DeviceVeil: Robust Authentication for Individual
USB Devices Using Physical Unclonable Functions

Kuniyasu Suzaki*, Yohei Hori*, Kazukuni Kobara®*, Mohammad Mannan'
*National Institute of Advanced Industrial Science and Technology, Japan
fConcordia University, Canada

Abstract—The Universal Serial Bus (USB) supports a diverse
and wide-ranging set of device types. To enable ease of use, USB
devices are automatically detected and classified by common op-
erating systems, without any authentication. This trust-by-default
design principle can be easily exploited, and led to numerous
attacks in the past (e.g., Stuxnet, BadUSB, BadAndroid), specif-
ically targeting high-value organizations. Administrators’ efforts
to prevent these attacks may also be threatened by unscrupulous
users who may insert any USB device, or malicious users (inside
attackers) who may try to circumvent OS/kernel-enforced pro-
tection mechanisms (e.g., via OS replacement). The root causes
of USB attacks appear to be the lack of robust authentication of
individual USB devices and inadequate tamper-proofing of the
solution mechanism itself. We propose DeviceVeil to address
these limitations. To authenticate individual USB devices, we
utilize the tamper-proof feature of Physical Unclonable Functions
(PUFs); PUFs extract unique features from physical character-
istics of an integrated circuit (IC) at a reasonable cost (less
than 1 USD). To make our authentication mechanism robust,
we implement it as a small hypervisor, and protect it by a novel
combination of security technologies available in commodity PCs,
e.g., Trusted Platform Module (TPM), customized secure boot,
and virtualization support. The OS disk image with all user data
is encrypted by a key sealed in TPM and can be decrypted by
the hypervisor only. Customized secure boot allows the loading
of the legitimate hypervisor and OS kernel only. The hypervisor
enables pre-OS authentication to protect the trust-by-default OS
from USB attacks. The chain of trust continues from power-on to
the insertion of a USB device and disallows all illegitimate USB
devices. DeviceVeil’s PUF authentication takes about 1.7 seconds
during device insertion.

Index Terms—Individual Device Authentication, Hypervisor,
Physical Unclonable Function, Secure Boot, Trusted Computing

I. INTRODUCTION

Current USB standards (2.0 or 3.0) support several so-
phisticated mechanisms but follow the trust-by-default [69]
design principle, connecting many types of devices with
heterogeneous protocols, including, Human Interface Devices
(HID), Mass Storage Class (MSC), Media Transfer Protocol
(MTP) and Picture Transfer Protocol (PTP). The ubiquity and
diversity of USB have enabled many high-profile attacks. For
example, Stuxnet [9], [32] relied on a USB storage device,
and went beyond network air-gap to compromise Iranian
SCADA/nuclear systems. BadUSB [43] camouflaged USB
storage as a USB keyboard and inserted malicious commands.

USB attacks are also perpetrated by insiders. The most
famous insider attack that uses USB is possibly the Edward
Snowden incident in 2013 [80]. Another example is, Benesse,

a Japanese education company, which announced the leak
of 29 million customer records by a company engineer in
2014 [25]. Benesse apparently had a prevention mechanism
enforced by Windows ActiveDirectory against illegal use of
Mass Storage Class USB devices. However, the engineer
allegedly used MTP/PTP of his smartphone to bypass the
protection, highlighting the difficulty of designing protection
mechanisms that can withstand malicious insiders. In addition,
an insider can replace a hardened OS/kernel enforcing the
protection with a backup tool, and then restore the system
after connecting an illegal USB device (e.g., to copy sensitive
files). The insider can also load an unauthorized kernel with
the Linux kexec syscall [46], and thus can bypass OS-bound
defenses including secure boot. However, complete blocking
of USB devices (e.g., by physical means) is a non-solution, as
many machines routinely connect peripheral devices by USB
alone, e.g., a USB keyboard and mouse, although these devices
can be easily exploited, as evident from BadUSB [43].
Despite these high-profile attacks, security awareness re-
garding USB devices is still low. CompTIA [10] reported
that 17% of the dropped unknown USB storage devices were
plugged into PCs in several US business districts. Tischer et
al. [70] dropped 297 USB storage devices in a university
campus (UIUC), and found that HTML files in 45% of the
devices were opened. These careless and accidental insertions
also must be addressed, especially, in an enterprise solution.
To counter these attacks, the USB 3.0 Type-C specification
includes PKI-based authentication with tamper-proof hard-
ware [72]; each product would hold a certificate issued by the
USB Implementers Forum or an intermediate CA to protect
counterfeit. The specification states that ‘“Products should
provide protected tamper-resistant operation and storage for
the private keys to prevent them from being read.” Nev-
ertheless, tamper-resistant mechanisms remain unspecified.
Another drawback of the specification is that the proposed
authentication is effective only for each product type, but
not for individual devices. Most access control mechanisms
also support product-level only (e.g., ActiveDirectory and
SELinux). Solutions that support individual device authentica-
tion, mostly rely on USB serial numbers (e.g., USBSec [78]
and GoodUSB [66]). However, USB serial numbers can be
easily modified to defeat such weak authentication; e.g., see
the attack [44] on USB Raptor [74], which uses USB serial
numbers to lock/unlock Windows. Therefore, it is clearly
evident that a tamper-proof hardware mechanism is required

to implement any robust device authentication.

Such robust device authentication technologies have been
available for smart cards for more than a decade now [1],
[37]. For example, Subscriber Identity Module (SIM) cards
for mobile phones use Secure Element [52] as a tamper-
proof technology for individual device authentication. The
specification of Secure Element is openly defined by Glob-
alPlatform [19], and the chip is available from several secure
semiconductor vendors (e.g., Gemalto, NXP). Unfortunately,
these device authentication mechanisms based on hardware
tamper-proof technologies are relatively costly and accessible
to some vendors for specific devices (e.g., mobile phones), and
IT administrators cannot modify SE to use in commodity PCs.

Software tamper-proof technologies can also be used to
protect a device authentication solution. For example, Intel
SGX (Software Guard Extensions) offers software tamper-
proofing; however, SGX cannot handle intermediate device
recognition between a USB device and the OS because SGX
offers Ring-3 isolated execution environment named “enclave”
and does not have direct access to devices. Virtualization
can also be used to implement tamper-proof hypervisors,
e.g., HyperSentry [4], HyperSafe [79], TrustVisor [38] and
SecVisor [53]. Unfortunately, they are not designed to protect
OS replacement attacks, such as the Linux kexec syscall [46]
from the userland by insiders.

We propose DeviceVeil to authenticate individual USB
devices using Physical Unclonable Functions (PUFs) with
a hardened thin hypervisor. PUFs do not require additional
tamper-proofing, and extract uniqueness from physical char-
acteristics of integrated circuits. The setting of PUFs can
be managed by enterprise administrators and a challenge-
response authentication pair can be reset even if the pair
is lost/compromised. The thin hypervisor is strengthened by
security technologies in commodity PCs, including Trusted
Platform Module (TPM), secure boot, and virtualization. Our
novel combination of these techniques compensates short-
comings of individual components. The disk image of the
OS is encrypted by a key sealed in the TPM chip, and the
key is extracted by the hypervisor depending only on the
trusted boot technology. However, trusted boot cannot prevent
the re-installation attack, which can be mitigated by secure
boot by allowing the legitimate kernel only. The hypervisor
enables pre-OS authentication in an isolated environment and
protects the existing OS that follows the trust-by-default [69]
design principle of USB authentication. DeviceVeil is pri-
marily targeted for enterprise environments, where a trusted
administrator can configure employee machines and initialize
all allowed USB devices.

Contributions and Challenges:

1) Individual USB device authentication: DeviceVeil is the
first solution that authenticates individual USB devices
by PUF, and thus connecting USB device authentica-
tion to physical characteristics of the USB IC. The use
of PUF provides robust hardware-based identification
against tampering, e.g., unlike device serial number,

which can be easily duplicated, or the use of per-device
unique secret keys, which can be extracted. In addition,
PUF derives different IDs from different sampling points,
and the setting of PUF authentication is controlled by the
administrators in an enterprise environment (i.e., the USB
device manufacturers are not involved in the authentica-
tion process). One challenge for PUF implementation is
the cost of an individual device. We estimate the hardware
cost of our PUF design is less than 1 USD (apparently
reasonable even for low-cost USB devices).

2) Tamper-proofing against inside attackers: DeviceVeil in-
troduces tamper-proofing into both the USB device and
the software components on a client PC. We utilize a
novel combination of TPM, secure boot, and virtualiza-
tion technology—compensating each other’s shortcom-
ings. DeviceVeil encrypts the entire OS including user
data, and the encryption key is sealed in the TPM chip,
i.e., can be extracted from the TPM when the Platform
Configuration Register (PCR) values are extended with
the correct hash of the hypervisor only. Our customized
secure boot allows loading of the hypervisor and the OS
kernel only. The hypervisor includes a pre-OS authen-
tication mechanism and protects the existing OS. Thus,
malicious users cannot reinstall another OS, remove the
DeviceVeil hypervisor, or access content from the OS
through unauthenticated USB devices.

