
Horus: A Security Assessment Framework for
Android Crypto Wallets

Md Shahab Uddin, Mohammad Mannan, and Amr Youssef

Concordia University, Montreal, Quebec, Canada
md din@encs.concordia.ca, m.mannan@concordia.ca,

youssef@cisse.concordia.ca

Abstract. Crypto wallet apps help cryptocurrency users to create, store,
and manage keys, sign transactions and keep track of funds. However,
if these apps are not adequately protected, attackers can exploit secu-
rity vulnerabilities in them to steal the private keys and gain ownership
of the users’ wallets. We develop a semi-automated security assessment
framework, Horus,1 specifically designed to analyze crypto wallet An-
droid apps. We perform semi-automated analysis on 310 crypto wallet
apps, and manually inspect the top 17 most popular wallet apps from
the Google Play Store. Our analysis includes capturing runtime behav-
ior, reverse-engineering the apps, and checking for security standards
crucial for wallet apps (e.g., random number generation and private key
confidentiality). We reveal several severe vulnerabilities, including, for
example, storing plaintext key revealing information in 111 apps which
can lead to losing wallet ownership, and storing past transaction infor-
mation in 11 apps which may lead to user deanonymization.

Keywords: Crypto Wallets · Cryptocurrency · HD Wallets · Android
Apps.

1 Introduction

Bitcoin is the world’s most popular cryptocurrency, its value has recently sur-
passed US$60,000 [35] and is getting wider adoption in businesses. Other cryp-
tocurrencies like Ethereum, and Litecoin have established their footprints and go-
ing strong among cryptocurrency users. The combined market cap of more than
6000 cryptocurrencies has reached a new high of US$1.24 trillion in 2021 [36]. Un-
fortunately, this massive growth of cryptocurrencies is also attracting malicious
actors to find and exploit vulnerabilities in cryptocurrency-related technologies.
The cryptocurrency community has witnessed no less than 34 attacks, breaches,
and scams in 2020 alone [16, 37], and attackers have stolen approximately US$4
billion [34] worth of assets from users.

Crypto wallets, being an ingrained part of cryptocurrency ecosystem, also
encounter attacks ranging from deanonymization to password cracking [43, 15,

1 Horus is one of the ancient Egyptian deities. The Eye of Horus is an ancient Egyptian
symbol of protection.

2 Uddin et al.

40]. Due to their importance, past work analyzed several crypto wallet apps. For
example, He et al. [26] analyzed critical attack surfaces in two wallet apps and
demonstrated proof-of-concept attacks. Haigh et al. [25] analyzed the forensic
artifacts of seven wallet apps, and designed a Trojan attack by repackaging a
wallet app to steal user credentials; they chose to analyze non-HD (Hierarchical
Deterministic [49]) wallets, although HD-wallets are gaining adoption in recent
years and preferred over non-HD wallets in terms of security and portability.

To perform a comprehensive and scalable analysis of current and popular
wallet apps (the number of which is growing, currently in the range of hundreds),
we developed a semi-automated test framework, Horus. Our framework combines
both static and dynamic analysis of crypto wallet apps and can assess whether
industry best practices are being followed in the app implementation. Horus has
three major components: (1) scraper module, which can collect a large dataset
of specific categories of apps from the Google Play Store; (2) static analysis
module, which looks for API pattern to determine if proper security standards
are followed in the app implementation; and (3) dynamic analysis module, which
searches for key revealing information stored in the app’s artifact on the device.

Using these components, we collect 310 wallet apps and analyze them for
security risks. We conduct a manual inspection of the top 17 crypto wallet apps
in the Google Play Store to understand the apps’ security practices and evaluate
the security risk associated with them. We use popular open-source vulnerability
analysis tools, such as Androbugs2 and Qark.3 Syntax-based static analysis tools
often fall short to determine vulnerabilities accurately [42]. We have noticed two
issues with this approach, (1) a significant number of false-positive vulnerabil-
ities and (2) discovered vulnerabilities are generic and do not represent issues
specifically applicable to wallet apps. To complement static analysis tools, we
also conduct a dynamic analysis to better understand the apps’ workflow, and
explore a broader set of vulnerabilities, including plaintext key storage, and ex-
ported components. In the final step, we inspect the decompiled apps’ code to
verify our findings and understand the app’s operational mechanism in a greater
detail. The main observation that follows from our analysis is that critical secu-
rity standards applicable for wallet apps are missing in the app’s binary, which
indicates those standards are not implemented or have not been considered in
the apps’ development process. Additionally, the apps’ key revealing information
is handled insecurely (e.g., saved as plaintext or encrypted using poorly chosen
encryption configuration). Our framework can accurately identify critical issues
in wallet apps, and our automated analysis results are consistent with the manual
inspection results.

