for any other value of n, specifying f(n) in terms of some

f(m) for m smaller than n.

A definition in the style of (1) and (2) is called a recursive

definition.
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Example: The rabbit problem

Rabbits follow the following law of breeding:

Every pair of rabbits at least two months old will produce one

pair of rabbits as offspring every month.

Question: If we start with a pair of newly born rabbits, how many

pairs of rabbits will we have after n months?

Find a function f(n) that gives the number of pairs of rabbits

that we will have after n months.
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Rules:

f(0) = 0

f(1) = 1

For n > 2

Every pair that is alive in month n − 1 is still there in month n.

Every pair that is alive in the month n−2 will produce one more

pair for the month n, n ≥ 2.

f(n) = f(n − 1) + f(n − 2) for n ≥ 2
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f(0) = 0, f(1) = 1

f(n) = f(n − 1) + f(n − 2) for n ≥ 2

is an example of a recursive definition of a function f(n).

The sequence of numbers generated by the function f

0,1,1,2,3,5,8,13,21,34,55,89, . . .

is called the Fibonacci sequence.

It represents population growth in many situations.

A recursive definition is also called an inductive definition.
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Any function can be defined using recursion:

Examples:

fac(n) = n! = 1 · 2 · 3 · 4 · · · (n − 1) · n

Recursive definition of fac(n):

fac(0) = 1

fac(n) = n · fac(n − 1) for n ≥ 1

add(m, n) = m + n

Recursive definition of add(m, n):

add(m,0) = m

add(m, n) = 1 + add(m, n − 1) for n ≥ 1
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Sets can be defined recursively.

The set of all correctly written logical formulae called well-formed

formulae (wff) can be defined as follows:

(1) F, T, and simple logical variables like p, q, r, etc. are well-

formed formulae.

(2) If a and b are well-formed formulae then (¬a), (a∨ b), (a∧ b),

(a → b), (a ↔ b) are well-formed formulae.

This formulation can be used to

(1) construct well-formed formulae,

(2) check the correctness of a given formula.
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We will use recursive definitions on several occasions.

Recursive functions and recursive definitions of objects are im-

portant in software development.

Recursion is used to write software components that are

• concise,

• easy to verify.

Induction is generally a good proof technique to prove the cor-

rectness of recursive functions, formulae etc.
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Problem: Suppose b1, b2, . . . is a sequence defined as follows:

b1 = 4, b2 = 12

bk = bk−1 + bk−2 for all integers k ≥ 3

Prove that 4|bn for all integers n ≥ 1.

Proof.

Basis step: 4|4 and 4|12, so 4|b1 and 4|b2.

Inductive step: Suppose 4|bi for all i such that 1 ≤ i < n where

n > 2. We want to show that 4|bn.

By the inductive hypothesis, 4|bn−1 and 4|bn−2

=⇒ 4|(bn−1 + bn−2)

=⇒ 4|bn since bn = bn−1 + bn−2.

By mathematical induction, 4|bn for all positive integers n.
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Example: Prove that ∀n ∈ Z+, fn+1fn−1 − f2
n = (−1)n

(where fi is the ith Fibonacci number).

Proof. We will prove the result by induction on n.

Basis: n = 1. Then LHS = f2f0 − f2
1 = 0 − 1 = (−1)1 = RHS

Inductive step: Assume that for some n ∈ Z+

fn+1fn−1 − f2
n = (−1)n.

We have to prove that fn+2fn − f2
n+1 = (−1)n+1.

fn+2fn − f2
n+1

= (fn+1 + fn)fn − fn+1(fn + fn−1)

= fn+1fn + f2
n − fn+1fn − fn+1fn−1

= −(fn+1fn−1 − f2
n)

= −1(−1)n = −1n+1

The result is proved by mathematical induction.
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Relations

A function

f : A → B

assigns to

each element of A one element of B.

This definition restricts what a function can express. For exam-

ple, it cannot express an assignment in which:

(1) an element of A is not assigned any element of B,

(2) an element of A is assigned more than one element of B.
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Example:

We have a student database where we want to store, for every

student, the courses the student is taking this term.

This assignment Registered cannot be a function from the set

of students to the set of courses since:

(1) some students are not taking any courses this term.