3) Vendor/OS independence: DeviceVeil uses the vendor-
independent tamper-proof technology, PUFs, allowing
enterprise administrators to configure challenge-response
pairs. In addition, DeviceVeil hypervisor runs only one
commodity OS and protects it from unauthenticated USB
devices. Authentication is enforced within the hypervisor
before the OS can interact with the actual USB device.
DeviceVeil also utilizes readily-available security tech-
nologies in commodity PCs, aiding deployability.

4) Implementation: We have implemented a prototype of
DeviceVeil by reusing and modifying the code from
several projects, including BitVisor [56] (for the thin
hypervisor), DeviceDisEnabler [62] (parts of TPM man-
agement), and Zuiho [87] (USB-PUF authentication).
The overhead comes from PUF authentication during
device insertion, an average of 1.7 seconds, and zero
performance penalty during the device use.

II. ATTACK TYPES AND THREAT MODEL

In this section, we summarize common attack types against
USB and provide our threat model.

A. Attack types

When a USB device is inserted, the OS recognizes the USB
device based on its descriptor (e.g., vendor ID, class ID, serial
number), and loads a suitable device driver automatically. This
trust-by-default [69] design principle facilitates most attack
types exploiting USB.

BadUSB [43] utilizes a vulnerability in USB firmware and
customizes it to camouflage as a USB keyboard, i.e., identify-

ing the device class as a Human Interface Device (HID). The
camouflaged keyboard inputs malicious commands. Another
similar attack is USBProxy [59] that uses the USB On-The-
Go specification [73] to mimic another (allowed) device type.
USB On-The-Go enables a USB device to switch the roles of
a host and device (for the case of a one-to-one connection).
USBProxy exploits this functionality to enable MITM attacks.

The diverse set of protocols as allowed in USB standards,
are also leveraged in some attacks. As mentioned in Section I,
MTP/PTP has allegedly been used to bypass the protection for
MSC at Benesse [25]. Furthermore, some smartphones offer
“USB Debug Mode”, not protected by ActiveDirectory [77].
BadAndroid [5] spoofs a USB-Ethernet adapter from an An-
droid phone to capture the traffic from a connected computer.

All USB devices typically include a device descriptor to
advertise their features; the descriptor offers information such
as the vendor ID, product ID, class ID, serial number, etc. The
USB specifications do not require a mandatory, hard-coded
serial number, and thus some products use the same serial
number, or no serial number at all, e.g., USB keyboard/mouse.
Most USB access control tools like ActiveDirectory usually
do not consider the USB serial number because their purpose
is to allow/disallow certain product types (based on device
descriptor); note that ActiveDirectory can be configured to use
serial numbers.

B. Threat model and assumptions

DeviceVeil has two primary goals: disallow any unautho-
rized USB device, and protect the OS kernel and DeviceVeil
itself from being tampered. We protect DeviceVeil against
different types of inside attackers, including the following. (a)
Attackers with admin privileges of the OS (not the system
administrator who sets up DeviceVeil), may use the kexec
command to load a separate Linux kernel without restrictions
(e.g., no active defense against USB attacks). Kexec is a kernel
function to load another kernel from the running kernel with-
out the help of BIOS/UEFI and bootloader, which can also be
used as a jailbreak mechanism [47]. From kernel version 3.17,
kexec has an option for allowing only kernels with verifiable
digital signatures. (b) Insiders may also reinstall the OS on
the target PC. They can recover the previous/legitimate OS if
they keep the disk image (to avoid detection). Backup tools can
also help such attacks by allowing the seamless/instant restore
feature. (c) Attackers may also try to install a hypervisor that
allows direct access to USB devices through I/O virtualization
(e.g., Intel VT-d) to a guest OS. The host OS/hypervisor does
not interfere with such direct access.
Security assumptions for DeviceVeil include the following.
1) The adversary can have physical control of the machine
after the secure setup of DeviceVeil. We assume that
administrators deploy PCs with secure BIOS, keep the
BIOS firmware updated, and protect the BIOS using
strong passwords that are not shared with a regular user
(see also Section VIII).

2) The adversary has root/admin privileges of the OS, but
he cannot replace the hypervisor/kernel as they are pro-

tected by secure boot (only signed updates issued by the
administrator are allowed).

3) The adversary can have physical control of USB devices,
including legitimate USB devices with PUF. He can
exploit the USB controller and modify the USB device
descriptor (i.e., device class and serial number) as in
BadUSB. However, we assume PUF is unmodified and
cannot be moved to another USB device (i.e., PUF is
integrated into the USB’s IC).

4) DeviceVeil does not control the content in USB devices,
and as such cannot protect the host OS against USB
malware in legitimate USB devices. Also, DeviceVeil
cannot prevent information leakage through an authorized
USB device. Confidentiality and integrity of contents
must be protected by other means (e.g., encryption or
access control).

5) The adversary can change TPM configuration (e.g., re-
set ownership via jumper settings), but cannot launch
attacks that require significant lab efforts (chip imag-
ing/decapping). Note that TPM reset will not leak the
TPM-sealed disk encryption key (unsealed only with
specific PCR values). We also assume the TPM firmware
is also kept up-to-date (cf. [23]).

III. CURRENT COUNTERMEASURES

Several countermeasures for USB attacks have been pro-
posed and implemented in academic literature and commercial
solutions. We categorize them as USB access control, USB au-
thentication, and tamper-proofing, and discuss a few examples
closely related to our work. For a comprehensive analysis of
all major defensive solutions, see Tian et al. [69].

A. USB access control

ActiveDirectory and SELinux are the most popular access
control mechanisms on Windows and Linux, respectively.
ActiveDirectory has a group policy for USB devices and
allows access control for each product or device class, but
cannot distinguish individual devices. SELinux also offers
similar access control in Linux. Solutions that support in-
dividual device authentication, mostly rely on USB serial
numbers (e.g., USBSec [78] and GoodUSB [66]). However,
USB serial numbers can be easily modified, and thus such
weak authentication can be defeated (see e.g., [44]).

USBFILTER [68] and Cinch [2] introduce packet filtering
based security mechanisms for USB communication. Packet
filtering can allow fine-grain access control and prevent at-
tacks. USBFILTER is implemented as a reference monitor
and is statically compiled and linked into the Linux kernel
to avoid being unloaded; it uses a database of rules for
USB packets for each application, and filters the applications
accordingly. Cinch also utilizes packet filtering, but it uses two
KVM virtual machines, where the first VM is sacrificial while
the other one runs a guest OS. The sacrificial VM uses /O
virtualization and connects to USB devices directly. There is
an enforcer between the sacrificial VM and the guest OS, and
packets are filtered and encrypted. However, as packet filtering

involves checking all communications to/from a USB device,
significant overhead is incurred; e.g., USBFILTER suffered
17.6% overhead when 100MB data was transferred, and Cinch
reduced the I/O throughput from 3.4Gbps (direct) to 2.1Gbps
for USB-SSD.

SandUSB [34] and USBWall [27] use a small computer
between a USB device and a host PC, which monitors the
USB’s behaviors. SandUSB uses a Raspberry Pi2 with a
module to relay USB packets from a USB device to the
PC. SandUSB scans and analyzes USB packets using USB-
Mon [83]. USBWall uses a BeagleBone Black (BBB) and runs
USBProxy [59] to act as middleware to enumerate the devices
on behalf of the PC. USBWall has no mechanism to filter USB
protocols, and simply works as an isolated environment.

B. USB authentication

Most USB device authentication targets device class identi-
fication, instead of individual devices (as in USB 3.0 Type-C
specifications). Some solutions use the serial number of a USB
device but the serial number is easily modified. Kanguru’s
FlashTrust [28] introduces a digitally signed firmware to
protect against BadUSB, but it is not designed for individual
authentication. GoodUSB [66] offers device authentication
mediated by a human user. The user makes “the final decision”
from the physical form of the USB device, i.e., GoodUSB
implicitly trusts its users, and thus cannot prevent inside
attackers or unscrupulous users.

Kells [7] and ProvUSB [67] offer host authentication based
on a TPM to limit USB devices to connect only to legitimate
host computers. They require a special USB device with
computation capability (e.g., an ARM CPU). The device also
includes public key issued by the TPM on the host machine.
If the authentication (i.e., the public key verification) fails,
the device exposes dummy flash storage. The deployment cost
may be non-negligible due to the need for an on-board CPU
per USB device.

C. Tamper-proofing

Robust and tamper-proof authentication is essential to pre-
vent insider attacks, but most countermeasures are installed
only in a kernel or hypervisor, which can be bypassed by
several attack vectors such as kernel replacement via kexec,
or installation of an unprotected hypervisor/OS. On the other
hand, many current PCs are equipped with UEFI secure
boot [81] that prevents the loading of unsigned/unauthorized
bootloaders or kernels. For example, Microsoft Windows Pro-
duction CA allows booting only signed Windows bootloader
and kernel. DeviceVeil utilizes the secure boot mechanism
and TPM sealing to enable tamper-proofing, which resembles
Windows BitLocker to some extent.

IV. BACKGROUND

As discussed in Section I in the explanation of USB 3.0
Type-C specification and Secure Element of SIM card, a
hardware-based tamper-proof mechanism is needed to im-
plement robust individual device authentication. In addition,

tamper-proofing and OS independence are required. These
requirements are fulfilled by PUF and a novel combination
of security technologies in commodity PCs, i.e., TPM, secure
boot, and virtualization.