Several design components of our semi-automated framework take into con-
sideration the implicit and varying nature of the wallet apps. Firstly, a wallet-
import step varies significantly from one app to another due to the heterogenous
user interface, and the effort requires to make it a generalized automated step is
non-trivial. To overcome this problem, we develop a semi-automated framework

2 https://github.com/AndroBugs/AndroBugs Framework
3 https://github.com/linkedin/qark/

Horus 3

with a reduced-effort manual step (see Section 4.2). Secondly, most apps are still
non-HD wallets and do not support wallet portability features. We developed
a separate workflow to analyze non-HD wallet apps (see Section 4.2). Lastly,
some wallet apps are heavily obfuscated which hinders our reverse engineering
phase. To circumvent this problem, we focus on artifacts analysis instead of the
obfuscated code. This technique also enables us to be compatible with mobile
apps developed using hybrid and cross-platform frameworks (e.g., PhoneGap,
Flutter) along with native apps developed for Android and iOS. For the purpose
of this work, we keep our focus limited to analyzing Android apps.

Contributions. Our contribution can be summarized as follows:

1. We develop a semi-automated framework, Horus, to statically analyze wallet
apps (fully automated), and perform dynamic analysis (with limited manual
interactions).

2. We conduct automated analysis of 310 crypto wallet apps on the Android
platform. Additionally, we inspect the top 17 most popular crypto wallet
apps, with combined downloads of 46M+ and in total 84M+ of 310 apps, in
Google Play Store to understand the apps’ security practices and evaluate
the security risk associated with them.

3. We reveal that 111/310 of the apps store key revealing information in plain-
text and 18 HD wallet apps store the encryption key without additional
protections, i.e., without Android Keystore or Android Hardware Security
Module (HSM). Moreover, 11/310 apps store transaction information that
can lead to deanonymization. Only 3/310 apps use HSM the best in class
secure storage solution to protect key revealing information.

4. We find that the Android user dictionary can be leveraged to derive the
mnemonic phrase used to generate the private key. Only 20/310 apps imple-
ment custom keyboard to safeguard against this attack.

2 Background and Threat Model

In this section, we provide brief descriptions of some wallet-related terminologies
and our threat model.

Crypto wallet apps generally generate new addresses, store private keys se-
curely, and help automate transactions. Some wallets can handle only one type
of cryptocurrency (e.g., Bitcoin), and others can handle multiple types of cryp-
tocurrencies. Furthermore, there are two types of wallets: Hierarchical Determin-
istic (HD) wallet [49], and non-HD wallet. HD wallets organize user accounts
from one or more seed values and utilize open-source community-driven pro-
tocols to perform each operation, such as generating seed and creating private
keys. On the other hand, a non-HD wallet randomly generates keys (i.e., no
connection or hierarchy between the keys); such unrelated keys are also known
as JBOK (Just-a-Bunch-of-Keys).

Bitcoin Improvement Proposals (BIPs). Several open-source community-
driven protocols known as BIP [12] facilitate various crypto wallet functions.
Each proposal is responsible for a specific goal, and the Bitcoin community can

4 Uddin et al.

propose, rectify, establish, approve or reject proposals by consensus. As of March
13, 2021, there are 140 BIPs [12], but 3 BIPs are primarily relevant for HD-wallet
apps. (1) BIP 32 which defines a tree structure to populate public-private key
pairs from a seed. The seed allows the wallet to be interchangeable with different
implementations/devices, and implies the wallet does not need to be backed up
often; just saving the seed is enough to recreate the tree structure of keys [49].
(2) BIP 39 which defines both generating a mnemonic phrase and how to create
a seed from the phrase, as compared to a hexadecimal random seed, a phrase is
easier to remember and store for users. This proposal also defines a list of 2048
common English words to be selected for mnemonic phrases. The chosen words
for a mnemonic phrase and their order are needed to regenerate the same seed
afterward. The word list is also available in multiple languages [39]. (3) BIP
44 which defines a syntax to enable a multi-account hierarchy of keys based
on BIP 32. The syntax expresses purpose, coin type, account, address index to
generate proper keys [38]. The proposal defines how to generate any number of
cryptocurrency-specific child keys.