(2) some students are taking more than one course this term.

This type of assignment occurs often in computer applications.

Thus, we need something that generalizes the concept of a func-

tion.
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A function

f : A → B

can be seen as a set of ordered pairs

{(x, f(x)) | x ∈ A and f(x) ∈ B}

Thus, a function is a subset of A × B, however not every subset

of A × B is a function.

We define a binary relation from A to B as a generalization of

a function.
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Definition

A binary relation from A to B is a subset of A × B.

If R is a relation from A to B then for a pair (a, b) in the relation

R we write

(a, b) ∈ R or a R b

(read it as: a is related to b by relation R)

If A = B we say that R is a relation on A.
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Example 1

S ... the set of students at Concordia.

C ... the set of courses at Concordia

Let Registered be the relation containing all pairs (s, c) such that

the student s is registered in the course c this term.

Registered consists of pairs like

(Smith, comp238)

(Smith, math244)

(Tremblay, comp238)

(Tremblay, comp228)

(Nguyen, elec232)

....
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Example 2: Let A be the set of countries in the world, and let

is-neighbor-of be the relation defined as:

a is-neighbor-of b whenever the countries a and b share a

common border.

The following pairs are members of the relation is-neighbor-of:

(USA, Mexico) ∈ is-neighbor-of

(France, Germany) ∈ is-neighbor-of

(Russia, China) ∈ is-neighbor-of

(Iran, Turkey) ∈ is-neighbor-of

(Argentina, Uruguay) ∈ is-neighbor-of
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Some relations that you already know

L and G are relations on real numbers.

L = {(a, b) | a < b}

2 < 3.4, so (2,3.4) ∈ L

2 < 13, so (2,13) ∈ L

2 < 209 so (2,209) ∈ L

5 < 6 so (5,6) ∈ L

13 6< 2 so (13,2) /∈ L
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G = {(a, b) | a > b}

5 > 2 so (5,2) ∈ G

5 > −2 so (5,−2) ∈ G

5 6> 20 so (5,20) /∈ G
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Graph of a relation

Let R be a relation from A = {1,2,3,4} to set B = {a, b, c, d, e}

consisting of the following pairs:

R = {(1, a), (1, c), (2, a), (2, e), (3, b), (4, d)}

If A and B are finite, we can represent the relation R by a graph

or a table.
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R:

2

4

a

b

c

d

e

1

3

1

2

3

4

a b c d e
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Representing Relations using Graphs

A relation R on a set A is represented by a graph that has

• one point (node) for each element of A and

• an arc (edge/link) from node a to node b whenever (a, b) ∈ R.
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Example

A = {a, b, c, d, e, f}

R = {(a, b), (a, f), (b, e), (b, c), (c, e), (c, c), (d, f), (f, c)}

a

b

d

e

f

c

44



Representing Relations using Matrices

A relation R from a finite set A to a finite set B can be repre-

sented by a matrix.

If A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} we can represent

R by an m × n matrix.

MR = [mi,j]

such that mi,j =

{

1 if (ai, bj) is in R
0 if (ai, bj) is not in R
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Example: For the relation R from A to B where

A = {a, b, c, d} and B = {1,2,3,4,5,6}.

R = {(a,2), (a,6), (b,5), (b,3), (c,3), (c,5), (d,6)}

MR =











0 1 0 0 0 1
0 0 1 0 1 0
0 0 1 0 1 0
0 0 0 0 0 1










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Properties of Relations on a Set

Let R be a relation on a set A.

Definition

A relation is reflexive if every element of A is related to itself.

∀a [(a, a) ∈ R]

≤ is a reflexive relation on Z since a ≤ a for every a ∈ Z.

is-a-parent-of is not a reflexive relation.
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R  :

a reflexive relation

1 2
R  :

not a reflexive relation

a b

c
d

a b

c
d
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If R is a reflexive relation then its matrix representation MR must

contain 1 all along the main diagonal.

MR =

























1
1

.
.

.
1

1

























Entries outside the main diagonal are 0 or 1.
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Definition

A relation is symmetric if (b, a) ∈ R whenever (a, b) ∈ R

∀a ∀b [((a, b) ∈ R) ↔ ((b, a) ∈ R)]

is-a-sibling-of is a symmetric relation.

is-a-parent-of is not a symmetric relation.