A. PUF: Physical Unclonable Function

PUFs use the delay of the electric signal or the initial state
of memory, which differs on each chip due to small variations
resulting from the manufacturing process. These features allow
deriving unique secrets from individual physical characteristics
of ICs. When the sampling points are changed, PUFs create a
different ID from the device. PUFs utilize hardware intrinsic
features and do not require any special mechanism for hiding
secret keys in tamper-proof hardware. PUFs are used for DRM,
key generation, and device authentication (see e.g., [16], [30],
[33], [36], [49], [61], [63]).

1) Fuzzy extractor: PUFs use fragile physical characteris-
tics of ICs and have an intrinsic limitation. Since PUFs are
sensitive to noise and always produce bit errors in response,
a correction technique is required. In 2004, Dodis et al. [13]
proposed circuits, known as a fuzzy extractor, to correct bit
errors by extracting uniform random bits. The fuzzy extractor
is implemented in PUF authentication and creates error correc-
tion data known as helper data [6]. The helper data is passed
to the circuits when the key is used for authentication. While
the redundant information calculated during verification may
include noise, the original redundant information (calculated
at the initialization, and used at the verification phase as helper
data) is noiseless. The noise in redundant information in the
verification phase is corrected with the helper data.

2) PUF device authentication: The key created by PUF
and fuzzy extractor can be used for authentication [16],
[61]. Note that, pure PUF circuits are passive and lack
memory, and some PUF authentication circuits include an
additional cipher mechanism [30], [36], [49]. Some current
PUF authentication mechanisms are based on arbitrary string
encryption/decryption and include the circuits implementing
the ciphers (see later sections for DeviceVeil).

B. TPM and Trusted Boot

Trusted Platform Module (TPM) is a secure chip avail-
able on many commodity PCs. DeviceVeil utilizes platform
integrity and sealing/unsealing of TPM.

1) Platform integrity: The measurement of platform in-
tegrity is the core concept of trusted boot consisting of multiple
phases: measuring and extending cryptographic hash values
of hardware and software components. When the system is
powered on, the immutable bootstrap code (CRTM: Core Root
of Trust for Measurement) measures the hash value (e.g.,
through SHA-1 in TPM 1.2) of the BIOS and extends it in
the PCR (Platform Configuration Register) of TPM before
transferring control. The TCG-BIOS also measures the hash
values of peripheral devices, option ROMs, and the bootloader,
and extends them in the same manner. The same method is
implemented in the bootloader and kernel, and thus enables a
chain of trust.

2) Sealing/Unsealing: Sealing/unsealing of TPM is
limited by the measured PCR values to load a key in a
TPM. Windows BitLocker uses this mechanism to limit
access to the key when PCRs show the values which are
extended at a legitimate booting (i.e., the boot procedures
and devices remain original). In order to offer a FDE (Full
Disk Encryption) to Windows, BitLocker separates the
storage into the non-encrypted and encrypted partitions, as
the non-encrypted partition is used by the bootloader before
the secret key is unsealed from the TPM. Sealing/unsealing
of TPM is also used for other applications to confirm the
correctness of the machine, boot sequence and BIOS/UEFI.

C. Secure Boot

Although trusted boot can measure platform integrity, it
cannot prevent kexec and reinstallation attacks (even if the
disk remains encrypted). UEFI secure boot [81] can be used
to prevent booting unauthorized kernels (e.g., not signed
by a trusted authority). Secure boot requires two keys and
two databases. The Platform Key (PK), typically set by the
manufacturer, is the encryption key for the Key Exchange
Key (KEK). KEK is the encryption key for Authorized DB
(db) and Unauthorized DB (dbx), which are databases for
public-keys issued by a CA, and include hashes for authorized
and unauthorized modules (e.g., bootloaders, hypervisors or
kernels). Unfortunately, most PCs do not allow customizing
the keys and databases of secure boot. As a workaround, many
Linux distributions use a pre-bootloader signed by Microsoft
(e.g., Fedora’s shim.elf [55]).

D. Virtualization Technology (Hypervisor)

Most secure hypervisors function as the trusted computing
base (TCB) to protect a guest OS. Some solutions leverage
trusted computing, and guarantee the chain of trust starting
from power-on. For example, HyperSentry [4] and Hyper-
Safe [79] protect the hypervisor itself, and TrustVisor [38]
and SecVisor [53] protect the hypervisor, guest kernel and ap-
plications. However, they are not secure against reinstallation
and kexec attacks. Unauthorized loading kexec kernels can be
avoided by disallowing the kexec syscall in the allowed/signed
kernel, and reinstallation attacks can be prevented by secure
boot. However, secure boot is not used by common hypervi-
sors, possibly because most PCs do not allow changing the
keys and databases in the UEFI. Fortunately, a few PCs (e.g.,
Lenovo ThinkPad T460s) allow customizing secure boot, and
DeviceVeil’s prototype takes advantage of such flexibility.

V. DESIGN OF DEVICEVEIL

DeviceVeil authenticates individual USB devices using
PUFs and offers robustness against inside attackers. Figure 1
shows DeviceVeil’s components. DeviceVeil unseals a key
from the TPM and decrypts the encrypted disk to boot the OS.
The DB for USB device detection and PUF authentication is
also decrypted by the key in the TPM. The hypervisor and OS
kernel are authenticated by the secure boot.

[Guest 0S

DeviceVeil
(Hypervisor)

Encrypted
Partition for | !
Guest 0S

Vendor ID
Product ID
— Class ID

Partition for

DeviceVeil

-

1 SubClass ID
‘1 Serial No.

Verified by
Secure Boot

Key in TPM Y,

SB Port
(Root Hub)

Key is extracted by
Trusted Boot

USB-PUF
Device

PL-PUF Auth Circuit

PL-PUF

Fig. 1. DeviceVeil design overview.

DeviceVeil authenticates a legitimate USB device with PUF,
and then exposes it to the OS, as pre-OS authentication. The
pre-OS authentication can be implemented in two options.

1) Hosting the cryptographic key: the key created by PUF
is stored in a verifier on a host PC that is used to create
ciphertext from plaintext on demand. The drawback is
that the key is disclosed if the verifier is compromised.

2) Database for plaintext and ciphertext: The verifier does
not have the cryptographic key created by PUF, but it
has a database of plaintext and ciphertext pairs created
by the key. This prevents key disclosure but requires the
database to be created in advance.

We use option (2) to avoid storing a long term key, and
to restrict the misuse of a challenge-repose pair exposed
via e.g., USB bus sniffing (each pair is used once). Also,
if the challenge-repose pairs are different on each PC, the
compromise of a PC with its database has limited impact on
the device’s authentication (e.g., the device can be safely used
in other PCs). If the hypervisor selects option (1) hosting
cryptographic/PUF key, it must select a different encryption
key, generated by PUF circuits of a device. The different
encryption key generates different ciphertext at each time on
each PC and can limit USB bus sniffing attacks. However, keys
generated by PUFs for all PCs need to be tested for correctness
because PUFs are sensitive to noise.

A. Pseudo-LFSR PUF (PL-PUF)

DeviceVeil customizes Pseudo-LFSR PUF (PL-PUF [24]) to
avoid shortcomings of current PUF technologies. PL-PUF is a
delay-based PUF but outputs multiple and variable responses.
The structure is based on the Linear Feedback Shift Register
(LFSR). PL-PUF composes larger combinational logic than
normal delay-based PUFs, and it efficiently outputs multiple
bits in parallel used for variable ID. However, the size of the
PL-PUF authentication circuit is reasonably small compared
to memory-based PUFs. Furthermore, the challenge-response
mapping of PL-PUF is variable, depending on the active
duration of the circuit, i.e., a single PL-PUF behaves as if
it has multiple PUF cores.

128 127 126 102 101 100 99 1
0] °°° m'= g‘f""

Dout Dout Dout Dout Dout K Dout Dout
[128][127] [126] [102] (o1l & § 99 []
g Dinit SEL
.]]
Feedback polynomial: i
128 126 101 99 HI. out
X4 x4 x4 x® 41§ D a3

Fig. 2. The structure of PL-PUF authentication circuit (128 bits). It consists
of 128 inverters and 3 XOR gates and creates a feedback polynomial.

Figure 2 shows the structure of our 128-bit PL-PUF with
the primitive feedback polynomial. The core logic is not a
register but an inverter, and thus our PL-PUF is composed of
a single combinational circuit. The output will oscillate since
the output of the last core (Dout(1)) is fed back to the top-most
core. The output value depends on the speed of the feedback
signal, which is significantly affected by the device variation.
As a result, the output is device-dependent. PL-PUF realizes a
challenge-response pair as shown in Figure 2. The challenge
is a 128-bit initial value given to the core logic (Dinit), and
the response is a 128-bit output from the core logic (Dout)
after a certain time of feedback.