HD Wallet Generation. A mnemonic phrase is generated using the standard-
ized process defined in BIP 39. The most common phrase length is 12 and 24
words. In Android wallets, the 12-word length phrase is prevalent. First, a ran-
dom sequence of 12/24 words is selected, providing 128-256 bits of entropy [9].
Then, the PBKDF2 (Password-Based Key Derivation Function 2) key derivation
function is used to derive a 512-bit seed from the word sequence. This seed can
be used to deterministically generate an HD wallet [49]. An HD wallet root con-
sists of a pair of a master private key and a master chain code. Next, a master
public key is generated from the master private key. Both the master private
key and the master chain code are used to generate child keys using BIP 44 [38].
Note that there is no way to verify the words and their order in a phrase. If
the user adds/removes/scrambles the phrase’s words, a new seed is generated,
leading to some other wallet keys. The phrase, seed, master private/public keys,
and master chain code are all key revealing information and should be protected
with equal importance.

Threat Model. We assume the attacker can install a malicious app on the
victim’s device with the following capabilities (or a subset of those). The app
can have virtual keyboard permission, or it is a keyboard app itself, which is
set default by the user. The malicious app can take a screenshot of the device.
We assume the device is not rooted by the user; however, a malicious app can
successfully root the device. Attackers can have physical access to the unlocked
device for a few minutes. Note that all these capabilities are not required for all
our attacks.

3 Dataset Collection

Google Play Store search displays only the popular apps based on its search
algorithm, but does not provide a comprehensive list of all the apps matched with
a search term [41, 10]. Conversely, a web search engine provides an exhaustive

Horus 5

list of apps matched with the provided search term. We develop a specialized
search engine scraper module based on a generic scraper tool, Search Engine
Scraper,4 for collecting a large set of apps. Our scraper module can search, parse
results, remove duplicate app IDs, and download the APK (Android Application
Package) files from Google Play Store automatically. We have used search term
site :play.google.com ‘‘bitcoin ’’ ‘‘ wallet ’’ .

We use the search engine bing.com due to API restrictions in google.com
(up to 100 pages, but multiple test runs from the same IP address may result
in the IP being blocked before this limit is reached). We use a user agent value
to appear as a desktop browser to the search engine, and introduce a random
delay before scraping each new search result page to emulate normal usage and
avoid any API restrictions.

We scraped 24,800 search results and found a total of 636 APK links, with
442 unique app IDs. We use PlaystoreDownloader5 to download the latest ver-
sion of the app from the play store. We encountered some exceptions during
app download, including: some apps are unavailable in our location (Canada),
some apps are available only via the early access program, and some apps are
incompatible with our device. Eventually, we downloaded 392 apps and found
82 apps were not wallet apps although the term “wallet” appears in their de-
scription; such apps include Bitcoin key generator, currency exchange service,
etc. We filtered out non-wallet apps and obtained a collection of 310 wallet apps.
We shortlisted all the apps with at least 1M+ downloads in Google Play Store
(total 17 apps, accessed: 2021-02-03) for further manual inspection due to their
high user base, see Table 1.

Fig. 1. Overview of proposed framework

4 https://github.com/tasos-py/Search-Engines-Scraper
5 https://github.com/ClaudiuGeorgiu/PlaystoreDownloader

6 Uddin et al.

Application ID Version Downloads HD? Supported Coins

asia.coins.mobile 3.5.22 5M+ 7 BTC, XRP, ETH, BCH

co.bitx.android.wallet 7.6.0 5M+ 7 BTC, ETH, XRP, USDC

co.mona.android 3.84.0 1M+ D 80+ coins

com.binance.dev 1.36.3 5M+ 7 200+ coins

com.bitcoin.mwallet 6.9.10 1M+ D BTC, BCH

com.breadwallet 4.7.0 1M+ D BTC, XBT, BCH, ETH

com.coinomi.wallet 1.20.0 1M+ D 125+ coins

com.mycelium.wallet 3.8.6.1 1M+ D BTC, ETH, ERC-20

com.paxful.wallet 1.7.1.534 1M+ 7 BTC, USDT

com.polehin.android 3.4.9 1M+ 7 100+ coins

com.unocoin.unocoinwallet 3.4.7 1M+ 7 BTC, ETH, XRP, LTC

com.wallet.crypto.trustapp 1.26.5 5M+ D 50+ coins

com.xapo 5.3 1M+ 7 BTC

de.schildbach.wallet 8.08 5M+ 7 BTC

org.toshi 23.3.357 1M+ D 100+ coins

piuk.blockchain.android 8.4.7 10M+ D BTC, ETH, BCH, XLM

zebpay.Application 3.12.02 1M+ 7 BTC, ETH, XRP, EOS

Table 1. Top 17 most downloaded wallet apps in Google Play Store (accessed: 2021-

02-03). 7 indicates non-HD wallet app and D indicates HD wallet app.