= is a symmetric relation on integers.

≤ is not a symmetric relation on the set of reals.
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Graph Representation:

1
R  : a b

c
d

2
R  : a

b

c
d

a symmetric relation

not a symmetric relation
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If R is a symmetric relation then its matrix representation MR is

a symmetric matrix.

A matrix is symmetric if for any i,

row i of the matrix is the same as column i .

Example of a symmetric matrix:

MR =





















1 0 0 1 1 0
0 0 1 0 0 1
0 1 0 1 0 0
1 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1




















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Definition

A relation is antisymmetric when

(b, a) ∈ R and a 6= b implies that (a, b) 6∈ R

∀a ∀b [(((a, b) ∈ R) ∧ (a 6= b)) → ((b, a) 6∈ R)]

is-a-parent-of is an antisymmetric relation.

is-a-sibling-of is not antisymmetric.

≤ on integers is an antisymmetric relation.
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1
R  :

an antisymmetric relation

a b

c

d

2
R  :

not an antisymmetric relation

a

b

c
d

(not a symmetric relation)
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If R is an antisymmetric relation then its matrix representation

MR satisfies the following:

If i 6= j and MR[i, j] = 1 then MR[j, i] = 0.

Example of a matrix of an antisymmetric

relation:

MR =

















1 0 0 1 0
0 0 1 0 0
1 0 0 0 1
0 0 1 1 0
0 1 0 1 1
















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Definition

A relation is transitive if (a, b) ∈ R and (b, c) ∈ R implies that

(a, c) ∈ R.

∀a ∀b ∀c [((a, b) ∈ R ∧ (b, c) ∈ R) → ((a, c) ∈ R)]

is-an-ancestor-of is transitive.

is-a-parent-of is not a transitive relation.

≤ is a transitive relation on integers.

The divisibility D relation on N , where

(a, b) ∈ D if a|b, is transitive.
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1 2
R  :

not a transitive relation

R  :

a transitive relation

a

b

c
d

There is no simple way of determining whether a relation is

transitive from its matrix or graph representation.
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Combining relations

Relations from A to B are subsets of A × B.

Thus, any two relations R1, R2 from A to B are sets and they

can be combined using set operations, such as union, intersec-

tion, and difference.

Just as we defined composition of functions, we can define com-

position of relations:

Definition

Let R be a relation from A to B and S be a relation from B to

C. The composite S ◦R of R and S is the relation from A to C

consisting of {(a, c) : (a ∈ A), (c ∈ C)} for which there exists an

element b ∈ B such that (a, b) ∈ R and (b, c) ∈ S}.

Note that S ◦ R means first R then S.
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a

b

c

d

e

C

z

u

v

w

x

y

a

b

c

d

e

A B

1

2

3

relation R relation S

OS R

A
z

u

v

w

x

y

C
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Notice that, in general, the composition of relations is not commutative.

Relation S ◦R may exist and R◦S does not need to exist, or they

can be different.

Example:

Reg is a relation from the set of students to the set of courses,

Exam dates is a relation from the set of courses to the set of

exam dates.

Exam dates◦Reg exists and relates each student to his/her exam

dates.

Reg ◦ Exam dates does not exist.
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Inverse of a relation

Define the inverse of R to be R−1 = {(b, a) | (a, b) ∈ R}.

Example

a

b

d

e

f

c

R R
-1

a

b

d

e

f

c

MR−1 is obtained from MR by the transposition MR−1 = (MR)t
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Relation operations using matrices

MR∪S = MR ∨ MS

MR∩S = MR ∧ MS

where

1 ∨ 1 = 1 and 1 ∨ 0 = 0 ∨ 1 = 1, 0 ∨ 0 = 0

and

1 ∧ 1 = 1 and 1 ∧ 0 = 0 ∧ 1 = 0 ∨ 0 = 0
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MS◦R = MR ⊙ MS

where ⊙ represents a ’boolean’ product of the two matrices,

which can be obtained by finding the ordinary product of matrices

and replacing any nonzero entry by 1.