PL-PUF creates a multiple bit response that is prone to
burst errors. DeviceVeil uses the Reed-Solomon (RS) error
correction for the fuzzy extractor to deal with burst errors.
For authentication, DeviceVeil uses a temporal database of
plaintext and ciphertext pairs generated by using AES (the
AES key is created by PL-PUF to avoid the leakage of the
key). The plaintext and ciphertext pairs are created with the
AES key in advance by the administrator for each individual
device. Also, each challenge-response pair should be used only
once to prevent USB bus sniffing attacks.

B. Hypervisor with USB-PUF authentication

DeviceVeil is designed on top of BitVisor [56], a type-
1 thin hypervisor. BitVisor is based on a para-pass-through
architecture and does not prevent hardware interrupts from
the USB ports to the OS. Therefore, DeviceVeil disguises a
dummy device to the OS until the USB-PUF authentication
is completed in the isolated hypervisor environment. The
isolated environment also hosts a database with device records
used for USB device detection and challenge-response pairs
(i.e., ciphertext and plaintext pairs) used for PUF authen-
tication. The database is also encrypted by a TPM-sealed
key, and an inside attacker (e.g., the user of the machine)
cannot access this key; the key and the plaintext (decrypted)
database are available only to DeviceVeil’s hypervisor, and
inaccessible from the OS.

We enforce PUF authentication by default. To support non-
PUF USB devices as an exception, an administrator can con-
figure DeviceVeil to use only vendor ID, product ID, class ID,
and serial number. This weak authentication can co-exist dur-
ing the transition, but we strongly advise against relying on it.

C. Hypervisor with TPM and Secure Boot

To avoid bypassing DeviceVeil’s protection, we encrypt
the partition of the OS and seal the encryption key in
TPM NVRAM, accessible only to DeviceVeil (loaded via
trusted boot). Thus, the OS cannot boot without loading
the unmodified DeviceVeil binary. Note that although the
encryption key stays in RAM, only the hypervisor has access
to it (i.e., making it unavailable to the OS, or OS-resident
memory extraction tools).

Even if trusted boot measures platform integrity and the disk
is encrypted by a TPM-protected key, a reinstallation attack
is still possible (i.e., kexec). DeviceVeil compensates this
problem with UEFI secure boot, by disallowing unauthorized
kernels. An administrator can customize a secure boot to spec-
ify legitimate kernels with no kexec support (allowing updates
for properly signed kernels). However, the hypervisor must
be updated with the active participation of the administrator
(to set up the trusted boot to extract/reseal the encryption
key in TPM). We assume our thin hypervisor will require
updates very infrequently (unlike an OS kernel). Note that,
the possibility of an I/O virtualization attack is restricted by
the fact that DeviceVeil is loaded first, and it occupies CPU
virtualization, and thus other kernels cannot override it.

D. Deployability

DeviceVeil mostly uses security mechanisms included in
many commodity PCs (e.g., TPM, secure boot, and virtual-
ization) to help deployability. Although not all consumer PCs
come with these components, but enterprise IT admins can buy
PCs with appropriate support. In addition, DeviceVeil requires
new hardware “PUF” (similar to several other smart USB
solutions such as [7], [67]). For the novel PUF-authentication
mechanism, we limit the PUF cost to be reasonable (approx.
under 1 USD), to include a broad set of USB devices.

The cost of maintenance depends on the usage model. To
allow administrators to remotely manage the allowed list of
devices (i.e., DeviceVeil’s protected database) on a client PC,
DeviceVeil must mandate strong authentication of admin ma-
chines/accounts (e.g., via remote attestation). This extra effort
is necessary for scalability if devices are added/removed fre-
quently. If the authorized devices are changed infrequently, the
simple per-PC/device deployment may also be reasonable. Our
prototype implementation follows this usage scenario. Note
that current DeviceVeil allows users to update the kernel with
a proper signature, and thus makes updates easy to deploy.

VI. IMPLEMENTATION

DeviceVeil’s hypervisor is implemented on BitVisor [56]
with DeviceDisEnabler [62] (parts of TPM management),
and USB-PUF authentication is implemented on Zuiho [87]
which is a platform for PUF security evaluation. Newly added
and deleted code for DeviceVeil are about 6,000 and 500
LOC respectively. The main part of the added code is PL-
PUF authentication. Note that, DeviceVeil’s TCB also contain
libFTDI (unmodified: 55,000 LOC).

TABLE I
RESOURCES USED BY PL-PUF CIRCUITS. RESOURCES ARE SLICE OF
FPGA, Look Up TABLE (LUT), FLip FLOP (FF), BLOCK RAM (BRAM)
AND OPERATION TIME (USEC).

[Shce [LUT | FF | BRAM | usec
PL-PUF 130 260 [256 0 033
RS Enc 181 333 | 236 2 137
RS Dec 7990 | 15,086 | 2.323] 2317
AES 2774 | 5405 | 812 0 0.58(Enc)/1.08(Dec)
Total 12774 | 21459 | 6.282 7| 25.44(Enc)/25.94(Dec)

A. Zuiho PL-PUF Authentication Circuits

The Zuiho board comes with an FPGA chip, Spartan-3A
DPS3400A, and our PL-PUF authentication circuits are im-
plemented on it. The circuits consist of PL-PUF, RS encoding,
RS decoding, AES encryption/decryption, etc. The circuits
for PL-PUF are based on [24], and the RS encoding and
decoding utilize MATLAB Communication Toolbox and HDL
Coder. For AES encryption/decryption, we utilize the open
source Verilog code offered by the Cryptographic Hardware
Project [3]. In Table I, we list the hardware resources used
by PL-PUF authentication circuits; Logic Block resources
include: Slice, Look Up Table (LUT), Flip Flop (FF), and
Block RAM (BRAM).

1) Cost of PUF: To evaluate the cost, the size of PL-PUF
authentication circuits is compared to the TPM implementation
on FPGA [14], [15]. Eisenbarth et al. [15] assume 3,000
Logic Elements (each element consists of a single 4-input
LUT connected to a single-bit flip-flop) and 75k RAM. Eguro
and Venkatesan [14] assume 27,237 LUTs, 27,076 FFs, and
49 BRAMs. These circuit sizes of TPM implementations are
significantly larger than the current implementation of PL-
PUF authentication; see Table I. Furthermore, the current
implementation of RS encoding/decoding uses the MATLAB
Communication Toolbox and HDL Coder, which are not
optimized. We can reduce these parts with custom code. We
estimate the price of PL-PUF based on the size of the circuit
is less than 1 US dollar because the price of TPM is estimated
to be 1 US dollar [31] (from 2006). Furthermore, PL-PUF will
be integrated into the circuits in a USB IC and does not require
additional tamper-proof mechanism as a TPM chip; i.e., the
cost will be even lower. Thus, price-wise, PL-PUF should not
be an issue for most USB devices. Especially, DeviceVeil is
assumed to be used in enterprise environments, which can
absorb the extra cost for security gain.

2) Setup and Authentication: PL-PUF authentication cir-
cuits are set up by a tool we call PUF-Acquisition, which
works as a database enrollment tool on Windows. The database
is used by PUF authentication in the hypervisor. The setup tool
and hypervisor use USB-UART interface to communicate with
the PUF. The procedures of the Setup Tool (Enrollment) and
DeviceVeil authentication (hypervisor’s verifier) are explained
below. Note that we assume that suitable challenge data is
selected to generate a robust key.

Setup Tool (Enrollment): Figure 3 outlines the PL-PUF

PL-PUF Authentication Circuits
® The key is encoded by

Output from
RS232C
over USB

Input to
RS232C

(2 upper 128bits of PUF Response
over USB

Becomes a key. Reed-Solomon cording.
hall. { P RS J
Coding
(D send challenge, PL-PUF }—-« & ® save helper
plaintext, and { 105 ™ @ and ciphertext to
encryption signal with . - -
RS232C over USB. response T helper
Setup Tool Setup Tool
— @ Lower 128 bits
Challenge of PUF response are o
2 exclusive-ORed by CHZI::’EE
redundant symbols Ciphortext
plainte of RS cording. The Qe
— value becomes
- Helper. -
enc - key | AEs
plaintext ~\J ENC ciphertext

® Plaintext is encrypted by the key.

Fig. 3. Setup Tool (Enrollment) and PL-PUF authentication circuits. Light
gray circuits are not used by enrollment.

PL-PUF Authentication Circuits
Output from
RS232C
over USB

Hypervisor
DeviceVeil

Input to
RS232C
over USB

challenge T J
-

256 bits of PUF response.

Hypervisor
DeviceVeil

response

L =
R
\l H [Decofiing ®RS decoding
1 . ’

Challenge| |helper

Helper

Challenge

extracts the key.

Ciphertext
plaintext

@ Lower 128 bits are
exclusive-ORed by helper,
and the value becomes
redundant symbols of RS
cording.

plaintext

Verify

~—

dec
‘3

i plaintext
ciphertext V

@ ciphertext is decrypted by the key.

@ send

helper, ciphertext, and
encryption signal with
RS232C over USB.

@ the output
plaintext is
compared by the
plaintext in the DB.