4 Horus: Our Analysis Framework

The purpose of developing Horus is to automate the analysis process of wallet
apps and discover issues in the apps’ implementation. The idea and rationale
behind building this framework and design decisions for different wallets are
explained in this section. An overview of our evaluation methodology is presented
in Fig. 1. There are two modules for app analysis in Horus: static analysis module
and dynamic analysis module.

4.1 Static Analysis Module

The static analysis module of Horus looks for API patterns to determine if a par-
ticular functionality or security feature is implemented in the app. For instance,
a wallet app must implement a custom keyboard; otherwise, it is vulnerable to
user dictionary attacks; see Section 5. We verify if the APIs required to imple-
ment a custom keyboard in Android are called in the app. If the API calls are
found, the functionality is assumed to be implemented in the app.

To determine the API calls in an app, Horus takes an apk file as input and
constructs a call graph of the app using Androguard.6 A call graph contains
the class name, method name, descriptors, and access flags. Each node in the
call graph is a method, and the actual calls with arguments are denoted using

6 https://github.com/androguard/androguard

Horus 7

edges. For root detection, the app checks the execution of su command [29], or the
existence of a list of root enabler apps [19] on the device. The call, Runtime.exec()
is used to check the existence of su binary and PackageManager.getPackageInfo()
is used to check the existence of a root enabler app. The API calls in the app’s
call graph indicate the app is checking whether the device is rooted. Table 2
depicts the API signatures we use to determine the existence of the security
standard in an app. Below, we discuss several security standards that we verify
using our static module.

Type API Signature Usage

Root
Detection

Runtime.exec() Execute runtime command, e.g. su
PackageManager.getPackageInfo() Get installed app’s information
Os.stat() System call for runtime command execution
Os.access() System call to query installed app

Integrity
Check

PackageManager.getPackageInfo() Get installed app’s information
Context.getPackageCodePath() App installer file path
ZipFile.init() Execute operation on installer file
RandomAccessFile.init() Read, write in system file

Custom
Keyboard

KeyboardView.setKeyboard() Replaces default keyboard app
OnKeyboardActionListener.onKey() Listeners for input key
InputMethodService.onCreateInputView() Callback when the keyboard view is created
InputConnection.commitText() Commit the user input to app
InputMethod Handles keyboard type depending on input field

Biometric
Authentication

BiometricManager Provides biometric utilities
BiometricPrompt Handles biometric authentication
FingerprintManager Defines types of authentication (Deprecated)
BiometricService Updates system server for fingerprint
FingerprintService Updates system server for fingerprint (Deprecated)

Screenshots
Disabled

Windows.setFlags() Uses for full screen access
View.setDrawingCacheEnabled() Access to the current view displayed

Hardware
Security
Module

KeyStore.getInstance() Returns a keystore object of specified type
KeyGenParameterSpec.Builder.isStrongBoxBacked() Requesting Android to use hardware module
StrongBoxUnavailableException Exception if the hardware module is absence

Random Generator SecureRandom Cryptographically strong random number generator

Table 2. API signatures to check for feature existence.; the Type column denotes
the security standard type, the API Signature column points to the API calls and
individual class names required to implement the security standard, and the Usage
column indicates the use case of each API call.

Secure random: A secure random number generator is crucial for crypto wallet
apps. According to BIP 39 [39], to create a mnemonic phrase, the client must
use an entropy of length 128-256 bits. A seed is generated from the mnemonic
phrase and used to create the master private/public keys. If the random number
generator is predictable, it affects the key generation objective. In Android,
/dev/urandom [47] is used to generate seed for SecureRandom [7], which is the
recommended API to generate a cryptographically strong random number.