(Also called the skeleton of the matrix).
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MR =

















1 1 0
0 0 0
1 0 0
0 1 0
0 1 1

















MS =







1 0 1 0 0 0
0 1 0 0 0 1
0 0 0 1 0 0







MS◦R =

















1 1 1 0 0 1
0 0 0 0 0 0
1 0 1 0 0 0
0 1 0 0 0 1
0 1 0 1 0 1
















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For a relation R from A to A, we define R2 to be R ◦ R, and R3

to be R ◦ R ◦ R and so on.

Rn can be defined recursively as follows:

R1 = R

Rn = Rn−1 ◦ R for n > 1

a Rn b iff in the graph of R there is a possibility to go from a to

b by a sequence of n arcs.

(We say that there is a path of length n from a to b in R). xs

Theorem

A relation R is transitive if and only if Rn ⊆ R for all n ≥ 1.
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R  :

a

b

c

d

a

a

c

c

b

b

d

d

R  =  R o R o R :

R = R o
2

3

R  :

0   0   0   1

1   1   1   1

0   0   1   0

0   0   0   1

0   0   1   0

1   1   1   1

0   0   0   1

0   0   1   0

0   0   1   0

1   1   0   1

0   0   0   1

0   0   1   0

M
R

M
R

M
R 3

2

:

:

:
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Closures of Relations

Let R be a relation on a set A.

R may or may not be reflexive, but we may need to obtain a

relation Q that

• contains R,

• is reflexive,

• is the smallest relation that contains R and is reflexive.

Q is called the reflexive closure of R.
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Let R be a relation on a set A.

The reflexive closure of R is the smallest relation that contains

R and is reflexive.

The symmetric closure of R is the smallest relation that con-

tains R and is symmetric.

The transitive closure of R is the smallest relation that contains

R and is transitive.
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Reflexive closure

Add to R all pairs relating an element to itself.

Define the diagonal relation on A as ∆ = {(a, a) | a ∈ A}

The reflexive closure of R is equal to R ∪ ∆

MR∪∆ = MR ∨

















1 0 .. 0
0 1 0 .. 0
0 0 1 0.. 0
....
0 0 .. 0 1

















i.e., to get the matrix representation of the reflexive closure of

R, take MR and make all diagonal entries equal to 1. All other

entries are unchanged.
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Symmetric closure

To obtain the symmetric closure of R, for every pair (a, b) ∈ R,

add the pair (b, a).

We can use the inverse of R to obtain the symmetric closure.

The symmetric closure of R is equal to

R ∪ R−1
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a

b

d

e

f

c

Symmetric closure of R

The matrix of the symmetric closure of R is equal to

MR ∨ (MR)t
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The connectivity relation R∗ of R consists of all pairs (a, b)

such that there is a path from a to b in R.

R∗ = R ∪ R2 ∪ R3 · · · =
∞
⋃

i=1

Ri

Example Let P be the relation where a P b

if a is a parent of b.

We define P ∗ in the following way:

a P ∗ b if a is an ancestor of b.

Finding the transitive closure of a relation:

Theorem The transitive closure of R is equal to R∗.
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Theorem

If R is a relation on a finite set A of cardinality n then

R∗ = R ∪ R2 ∪ R3 ∪ · · · ∪ Rn =
n
⋃

i=1

Rn

Proof

Consider the connectivity relation R∗.

In a graph representation of R, if we can reach point b from point

a, we can reach it by a path of length at most n:

Take the shortest path from a to b in the graph of R. If the path

contains i arcs, i ≤ n then the pair (a, b) is in Ri and thus also in

R∗. If the path contains j arcs, j > n then the path must pass

through some point twice and it is not the shortest path.
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a

b

c

d

R  :

a

b

c

d

R  :

a

b

c

d

R  :

a

b

c

d

a

b

c

d

R  :

2 3

4
R * :

1

1 1

1 1
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a

b

c

d

R  :
3

2

R  :
4

2 c

d

c

d

a

b

c

d

R  :
2

2

2

a

b

c

d

R  :

a

b

R * :
2
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Equivalence relation

Definition A relation on a set A is an equivalence relation if

it is reflexive, symmetric and transitive.

Example 1 Let S be a relation on people such that

a S b if a and b have the same parents.