Fig. 4. DeviceVeil authentication (verification of the hypervisor) and PL-PUF
authentication circuits. Light gray circuits are not used in authentication.

database generation procedure using the setup tool. It runs on
Windows and communicates with the PL-PUF authentication
circuits using RS232C protocol over FTDI-USB serial. As
prerequisite data, the setup tool has challenge data for PL-PUF
and plaintext for encryption/decryption by the key created by
the PL-PUF. The steps are as follows.

1) The setup tool sends a challenge (256 bits), plaintext, and
encryption signal to the PL-PUF authentication circuits
with RS232C protocol over USB.

2) The challenge goes to PL-PUF and becomes a 256-bit
response. The upper half (128 bits) of the response is
used as the encryption key.

3) The key is encoded by Reed-Solomon error correction
code, and 128 redundant bits are generated (16 symbols).

4) The redundant RS symbols are masked (XORed) with
the lower half (128 bits) of the PUF response so that the
redundant symbols do not leak any secret. The masked
value is used as helper data, which is outputted to the
setup tool.

5) Inputted plaintext is encrypted by the encryption key. The
ciphertext is outputted to the setup tool.

6) The setup tool saves the helper and ciphertext values to
the DB for PUF authentication.

DeviceVeil Authentication (Verification of the Hypervisor):
Figure 4 outlines the PL-PUF authentication procedure. The
DeviceVeil hypervisor sends a challenge, helper, and ciphertext

TABLE II
THE INPUT DATA STRUCTURE FOR DEVICEVEIL’S DB, USED FOR USB
DEVICE DETECTION AND PUF AUTHENTICATION. CATEGORIES OF
VERIFICATION, FLAGS, AND OPTIONS ARE SHOWN.

Guest OS I DeviceVeil hypervisor I USB-PUF Device
1

1
“ L Attach

N
Set Address ———————p m

.

Category [[Flag (I byte) | Options when the flag is on.
Vendor ID 1=on,0=o0ff Vendor ID 2 bytes

Product ID 1=on,0=o0ff Product ID 2 bytes

Class ID 1=on,0=o0ff Class ID 2 bytes

Sub-Class ID 1=on,0=o0ff Sub-Class ID 2 bytes

Serial Number 1=on,0=o0ff Serial Number (Unicode) 18 bytes
PUF Info 1=on,0=0ff Challenge 32 bytes

Challenge #2 16 bytes
Helper 16 bytes
Ciphertext 16 bytes
Plaintext 16 bytes

to the Zuiho board, and verifies the received plaintext. The
steps are as follows.

7) DeviceVeil sends challenge, helper, and ciphertext to the
PL-PUF authentication circuits in the USB device.

8) The challenge goes to PL-PUF and becomes a 256-bit
response.

9) The helper data is XORed with the lower 128 bits of

the PUF response, resulting in the unmasked redundant

symbols (with several errors) of the RS code.

The upper 128 bits of the response and redundant symbols

go through RS decoding and generate the encryption key.

The ciphertext is decrypted by the encryption key.

The output plaintext is compared to the plaintext in

the DB for PUF authentication. When the comparison

succeeds, DeviceVeil exposes the actual USB device to

the OS; when failed, the USB device remains hidden.

10)

11)
12)

3) Creating DB for USB Device Detection and PUF
Authentication: We summarize the input data structure used
by our pre-OS USB device detection and PUF Authentication
in Table II. Device meta-data is stored in the DB during setup
(Enrollment), encrypted by a TPM-stored key accessible only
by the hypervisor (see Figure 1). We use the stored device
information (e.g., vendor ID, product ID, class ID, and seal
number, provided by the Get_descriptor() function) in the
DB for pre-OS device detection. We get the PUF challenge-
response pairs from the Setup Tool (Enrollment) described in
Section VI-A and store them in the DB for PUF authentication.

B. Device Detection by Hypervisor

DeviceVeil is based on the para-pass-through architecture
of BitVisor and does not prevent hardware interrupts to the
OS when a USB device is inserted, but DeviceVeil responds
with a dummy USB device during USB-PUF authentication.

1) Communication Structure: We add a USB device detec-
tion process to BitVisor’s libUSB compatible interface and
use libFTDI as the FTDI driver. When a USB device is
detected, DeviceVeil plays the role of a USB host, and the
PUF authentication process communicates with the PL-PUF
circuits with the RS232C protocol on USB-FTDI.

Set Address > \
Get_descriptor(device)
Device is

register rn

Get_descriptor(configuration) >
<— Return

> Configuration Descripty

Return
Device Descriptor

|
|
When the device is a:
registered USB-PUF |
|
|
|

device
Set Configuration

DeviceVeil sets up a USB Device |
]

Get_descriptor(device)
Return

Device Descriptor
Get_descriptor(configuration) b

Set Configuration Configuration Descriptor

| Guest OS sets up Dummy USB keyboard
! PUF Authentication

Disconnect
——> Root Hub
Dummy USB) Reset | 00! u

Keyboard 1

1
1
Return 1
1
1
1

Di

Attach

<
<

Reset
Set Address
Get_descriptor(device)

vy

Return

Device Descriptor
PassThrough
Get_descriptor(configuration)
Return

Set Configuration Configuration Descriptor]|

Guest OS sets up USB-PUF Device

Fig. 5. Pre-OS USB device detection on DeviceVeil (between the Guest OS
and a USB-PUF device)

2) Procedure of Pre-OS USB Detection: Figure 5 shows
the procedure for pre-OS USB device detection by DeviceVeil
hypervisor. When a USB device is inserted, the “Attach”
hardware interrupt occurs. Due to BitVisor’s para-pass-through
architecture, the OS is informed about the insertion, and
DeviceVeil disguises a dummy device until PUF authentication
is completed. After the “Attach” interrupt, the OS follows
the normal procedure to detect a USB device. The OS waits
a certain period (about 100 msec) and issues the “Reset”
command. Then the USB device comes to the “default”
state and can accept control commands. After that, the “Set
Address” command is issued from the OS to the USB device;
however, this request is overtaken by DeviceVeil, which issues
its own “Set Address” command to the USB device. The USB
device then comes into the “address” state.

DeviceVeil sends Get_descriptor(device) to the device to
get device descriptor (e.g., vendor ID, product ID, class ID,
serial number). If the device is a registered USB-PUF device,
DeviceVeil offers a dummy harmless USB keyboard to the
OS and attempts the PUF authentication process. If the device
is a registered non USB-PUF device (if explicitly allowed
by administrators during the transition), DeviceVeil allows
para-pass-through access from the OS immediately. Otherwise,
DeviceVeil just offers a dummy device to the OS.

For legitimate PUF-enabled devices, DeviceVeil al-
lows the OS to continue the USB device recognition
procedure. The OS sends Get_descriptor(device) and

TABLE III

COMPARISON BETWEEN DEVICEVEIL AND RELATED PROPOSALS

Get_descriptor(con figuration), but DeviceVeil hooks them
and responds with a dummy USB device. After the OS recog-
nizes a dummy USB device, DeviceVeil initiates the PL-PUF
authentication process (Section VI-A). If authentication fails,
no other action is taken (the OS only sees the dummy USB
keyboard that processes no input). If authentication succeeds,
DeviceVeil issues the “Reset” command to the USB root hub
of the PC. The root hub raises the “Disconnected” interrupt,
which goes to the OS. The OS recognizes that the dummy
USB device is removed and takes action for disconnection.
Afterward, the USB device issues the “Attach” interrupt
automatically, which is sent to the OS to establish a USB
connection normally. From this time, DeviceVeil forwards all
requests as para-pass-through.

If authentication fails, DeviceVeil does not take any further
action. The OS keeps the dummy USB keyboard, which
processes no input. When the real USB device is disconnected,
the dummy USB keyboard is also removed in the manner of
USB disconnection.

C. Customizing Trusted/Secure Boot

The OS disk partition is separated from the disk partition
for booting DeviceVeil. The OS partition is encrypted by
DeviceVeil using the encryption key sealed in the TPM (i.e.,
unsealed only when the PCR values indicate that unmodified
trusted boot and DeviceVeil have been loaded). The current
implementation is designed for TPM 1.2 on a ThinkPad
T400 (Intel Core2 P8400 2.26GHz) and uses TCG-BIOS and
TrouSerS [71]. We use the TPM_NV_DefineSpace command
to allocate the NVRAM space for the encryption key, bounded
by PCR[0-7] (TCG-BIOS) and PCR[12-14] (Trusted GRUB)
values. The TPM_NN_WriteValue command is used to write
the encryption key to NVRAM with these PCR values during
the setup stage. The TPM_NV_ReadValue command is used to
read the encryption key. The read operation is successful only
when the bounded PCR values are the same as the registered
values. After that, DeviceVeil decrypts the OS disk partition
and boots the OS.