Custom keyboard: Once a wallet app generates a mnemonic phrase, it asks the
user to enter the mnemonic phrase for verification. To import an existing wallet
into a new app, the user also needs to enter the mnemonic phrase via keyboard.
If the user uses a third-party keyboard app, it can capture all user inputs [5],
including the mnemonic phrase. Additionally, the app is vulnerable to user dic-
tionary attack. A wallet app should have a custom keyboard triggered while

8 Uddin et al.

taking any key revealing input and possibly randomize the keyboard’s key loca-
tion [32].
Disabling screenshot-taking: This is another critical risk avoidance feature for
wallet apps. Any malicious app with the capability of taking a screenshot can
capture the screen content during the wallet import phase. Also, a user may
take a screenshot of the mnemonic phrase to save it as a backup. This image is
saved in the gallery, and any app with reading storage permission can access the
file. Crypto wallet apps must call Android API to disable the screenshot-taking
feature for sensitive screens.
Two Factor Authentication (2FA): 2FA or biometric authentication should be
implemented before performing any sensitive operation. We observe a significant
number of wallet apps do not require user registration. An unauthorized user
can perform a transaction with a few minutes of physical access to the device,
assuming it is unlocked. Some apps require the user to set a PIN code and ask
for the PIN code when confirming a transaction. However, a PIN code can be as
short as a 4-digits number which can be brute-forced or seen by shoulder surfing.
A 2FA should be incorporated in each wallet app as second-layer protection.
Integrity check: App’s signature verification to check integrity ensure that the
app has not been tampered with and installed from a legit source (e.g., Google
Play Store). Integrity can also be ensured by calculating a hash of the installed
APK file and comparing it with the hash of authenticated APK file. The solution
is not foolproof and can be bypassed in a repackaged app. However, integrity
checking is a widely adopted practice in financial apps and is considered a self-
defense mechanism. The wallet app must perform integrity checks as another
layer of security before starting to operate.
Root detection: An app can be made more secure by implementing 2FA or strong
encryption; however, no security on the app end works if the device itself is
compromised. Malware apps can have root providers included in the binary and
may gain root privilege without the user’s consent [50]. This privilege can be
exploited in many ways, from monitoring activities of other apps to sending key
revealing information to a malicious back-end.
Hardware security module: Recent Android smartphones have a separate proces-
sor, which provides additional security to keep key revealing information safe,
called hardware security module [4]. The key revealing information is stored in
a secure enclave that is also protected in a rooted device and safe against brute
force attack by utilizing rate limiting. The solution is not foolproof; there is
still room for information disclosure if the device contains a malicious keyboard
app or a clipboard listener. Nevertheless, the hardware security module provides
substantial improvements over any other storage solutions and should be used
by wallet apps to secure key revealing information.

Manual inspection. For in-depth inspection of the top 17 wallet apps, we use
three state-of-the-art analysis tools, AndroBugs, Qark, and MobSF.7 The tools
look for generic vulnerabilities by following a defined set of rules and patterns and
do not require the app to run. All these tools start with decompiling the app code

7 https://github.com/MobSF/Mobile-Security-Framework-MobSF

Horus 9

and looking for several vulnerabilities, including: runtime command execution,
SSL certificate verification, and webview vulnerabilities. The tools mark the
found vulnerabilities with different severity labels (e.g., Critical, Warning, Info).
We consider only the critical vulnerabilities.

We use reverse engineering to discover vulnerabilities in the app code by de-
compiling the APK file. Reverse engineering reveals permissions usage in the app
for malicious purposes, logic bombs, Trojan code, etc. Sometimes the app code
is obfuscated, by renaming code components, such as folders, classes, variables,
into a shorter, unintelligible name [8]. It is difficult to get out any meaningful
information from the obfuscated code; we skip the app in such cases. We use
APKTool8 and JD-GUI9 for our reverse engineering step. Apktool can decode
resources from the Android APK file, and JD-GUI is a Java decompiler and code
browser.

4.2 Dynamic Analysis Module

In the dynamic analysis module, we look for key revealing information in apps’
internal file structures. If the device is rooted or the target app allows backup,
malicious apps or actors can capture the target app’s internal files. If the internal
files contain key revealing information (e.g., plaintext private key), a malicious
actor can easily access such information. In general, the master private key is the
most critical information that needs to be protected by wallet apps. Other such
critical items include the mnemonic phrase, seed, and master chain code—all of
which should be protected with equal importance as of the master private key.
Note that a mnemonic phrase is used to generate a seed value, which is used to
generate its corresponding private key. Similarly, the master public key and any
of the child’s private key is enough to recreate the master private key [24]. So
it is imperative to secure all of the key revealing items along with the master
private key. Our goal is to seek answers to the following questions: Are wallet
apps storing the above-mentioned key revealing information in plaintext on the
device? If encrypted, which encryption algorithm is used? Can we identify the
encryption key used to perform the encryption, and if yes, where is the encryption
key stored?