Example 2 Let M be a relation on integers such that

(i, j) ∈ M if i ≡ j(mod 5)

(0,0) ∈ M , (0,5) ∈ M , (5,0) ∈ M , (0,10) ∈ M

(1,1) ∈ M , (1,6) ∈ M , (6,1) ∈ M , (1,11) ∈ M

(2,2) ∈ M , (2,7) ∈ M , (7,2) ∈ M , (2,12) ∈ M

(3,3) ∈ M , (3,8) ∈ M , (8,3) ∈ M , (3,13) ∈ M

(4,4) ∈ M , (4,9) ∈ M , (9,4) ∈ M , (4,14) ∈ M
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a, b ∈ {. . . ,−10,−5,0,5,10,15, . . .} =⇒ aMb

Similarly:

a, b ∈ {. . . ,−9,−4,1,6,11,16, . . .} =⇒ aMb

a, b ∈ {. . . ,−8,−3,2,7,12,17, . . .} =⇒ aMb

a, b ∈ {. . . ,−7,−2,3,8,13,18, . . .} =⇒ aMb

a, b ∈ {. . . ,−6,−1,4,9,14,19, . . .} =⇒ aMb

where i M j if i ≡ j(mod 5)

77



Equivalence Classes

Definition

Let R be an equivalence relation on a set A. For any a in A, the

set of all elements related to a by R is called the equivalence

class of a.

We denote the equivalence class of a by [a]R

[a]R = {b | (a, b) ∈ R},

the set of all elements related to a by R.
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A representative of an equivalence class is any element a in that

class.

Example:

[0]M = {. . . ,−10,−5,0,5,10,15, . . .}

[1]M = {. . . ,−9,−4,1,6,11,16, . . .}

[2]M = {. . . ,−8,−3,2,7,12,17, . . .}

[3]M = {. . . ,−7,−2,3,8,13,18, . . .}

[4]M = {. . . ,−6,−1,4,9,14,19, . . .}

[0]M = [5]M = [−10]M , [0]M ∩ [1]M = ∅
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Theorem Let R be an equivalence relation. The following state-

ments have the same truth values:

1. a R b

2. [a]R = [b]R

3. [a]R ∩ [b]R 6= ∅

So any two classes of an equivalence relation are either the same

or disjoint.

Theorem Let R be an equivalence relation on set A. The dis-

tinct equivalence classes of R form a partition of A.

Conversely, given a partition A1, A2, . . . , An of A, there is an

equivalence relation R that has A1, A2, . . . , An as its equivalence

classes.
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Partial Orderings

A generalization of the relation ≤ on numbers.

Recall that ≤ is a reflexive, antisymmetric and transitive relation.

Definition

A relation on a set A is a partial ordering if it is reflexive,

antisymmetric and transitive.

Example 1

The operation ⊆ is a partial ordering on a set of subsets.

Definition

The pair (A, R) is called a partially ordered set or poset when

A is a set and R is a partial ordering on A.
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In a poset (A, R), if (a, b) ∈ R we write

a � b (or b � a)

We say a is “less than or equal to” b even if A is not a set of
numbers.

If a � b or b � a then a and b are comparable.

In a poset, there might be elements a and b such that a 6� b and
b 6� a.
We call such elements incomparable.

Definition

Let (A,�) be a poset. If every pair of elements in A is comparable
then A is called a totally ordered set and � is called a total

order.

If a � b and a 6= b then we write a ≺ b.
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The usual graph representation of a poset is crowded with arcs:

Example:

Set A = {1,2,3} and the poset (P(A),⊆)

{1}

{2}

{3}

{1,2}

{3,2}

{1,3}

{1,2,3}
{ }
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Hasse diagram for posets:

Obtained from the graph representation by:

Removing all arcs due to reflexivity,

Removing all arcs due to transitivity,

Positioning all elements so that if a ≺ b then

b is above a.
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{1,3}

{1} {2} {3}

{3,2}{1,2}

{1,2,3}

{ }
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A Hasse diagram is the usual representation of partial orders.

Example

The Hasse diagram of course prerequisites.

C 232 C248

C233

C348

C354

C352

C228

ENCS 282

C346

C335

C249

86



If R is a total order then in the Hasse diagram of R all elements

of R are aligned on a line.

≤ on natural numbers is a total order.

0

1

2

3

4

5

6

.

.