USB 3.0 Active GoodUSB Cinch USBFILTER Kells ProvUSB DeviceVeil
Type-C [72] Directory [66] [2] [68] [71 [67]
Individual No No Serial No No No No PUF
Device Auth. Number
Additional Tamper-proof No No No No ARM ARM PUF
Hardware storage in USB in USB in USB in USB
(Spec-only)
Granularity Device Device Device Packet Packet Device Device Device
Overhead Insert Insert Insert Comm. Comm. Insert Insert Insert
time time time time time time time time
Isolation No No No Yes No No No Yes
QEMU/KVM BitVisor
OS dependence No Yes Yes No Yes Yes Yes No
Tamper-proof (Good (Partial (Partial (Partial (Good (Good (Good (Good on
and hardening on USB) on host) on host) on host) on host) on host) on host) host&USB)
(Spec-only) Privilege In In Trusted Boot TPM TPM Trusted Boot
Tamper-proof mode Kernel Hypervisor SELinux Auth. Auth. Secure Boot
Storage PUF

To customize secure boot for DeviceVeil and the OS, the
Platform Key, Key Exchange Key, Authorized DB, and Unau-
thorized DB must be replaceable. We use ThinkPad T460s
(Intel 15-6300U 2.4GHz) as ThinkPad T400 does not offer
secure boot. On the other hand, ThinkPad T460s does not have
TPM 1.2. We thus have to use both these machines for testing
our prototype (which of course can be integrated into a single,
compatible PC). The UEFI of T460s allows customizing the
Platform Key, Key Exchange Key, Authorized DB, and Unau-
thorized DB. In order to boot Linux, we used shim.elf [55],
a pre-bootloader for GRUB bootloader, hypervisor, and the
Linux kernel.

VII. EVALUATION

We compare DeviceVeil with existing solutions, evaluate
it against two types of attacks, and measure the performance
overhead.

A. Comparison

Table III summarizes the comparison of related proposals
with DeviceVeil. Individual USB authentication is achieved
by GoodUSB and DeviceVeil. However, GoodUSB depends
on serial numbers, which can be easily modified. DeviceVeil
uses PUF for individual USB authentication, which ties the
authentication process with physical IC characteristics of the
USB device. Kells and ProvUSB do not offer individual USB
authentication, but they offer individual host authentication
and can be combined with individual USB authentication
(i.e., DeviceVeil) to achieve mutual authentication. Additional
hardware requirement is imposed by USB 3.0 Type-C, and
Kells, ProvUSB, and DeviceVeil. Although the cost is cheap
on Type-C and DeviceVeil; Kells and ProvUSB require a
processor for TPM authentication. Granularity is divided into
device level (authenticates a USB device at insert time, causing
one-time, low overhead), and packet level (verifies all com-
munication traffic, causing significant runtime overhead). De-
viceVeil imposes overhead only at insert-time similar to other
implementations except for Cinch and USBFILTER; however,

only DeviceVeil offers individual device authentication. Cinch
and USBFILTER incur overhead for each packet transferred
between a USB device and the host (38% for Cinch and 17.6%
for USBFILTER). Cinch and DeviceVeil both use hypervisor
for stronger isolation. Type-C, Cinch, and DeviceVeil are OS-
independent: Type-C is a standard, and Cinch and DeviceVeil
use a hypervisor to run an independent OS. Tamper-proofing
is achieved by USBFILTER and DeviceVeil: USBFILTER
protects the host with trusted boot and SELinux; DeviceVeil
protects the hypervisor and the host with trusted boot, and the
USB device with PUF. Overall, DeviceVeil offers comprehen-
sive security at low cost.

B. Attack resistance

We have tested DeviceVeil against two real-world attacks:
BadUSB and MTP attack. For BadUSB, we used the code
from Caudill [8]. The target USB controller is Phison Electron-
ics Phison 2251-03 (2303), included in Toshiba TransMemory-
MX USB 3.0 16GB. BadUSB customizes the firmware on the
USB controller and disguises it as a keyboard (HID). How-
ever, this malicious BadUSB keyboard is not recognized by
DeviceVeil, and the attack fails. For the MTP attack, we used
ASUS XenPad 3. Without DeviceVeil, XenPad 3 is detected as
an MTP device, and the file system for MTP jmipfs is opened.
However, with DeviceVeil, the device is not recognized.

C. Performance

We measured the performance of USB-PUF authentication
100 times on ThinkPad T400. The average time for USB-PUF
authentication was 1.705sec (min 1.683sec, max 1.729sec,
and std. deviation 0.110sec). For regular use, this delay for
authentication appears to be acceptable, considering USB
insertion is a manual process.

The target machine is old (Intel Core2 Duo P8400 2.26
GHz) and low performance (Average CPU Mark 1455 [12]).
If we can use current relevant machine (ThinkPad T580
with Intel Core i5-8350U 1.70GHz, Average CPU Mark
8189 [11]), we can get better performance because CPU
performance is improved by more than 5 times. We know that
the CPU improvement does not affect the latency directly,
but the latency can be estimated less than 1 seconds from 1.7
seconds (2 times). After authentication, the USB device is
accessed as para-pass-through, and thus, incurs no overhead.

VIII. SECURITY ANALYSIS
A. Attacks on BIOS/UEFI

DeviceVeil relies on virtualization, TPM, and secure boot,
all of which are set up through BIOS/UEFI. Thus the se-
curity of BIOS/UEFI is critical, but some old BIOSes come
with default/well-known passwords, which also can be reset
by jumper settings when physical access is possible. With
improved BIOS/UEFI security in recent times, attacks also
became more sophisticated. For example, the System Manage-
ment Mode (SMM) and sleep mode S3 have been exploited
in several attacks (e.g., [17], [26], [82]). Fortunately, these
vulnerabilities are also often promptly patched by vendors.

Note that the OS kernel and hypervisor can be made
independent of BIOS/UEFI using DRTM (Dynamic Root of
Trust Measurement, such as Intel TXT; cf. [85]). The DRTM
of GraceWipe utilizes tboot [65] which depends on Intel TXT
(Trusted eXecution Technology) and resets the trust chain.
GraceWipe uses the secret key stored in the TPM, which is
sealed/unsealed by the PCR[17] that is measured by tboot only.
The method allows being independent of the measurement
from the BIOS/UEFI. However, DeviceVeil cannot depend on
DRTM alone, because secure boot and I/O virtualization can
be reset if the BIOS/UEFI is compromised. If secure boot is
turned off in BIOS, re-installation attacks become possible. If
the I/O virtualization is on, a virtual machine may access it
through IOMMU.

B. Attacks on Hypervisor

Hypervisors also suffer from vulnerabilities [45], [64]. Since
DeviceVeil is a type-I hypervisor and runs only one OS,
the attack surface for DeviceVeil is significantly smaller than
normal hypervisors with multiple OSes (e.g., Xen). Similarly,
cross-VM side-channel attacks [84] are also not a concern.
DeviceVeil is based on the para-pass-through architecture and
thus, does not suffer from attacks through virtual devices, e.g.,
VENOM [76] (a vulnerability of floppy emulator in QEMU).
However, DeviceVeil also depends on CPU virtualization
technologies (i.e., Intel VT-x) as other hypervisors, and may
be vulnerable if there are vulnerabilities in such technologies.

C. Attacks on TPM

In contrast to BIOS attacks, DeviceVeil does not care for
TPM attacks because they disable booting causing a disadvan-
tage for the attacker, especially for the insider. Even if a side-
channel attack is possible, the creation of certain PCR values is
difficult. In a TPM reset attack [29], [58], a TPM’s LRRESET
pin is grounded and initializes PCR values. However, it is still
difficult to guess the PCR values to extract the key.

D. Attacks on Secure Boot

As mentioned in Section II, kexec can bypass the se-
cure boot as kexec can load unauthorized kernels bypassing
BIOS/UEFI and bootloader [47]. DeviceVeil prevents this
attack by using a non-kexec kernel, certified by secure boot.
Note that, secure boot could be bypassed by exploiting vul-
nerabilities in UEFI implementation [17]. The administrator
must use an up-to-date, secure UEFI BIOS.

E. Attacks on Memory

The encryption key from the main memory may be extracted
by DMA Attacks [54], [60] or cold-boot attacks [22]. These at-
tacks take the memory dump image and search for secret keys
(e.g., loaded from a TPM). However, they can be addressed by
relocation of secret keys from RAM to other (relatively) safer
places, such as SSE registers (AESSE [40]), debug registers
(TRESOR [39]), MSR registers (Amnesia [57]), and AVX
registers (PRIME [18]), GPU registers (PixelVault [75]). Keys
and secrets in RAM can also be protected by other hardware

security features in CPUs, such as Intel TSX (Mimosa [21]),
and and Intel TXT/AMD SVM (Hypnoguard [86] during ACPI
S3 suspension). Note that Intel SGX (Software Guard Exten-
sions) is inapplicable to DeviceVeil although SGX offers en-
crypted memory and isolated execution, as we require device-
level access (ring-0) from the trusted environment (i.e., our
hypervisor), but SGX allows only ring-3 (user level) privilege.

Memory attacks can also be launched via software side-
channels (e.g., cross-VM side-channel attacks). A disk encryp-
tion key is managed by DeviceVeil and stored in the memory
allocated to DeviceVeil. DeviceVeil is a type-I hypervisor
and runs one OS only, and therefore cross-VM side-channel
attacks (e.g., [84]) from the host OS and memory leaks are
not applicable to DeviceVeil. However, DeviceVeil’s threat
model also includes a malicious insider. Such an attacker
can use hypervisor forensics tools (e.g., Actaeon [20]) to
detect hypervisor from the use of VMCS (Virtual Machine
Control Structure) of Intel VT-x. Actaeon requires a memory
dump image, but a pure software approach cannot capture
the memory properly, according to Graziano et al. [20], who
suggested using SMM based memory scanners (e.g., [48]).
However, SMM is protected by the security of BIOS/UEFI,
which is assumed to be secure by DeviceVeil.