HD Wallet Workflow. A HD wallet can recreate the hierarchical tree of keys
from a mnemonic phrase. In our HD wallet workflow, we maintain four lists as
follows. (1) Key revealing information: A list of secret information that can be
used to regenerate the master private key. In addition to the master private key
itself, this list includes mnemonic phrase, seed, seed hex value, BIP 32 private
key, and master chain code. (2) Candidate encryption key : Key revealing infor-
mation should be encrypted before storing on the device. Candidate encryption
key is a list of all possible encryption keys that wallet apps can use to encrypt
key revealing information. We find traces that encryption keys are stored in the
app’s internal files. Using Horus, we can verify how widespread the practice is to

8 https://ibotpeaches.github.io/Apktool/
9 https://github.com/skylot/jadx

10 Uddin et al.

store encryption keys locally. (3) Cipher key revealing information: Each item
of the key revealing information list is encrypted and the resulting ciphertext is
encoded using Base64 and then appended to this list. (4) Search term: A com-
bined list of key revealing information and cipher key revealing information. We
use this list of items as a search term and look for each item of this list in the
wallet’s artifact.

To start the dynamic analysis, we install the target app on a rooted device.
We generate a mnemonic phrase and import the same phrase in all HD wallet
apps. We use a fixed email, username, PIN, password, and phone number in
all the apps for account creation, and verification as needed by the app. We
append this fixed information in the candidate encryption key list as potential
encryption keys.

From a mnemonic phrase, Horus gets key revealing information list, and by
parsing internal files, Horus get candidate encryption key list. Horus iterates
through the key revealing information list and applies encryption algorithms
available in the Android platform to encrypt each of the items in key revealing
information by using items from candidate encryption key list as the encryption
key. One such operation is as follows, we take the first element of key revealing
information, encrypt it with AES using the first element of candidate encryption
key, and add the resulting ciphertext in search term. We then repeat the same
operation with the next element of candidate encryption key, and so on. When
done, we use a different encryption algorithm (e.g., Blowfish) and go through the
same list of candidate encryption key and repeat the process. All the key revealing
information is also appended as-is to search term list because the key revealing
information can also be found in internal files without any encryption. Horus
reads all the app’s internal files to find traces of the elements in search term. If
any of the search term element is found, then the wallet app is exploitable if the
internal files are exposed.

Horus generates a mnemonic phrase used for all HD wallet apps throughout
the analysis. Horus starts a tcpdump10 session to capture all network requests
and clear the logcat buffer for capturing a new session. At this stage, we import
the mnemonic phrase in the app. Then, Horus takes the app ID as input and
pulls all internal files, tcpdump generated network dump files, from the connected
emulator/device, and reads the files sequentially.

Horus identifies common file extensions (e.g., xml, db, pcap) and uses an
appropriate parser to extract the file content. In case of an XML file, Horus
parses the XML file and reads the content and appends all the string values
in candidate encryption key. For the SQLite database file, we develop a parser
that lists all the tables in the database and reads all the values in the tables
and appends them in the same list. We get a pcap file from tcpdump containing
network request logs, and we use a Python library Scapy11 to parse the pcap
file and extract the content. Horus can also parse log files and take fixed email,
username, PIN, and password used as input. All the parsed content and input

10 https://www.tcpdump.org/
11 https://scapy.net/

Horus 11

are considered potential encryption keys and listed in candidate encryption key
list.

Horus reads all the internal artifacts again and runs a fuzzy search, using
fuzzywuzzy,12 for the items listed in search term. We record the search result
whether search term items are found and whether in plaintext or encrypted form.
Note that all candidate encryption key items cannot be used directly as encryp-
tion keys. AES requires blocks of 16 bytes key, whereas a PIN is a four-digit
number. Thus, a PIN cannot be used as a key. We use four common hash-
ing algorithms (MD5, SHA1, SHA256, and SHA512) to generate a digest for
each candidate encryption key and use the digest instead as an encryption key.
Throughout our reverse engineering step, we observed that the hashing tech-
nique to convert a non-suitable key into a proper encryption key is followed in
many wallet apps.