.
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Lexicographic Order

A method to extend a partial order from a set A of elements to

strings constructed from elements in A. Also called dictionary

order.

Example We have a partial or total ordering on letters:

a � b � c � d � e · · · � y � z

We want to extend it to words made from letters to get the

ordering as in dictionaries.

ace � bank � book � zebra

First, we show how to extend partial orders of sets A and B to

obtain an ordering of A × B.
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Let (A,�1) and (B,�2) be two partially ordered sets. The lexi-

cographic ordering on A × B is defined as follows:

(a1, b1) ≺ (a2, b2) if either a1 ≺1 a2

or a1 = a2 and b1 ≺2 b2

Lexicographic ordering for strings on a poset (A,�)

u = a1a2a3 · · · am and v = b1b2b3 · · · bn

u ≺ v if either a1 ≺ b1
or a1 = b1 and a2 ≺ b2
or a1a2 = b1b2, and a3 ≺ b3
.....

or a1a2 · · · am = b1b2 · · · bm

and m < n
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Let (A,�) be a poset.

An element a ∈ A is minimal if there is no element b ∈ A such

that b ≺ a.

An element a ∈ A is maximal if there is no element b ∈ A such

that a ≺ b.

An element a ∈ A is the greatest element if b � a for all b in A.

An element a ∈ A is the smallest element if a � b for all b in A.

An element a ∈ A is an upper bound of set B ⊆ A if b �

a for all b ∈ B.
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An element a ∈ A of a poset is a lower bound of set B ⊆ A if

a � b for all b ∈ B.

An element a ∈ A of a poset is the least upper bound of set

B ⊆ A if a � all other upper bounds of B.

An element a ∈ A of a poset is the greatest lower bound of

set B ⊆ A if a � all other lower bounds of B.

Some posets don’t have any minimal element, some can have

more than one.

Some posets don’t have any maximal element, some can have

more than one.
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Example: In the Hasse diagram of COMP core courses, what are

the minimal and maximal elements? Upper bounds of {C228, C248}?

Lower bounds of {C335, C352}? Least upper bound of {C232, C249}?

C 232 C248

C233

C348

C354

C352

C228

ENCS 282

C346

C335

C249
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Review

Logic

Important concepts:

proposition

tautology

contradiction

contingency

basic logical operations ∨,∧,¬,→,↔
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Logical equivalences

Important concepts:

logical equivalences and implications.

basic logical equivalences,

translation of →,↔ using other logical operations.

rules of inference

how to construct a truth table.

how to use logical equivalences.

how to reason with rules of inference.
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Quantifiers

Important concepts:

propositional function, or a predicate

universal quantifier, existential quantifier

interaction of logical operations and quantifiers.

how to translate

a quantified expression into an English sentence,

an English sentence into a quantified expression,

how to reason with rules of inference for quantified statements.
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Methods of Proofs

Important concepts:

theorem, axiom, definition, conjecture, counterexample.

direct proof,

indirect proof,

proof by contradiction,

proof by cases,

proof by induction,

how to write a simple proof.
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Sets

Important concepts:

∈,⊆,⊂,=,

basic set operations

A ∩ B, A ∪ B, A, A − B, power set, A × B, etc.,

basic set identities,

Venn diagrams,

proving set identities and set inclusions,

relationship between sets and logic.
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Functions

Important concepts:

function, domain, codomain, range,

when a function is:

one-to-one, onto, bijection,

inverse function, composition of functions,

floor and ceiling functions.
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Integers and Division

Important concepts:

a|b

quotient remainder theorem/division algorithm,

prime numbers, factors, composite numbers, GCD, LCM,

prime factorizations.

Euclidean algorithm to find GCD
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Binary Relations

Important concepts:

binary relations from A to B, on A,

when a relation is reflexive, symmetric, antisymmetric, transitive,

operations on relations: R1 ∪ R2, R1 ∩ R2, R1 − R2, R1 ◦ R2, Ri,

Rt,

transitive closure,

equivalence relations, partial orders, total orders,

Hasse diagram.
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Final exam covers all the topics in the course.

Hints:

• Read each question carefully.

• Start with questions that are easy for you.

• If you get bogged down in a problem, go to a different ques-

tion, come back to it later.

• Check your answers for logical consistency.
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