F. Attacks on PUF

General PUF circuits are passive devices and do not keep a
state. They are vulnerable to replay attacks. If the DB in the
hypervisor of DeviceVeil is disclosed, the data can be exploited
to allow unauthorized devices. The current implementation of
the DB is protected by encryption (with a TPM-stored key)
and we assume that the TPM and DeviceVeil’s hypervisor are
free of vulnerabilities. To enable replay protections (against
any disclosed ciphertext-plaintext pairs), we need to use the
one-time challenge-response [36], a common random seed in
the PUF authentication circuits and verifier [49], or circuits
hosting a key that is decrypted by a PUF created key [30].

A more sophisticated impersonation is modeling at-
tacks [50], [51] that emulate PUF software. Modeling attacks
use machine learning to create an algorithm to impersonate the
original PUF. However, this type of attack has two drawbacks.
The first drawback is that the modeling attacks assume that the
challenge and response pairs of target PUF grow only linearly.
PL-PUF is based on LFSR that works as a pseudo-random
number generator, and thus makes it difficult to model the PUF
authentication circuits. The second drawback is that modeling
attacks assume that challenge and response pairs are exposed
directly to attackers. The PL-PUF authentication circuits do
not offer challenge and response pairs directly. A ciphertext is
sent with the challenge, and the key in PL-PUF authentication
circuits decrypts it to generate the response. The modeling
attacks are improved with side-channel attacks [35], but PL-
PUF still has the advantage as it uses complex LFSR circuits
and only decrypts the AES ciphertext, which difficulty is the
same level of AES attacks.

G. Attacks on USB BUS

USB bus has no encryption and is easily sniffed by a USB
protocol analyzer. The lost information (e.g., a key) can be
used for replay attack or forged authentication [42]. These
attacks are not prevented by hardware tamper-proof on a USB
device for secret-hiding protection. One solution is encryption
of communication, but managing keys for such encryption
will be non-trivial and possibly subject to compromise. Even
if an encryption key is shared to authenticate a device by
some PCs, all PCs must renew the key when a PC loses it.
However, PUF allows creating different keys from a device for
each authentication [41]. The administrators can set a different
key on each PC. Current DeviceVeil uses the database for
challenge-response, but it can replace the key created by PUF.

DeviceVeil (hypervisor) issues a “Reset” command to a
USB device after the PUF authentication phase and the USB
device is visible to the Guest OS via para-pass-through. After
PUF authentication, an attacker may attempt to replace the
authenticated USB with an illegitimate USB device (i.e., a kind
of time-of-check to time-of-use, TOCTOU race condition).
However, the USB host controller on the PC detects the physi-
cal disconnection of a USB device. DeviceVeil is also aware of
the physical disconnection and the PUF authentication starts
from the beginning for the newly inserted device.

H. Legacy Devices

For backward compatibility, some users may want to use
legacy devices. DeviceVeil offers authentication for legacy
devices, but it depends on vulnerable serial numbers. Adminis-
trators must evaluate risks from such devices before allowing
them, although we strongly recommend using PUF-enabled
devices only.

1. Other concerns

DeviceVeil offers strong, one-way device authentication, but
mutual authentication is desirable when the host is untrusted.
We make the host tamper-proof against unauthorized USB
devices and malicious insiders; but it can also integrate host
authentication technology (e.g., Kells [7]), depending on the
cost and usage scenario.

IX. CONCLUSIONS

DeviceVeil is the first solution that authenticates individual
USB devices with hardware-based identification circuit,
PL-PUF, and hypervisor with a pre-OS authentication
mechanism, hardened by TPM and secure boot. It allows
connecting only authenticated USB devices and protects the
trust-by-default OS and user data against camouflage attacks
(e.g., BadUSB), protocol abuses, and unknown USB device
attacks. DeviceVeil requires hardware modification, but the
estimated cost appears to be reasonable (less than 1 US
dollar), and it does not require any on-board processor on the
USB device. We believe, DeviceVeil offers a low-cost device
authentication technique, mitigating an important security gap
in existing USB defense solutions.

[1]
[2]

[3]

[4]

[5]
[6]

[8]
[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, “Cryptographic
Processors-A Survey,” Proceedings of the IEEE, vol. 94, no. 2, 2006.
S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo, Z. Sun, A. J.
Blumberg, and M. Walfish, “Defending against malicious peripherals
with Cinch,” in USENIX Security Symposium, 2016.

Aoki Laboratory’s Cryptographic Hardware
“http://www.aoki.ecei.tohoku.ac.jp/crypto/,” 2014.

A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“HyperSentry: Enabling stealthy in-context measurement of hypervisor
integrity,” in Conference on Computer and Communications Security,
ser. CCS’10, 2010.

BadAndroid, “https://github.com/tst-zdouglas/badandroid,” 2014.

C. Bosch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls,
“Efficient helper data key extractor on FPGASs,” in Cryptographic
Hardware and Embedded Systems, ser. CHES 08, 2008.

K. R. B. Butler, S. E. McLaughlin, and P. D. McDaniel, “Kells: A
Protection Framework for Portable Data,” in Annual Computer Security
Applications Conference, ser. ACSAC’10, 2010.

Caudill’s-badUSB, “https://github.com/adamcaudill/psychson,” 2014.

T. M. Chen and S. Abu-Nimeh, “Lessons from Stuxnet,” Computer,
vol. 44, pp. 91-93, 2011.

CompTIA, “Cyber secure: A look at employee cybersecurity
habits in the workplace,” compTIA Whitepaper (2015).
https://www.comptia.org/resources/cyber-secure-a-look-at-employee-
cybersecurity-habits-in-the-workplace.

CPU Benchmark Intel Core i5-8350U 1.70GHz. (2017)
https://www.cpubenchmark.net/cpu.php?cpu=intel+core+i5-8350u+
9%40+1.70ghz&id=3150.

CPU Benchmark Intel Core2 Duo P8400 2.26 GHz. (2008)
https://www.cpubenchmark.net/cpu.php?cpu=intel+core2+duo+p8400+
%40+2.26ghz&id=973.

Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in International Con-
ference on the Theory and Applications of Cryptographic Techniques,
ser. EUROCRYPT’04, 2004.

K. Eguro and R. Venkatesan, “FPGAs for trusted cloud computing,” in
International Conference on Field Programmable Logic and Applica-
tions, ser. FPL'12, 2012.

T. Eisenbarth, T. Giineysu, C. Paar, A.-R. Sadeghi, D. Schellekens,
and M. Wolf, “Reconfigurable Trusted Computing in Hardware,” in
Workshop on Scalable Trusted Computing, ser. STC’07, 2007.

K. B. Frikken, M. Blanton, and M. J. Atallah, “Robust authentication
using physically unclonable functions,” in International Conference on
Information Security, ser. ISC’09, 2009.

A. Furtak, Y. Bulygin, O. Bazhaniuk, J. Loucaides, A. Matrosov, and
M. Gorobets, “BIOS and Secure Boot Attacks Uncovered,” (ekoparty),
2014.

B. Garmany and T. Miiller, “Prime: Private rsa infrastructure for
memory-less encryption,” in The Annual Computer Security Applications
Conference, ser. ACSAC *13, 2013.

GlobalPlatform. https://globalplatform.org/.

M. Graziano, A. Lanzi, and D. Balzarotti, “Hypervisor memory foren-
sics,” in International Symposium on Research in Attacks, Intrusions,
and Defenses, ser. RAID’13, 2013.

L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang, “Protecting private
keys against memory disclosure attacks using hardware transactional
memory,” in IEEE Symposium on Security and Privacy, ser. SP’15, 2015.
J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Cal, A. J. Feldman, and E. W. Felten, “Least we remember: Cold boot
attacks on encryption keys,” in USENIX Security Symposium, 2008.

S. Han, W. Shin, J.-H. Park, and H. Kim, “A bad dream: Subverting
trusted platform module while you are sleeping,” in USENIX Security
Symposium, Baltimore, MD, USA, Aug. 2018.

Y. Hori, H. Kang, T. Katashita, and A. Satoh, “Pseudo-LFSR PUF:
A compact, efficient and reliable physical unclonable function,” in
International Conference on Reconfigurable Computing and FPGAs,
2011.

K. Ishii and T. Komukai, “A Comparative Legal Study on Data Breaches
in Japan, the U.S., and the U.K.” in IFIP TC International Conference
on Human Choice and Computers (HCC’16), 2016.

C. Kallenberg, J. Butterworth, X. Kovah, and S. Cornwell, “Defeating
signed bios enforcement,” MITRE White Paper, 2014.

Project,

(27]

[28]
[29]

(30]

(31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

M. Kang and H. Saiedian, “USBWall: A novel security mechanism to
protect against maliciously reprogrammed USB devices,” Information
Security Journal: A Global Perspective, vol. 26, no. 4, pp. 166-185,
2017.