Non-HD Wallet Workflow. A non-HD wallet generates a list of public-private
key pairs, and there is no relationship among the keys. Non-HD wallets manage
many keys; each public-private key pairs are used for only one transaction. The
downside of this approach is that the user needs to take backup regularly, ideally
after each transaction. This approach is not convenient and error-prone. Addi-
tionally, there is a risk of key-exposure if the backup is not handled with caution.
In Horus, non-HD wallet workflow is different from HD wallet workflow because,
in an HD wallet, keys can be generated predictably with a known mnemonic
phrase, but there is no relation among the generated keys in non-HD wallet. So,
we look for key patterns in the internal files in the non-HD wallet workflow. For
instance, Bitcoin public addresses start with the character 1 or 3 [44], are 34
characters long, and formatted as Base58; Ethereum public addresses start with
0x and are 42 characters long. We consider different key formats as well. For
example, Bitcoin private keys can be in standard 256-bit hex format (64 bytes
long), or WIF format [33] (51 bytes long) and start with 5. The pre-requisite
steps of performing dynamic analysis on HD wallets are applicable for non-HD
wallets except importing the wallet. Instead of importing the wallet, the keys are
generated using the app itself. Different apps of course generate different keys;
however, the key format is identical. We incorporate a pattern matching regex
to look for Bitcoin public/private addresses and their various derivatives [21] in
the app’s internal files.

Transactions Workflow. For both HD and non-HD wallets, we make a small
transaction [13] of a fixed amount to a pre-defined address. Horus looks for the
pre-defined receiver’s address and the fixed amount value in the wallet app’s
internal files. After a transaction is completed, the transaction history should
not be saved in the device. If the receiver’s address and the transaction value are
present in the app’s internal files, it stores past transactions and can be abused
for deanonymization if the app’s internal files are exposed.

To emulate wallet transactions, we use Bitcoin testnet [45]. Since not all wal-
let apps support testnet transactions, we make transactions only testnet com-

12 https://github.com/seatgeek/fuzzywuzzy

12 Uddin et al.

patible wallet apps. To collect testnet coins, we use coinfaucet13 and mempool,14

two freely available services to distribute testnet coins.

Manual Inspection. For in-depth analysis of the top 17 wallet apps, we monitor
the apps’ workflow and response based on the app’s interaction. Our goal is
to understand the app’s workflow and its process to generate and store key
revealing information. We observe changes in the app’s internal files (e.g., Shared
Preferences, Databases, File IO) based on the activity we perform using the app.

An Android app consists of 4 components: Activity, Service, Broadcast Re-
ceiver, and Content Provider. Android enforces a sandbox mechanism to protect
the components, where no app gains access to other app’s components by de-
fault. However, an app can export its components and let other apps access the
components. If a component, such as a service, is exported and not protected
with permissions, then any app can start and bind to the service. Any app on the
device can invoke all the exported components in the target app. We manually
verify if it is possible to send crafted intent from any other app to activate the
exported components in the target app and make it perform the malicious task.

We use two state-of-the-art tools, Drozer15 and Frida.16 We use Drozer to
list all exported components, universally accessible URIs using which any other
app can ask for key revealing information from the target app and SQL Injection
attack surface in the app. We use Frida to monitor critical operations in the app,
e.g., database operations, file IO, and method trace to find out passing arguments
and the return value of a method. We also use Frida to trace app logs, bypass SSL
pinning, and bypass root detection. We use an additional wrapper tool, House17

over Frida for ease of use. Both Drozer and Frida are used for monitoring and
intercepting app workflow.

5 Experimental Results

We use the LDPlayer18 emulator, running Android 7.1.2 for all automated anal-
ysis, and Alcatel 5041C, running Android 8.1.0 for manual experiments. We use
LDPlayer for its faster execution. The two different Android versions we use
to cover a large part of contemporary Android phone users. Dynamic analysis
requires a rooted device and we root the device using Magisk.19 We analyze 310
wallet apps using Horus and manually inspect the top 17 most popular apps. In
this section, we present some of our main findings and corresponding security
risks.
Storing key revealing information: Our dynamic analysis identifies 239 apps
(77%) as non-HD wallets, 71 apps (23%) as HD wallets. In total, 111 apps (87