Kanguru’s FlashTrust, “https://www.kanguru.com/storage-
accessories/kanguru-flashtrust-secure-firmware.shtml,” 2014.

B. Kauer, “OSLO: Improving the Security of Trusted Computing,” in
USENIX Security Symposium, 2007.

T. Kubota, M. Shiozaki, and T. Fujino, “Robust authentication using
physically unclonable functions,” in Embedded Security in Cars, ser.
ESCAR’16, 2016.

K. Kursawe, “Trusted Computing and its Applications: An Overview,”
in Information Security Solutions Europe, ser. ISSE’06, 2004.

D. Kushner, “The real story of stuxnet,” ieee Spectrum, vol. 50, no. 3,
pp. 48-53, 2013.

J. W. Lee, D. Lim, B. Gassend, G. E. S. andMarten van Dijk, and
S. Devadas, “A technique to build a secret key in integrated circuits for
identification and authentication applications,” in 2004 Symposium on
VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525),
2004.

E. L. Loe, H.-C. Hsiao, T. H.-J. Kim, S.-C. Lee, and S.-M. Cheng,
“SandUSB: An installation-free sandbox for USB peripherals,” in 2016
IEEE 3rd World Forum on Internet of Things (WF-1oT), Dec 2016, pp.
621-626.

A. N. Mahmoud, U. Riihrmair, M. Majzoobi, and F. Koushanfar,
“Combined modeling and side channel attacks on strong pufs,” JACR
Cryptology ePrint Archive, 2013.

M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design
and implementation of secure reconfigurable PUFs,” ACM Transactions
on Reconfigurable Technology and Systems, vol. Vol 2, no. 1, 2009.
K. Mayes and K. Markantonakis, Smart Cards Tokens Security and
Applications. Springer, 2008.

J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “TrustVisor: Efficient TCB reduction and attestation,” in /[EEE
Symposium on Security and Privacy, ser. SP’10, 2010.

T. Miiller, F. Freiling, and A. Dewald, “Tresor runs encryption securely
outside ram,” in 20th USENIX Security Symposium (USENIX Security
11), 2011.

T. Miiller, A. Dewald, and F. C. Freiling, “AESSE: a cold-boot resistant
implementation of AES,” in the 3rd European Workshop on System
Security, 2010.

M. Nabeel, S. Kerr, X. Ding, and E. Bertino, “Authentication and key
management for advanced metering infrastructures utilizing physically
unclonable functions,” in Smart Grid Communications, ser. SmartGrid-
Comm’12, 2012.

M. Neugschwandtner, A. Beitler, and A. Kurmus, “A transparent defense
against usb eavesdropping attacks,” in European Workshop on System
Security, ser. EuroSec’16, 2016.

K. Nohl, S. Krissler, and J. Lell, “BadUSB-On accessories that turn
evil,” blackHat USA 2014.

G. Ose, “Exploiting USB Devices with Arduino,” blackHat USA 2011.
D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing Hypervisor
Vaulnerabilities in Cloud Computing Servers,” in Workshop on Security
in Cloud Computing, 2013.

A. Pfiffer, “Reducing System Reboot Time With kexec,” OSDL Whitepa-
per, 2003.

Phoronix.com, “Secure boot breaks kexec, hibernate
support on Linux,” news article (Jan. 28, 2013).

https://www.phoronix.com/scan.php?page=news_item&px=MTI4NjE.
A. Reina, A. Fattori, F. Pagani, L. Cavallaro, and D. Bruschi, “When
Hardware Meets Software: A Bulletproof Solution to Forensic Memory
Acquisition,” in Annual Computer Security Applications Conference, ser.
ACSAC’12, 2012.

M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach, and S. Devadas,
“Robust and reverse-engineering resilient PUF authentication and key-
exchange by substring matching,” IEEE Transactions on Emerging
Topics in Computing, vol. 2, no. 1, 2014.

U. Riihrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling Attacks on Physical Unclonable Functions,” in Con-
ference on Computer and Communications Security, ser. CCS’10, 2010.
U. Rithrmair, J. Solter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “PUF Modeling
Attacks on Simulated and Silicon Data,” IEEE Trans. Info. For. Sec.,
2013.

[52]

[53]

[54]

[55]

[56]

(571

[58]
[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Secure Element (SE) Committee. (2007)
https://globalplatform.org/technical-committees/secure-element-se-
committee/.

A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes,” in
Symposium on Operating Systems Principles, ser. SOSP’07, 2007.

R. Sevinsky, “Funderbolt: Adventures in thunderbolt DMA attacks,”
Black Hat USA, 2013.

Shim, “https://github.com/rhinstaller/shim,” 2015.

T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba,
Y. Shinjo, and K. Kato, “BitVisor: A thin hypervisor for enforcing I/O
device security,” in Conference on Virtual Execution Environments, ser.
VEE’09, 2009.

P. Simmons, “Security through amnesia: A software-based solution to
the cold boot attack on disk encryption,” in The Annual Computer
Security Applications Conference, ser. ACSAC 11, 2011.

E. R. Sparks, “A security assessment of trusted platform modules,”
Dartmouth College Technical Report, 2007.

D. Spill, “USBProxy: An open and affordable USB man in the middle
device.”

P. Stewin, Detecting peripheral-based attacks on the host memory. PhD
thesis, Technischen Universitit Berlin, 2014.

G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Design Automation Con-
ference, ser. DAC’07, 2007.

K. Suzaki, “DeviceDisEnabler: A lightweight hypervisor which hides
devices to protect cyber espionage and tampering,” blackHat Sao Paulo
2014.

D. Suzuki and K. Shimizu, “The glitch PUF: A new delay-PUF
architecture exploiting glitch shapes,” in Cryptographic Hardware and
Embedded Systems, ser. CHES’10, 2010.

J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the
Hypervisor Attack Surface for a More Secure Cloud,” in Conference
on Computer and Communications Security, ser. CCS’11, 2011.

tboot. (2008) http://tboot.sourceforge.net/. [Online]. Available:
http://tboot.sourceforge.net/

D. J. Tian, A. Bates, and K. Butler, “Defending against malicious USB
firmware with GoodUSB,” in Annual Computer Security Applications
Conference, ser. ACSAC’15, 2015.

D. J. Tian, A. Bates, K. R. Butler, and R. Rangaswami, “ProvUSB:
Block-level Provenance-Based Data Protection for USB Storage De-
vices,” in Conference on Computer and Communications Security, ser.
CCS’16, 2016.

[68]

[69]

[70]

[71]

[72]

[73]
[74]
[75]

[76]
(771

[78]

[79]

[80]
[81]
[82]
[83]

[84]

[85]

[86]

[87]

D. J. Tian, N. Scaife, A. Bates, K. Butler, and P. Traynor, “Making USB
great again with USBFILTER,” in USENIX Security Symposium, 2016.
D. J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and K. R. Butler,
“SoK: “Plug & Pray” Today — Understanding USB Insecurity in Versions
1 through C,” in IEEE Symposium on Security and Privacy, ser. SP’18,
2018.

M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori, E. Bursztein,
and M. Bailey, “Users really do plug in USB drives they find,” in [EEE
Symposium on Security and Privacy, ser. SP’16, 2016.

TrouSerS. (2005) https://sourceforge.net/projects/trousers/.
USB-3.0-Promoter-Group, “Universal serial bus Type-C authentication
specification release 1.0 with ECN and Errata,” 2017.
USB-On-The-Go, “http://www.usb.org/developers/onthego,” 2001.
USB-Raptor. (2014) https://sourceforge.net/projects/usbraptor/.

G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis,
“Pixelvault: Using gpus for securing cryptographic operations,” in Con-
ference on Computer and Communications Security, ser. CCS’14, 2014.
VENOM, “http://venom.crowdstrike.com/,” 2016.

T. Vidas, D. Votipka, and N. Christin, “All your droid are belong to us:
A survey of current Android attacks,” in USENIX Workshop on Offensive
Technologies, ser. WOOT’11, 2011.

Z. Wang and A. Stavrou, “Attestation & authentication for USB com-
munications,” in International Conference on Software Security and
Reliability Companion, ser. SERE’12, 2012.

Z. Wang and X. Jiang, “HyperSafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in IEEE Symposium on
Security and Privacy, ser. SP’10, 2010.

A. Washburn, “Snowden smuggled documents from NSA on a thumb

drive. https://www.wired.com/2013/06/snowden-thumb-drive/.”
R. Wilkins and B. Richardson, “UEFI secure boot in modern computer

security solutions,” UEFI Forum, 2013.

R. Wojtczuk and C. Kallenberg, “Attacks on uefi security,” CanSecWest,
2015.

P. Zaitcev, “The usbmon: USB monitoring framework,” in Linux Sym-
posium, 2005.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Conference on
Computer and Communications Security, ser. CCS’12, 2012.

L. Zhao and M. Mannan, “Gracewipe: Secure and Verifiable Deletion
under Coercion.” in Network and Distributed System Security Sympo-
sium, ser. NDSS’15, 2015.

, “Hypnoguard: Protecting secrets across sleep-wake cycles,” in
Conference on Computer and Communications Security, ser. CCS’16,
2016.

Zuiho. (2013) http://www.toptdc.com/en/product/sasebo/.