13 https://coinfaucet.eu/en/btc-testnet/
14 https://testnet-faucet.mempool.co/
15 https://github.com/fsecurelabs/drozer/
16 https://frida.re/
17 https://github.com/nccgroup/house
18 https://www.ldplayer.net/
19 https://github.com/topjohnwu/Magisk

Horus 13

non-HD wallets and 24 HD wallets) store key revealing information in plaintext.
In 47/71 HD wallet apps use encryption to store key revealing information; how-
ever, 18 of those apps store the encryption key without additional protections. In
most cases, where we found an encryption key, the key is located in the Shared-
Preference file. In other cases, the key is located in a readable internal file, or it
is a user-provided PIN (e.g., 4-6 digits). Among the top 17 apps, 3 apps store key
revealing information in plaintext, and 4 apps store key revealing information
encrypted with a known encryption key from our list of candidate encryption
key. The best-in-class storage solution in Android is HSM, but only 3/310 apps
are using HSM. If HSM is not available, then Android Keystore should be used,
which provides the best available solution provided the Android OS itself is not
compromised. The user-provided PIN should not be used as the encryption key
because it is brute-forceable. 11 of 310 apps store transaction information on the
device, leading to deanonymization if the internal files are exposed.

User dictionary: On all Android devices, the keyboard app uses a user dictionary
(database of words, locale, and frequency count) for predictive text inputs. In
wallet apps, the mnemonic phrase contains common English words, and most
wallet apps take mnemonic phrase input from the user using the default key-
board. The information regarding the words in mnemonic phrase is saved in
user dictionary [18]. This dictionary can be abused to predict the mnemonic
phrase [28] by extracting frequency information of typed words. Note that the
attacker app requires virtual keyboard permission to access the dictionary, and
in general, input editor and spellchecker apps ask for this permission. Multiple
apps can have virtual keyboard permission on a device. Only 20 apps out of 310
apps (6%) implement custom keyboards to defend against this attack.

Allow backup: This is an attribute declared in the AndroidManifest.xml file,
and it is true by default. It denotes the app data is backed up upon the app’s
uninstallation and is restored upon re-install [2]. When enabled, the app data
can be backed up using the ADB (Android Debug Bridge) command. It enables
an attacker to extract an app’s internal files in a non-rooted device within few
minutes of physical access. Open-source tools such as Android-Backup-Toolkit20

can be used to extract the backup and gain access to internal files.

Dangerous permissions: In the Android ecosystem, some permissions are con-
sidered dangerous [3] and require the user’s explicit consent before being au-
thorized. Most wallet apps require some common permissions for their function-
ality (e.g., WRITE EXTERNAL STORAGE, READ EXTERNAL STORAGE,
GET ACCOUNTS, CAMERA). However, some apps ask for certain privacy-
sensitive permissions, such as contact list and record audio, which appear to be
non-essential for the app; see Table 3 for such permissions. Each permission has a
constant value associated with it, such as android.permission.RECORD AUDIO
for audio recording, which is used to check, request and verify permission from
the Android SDK. The constant values of the permissions are stored as a static
variable in Manifest.permission class [3]. The presence of the static variable or

20 https://sourceforge.net/projects/android-backup-toolkit/

14 Uddin et al.

the associated constant value of a particular permission in the app’s codebase
conforms the usage of the permission.

Application ID

R
ea

d
C

o
n

ta
c
ts

A
cc

e
ss

C
o
a
rs

e
L

o
ca

ti
o
n

A
cc

e
ss

F
in

e
L

o
ca

ti
o
n

R
ea

d
P

ro
fi

le

R
ea

d
P

h
o
n

e
S

ta
te

G
e
t

T
a
sk

s

R
eq

u
e
st

In
st

a
ll

P
a
c
k
a
g
e
s

R
ec

o
rd

A
u

d
io

asia.coins.mobile 7 7 7

co.bitx.android.wallet 7 7 7

co.mona.android 7 7

com.binance.dev 7 7

com.bitcoin.mwallet 7 7 7

com.breadwallet 7 7

com.coinomi.wallet

com.paxful.wallet 7 7

com.polehin.android

com.unocoin.unocoinwallet 7 7 7

com.wallet.crypto.trustapp 7

com.xapo 7 7 7 7 7 7

de.schildbach.wallet

com.mycelium.wallet 7

org.toshi

piuk.blockchain.android 7

zebpay.Application 7

Total 47 75 81 8 84 36 28 40

Table 3. Unnecessary dangerous permissions usage. Last row provides the total num-
ber for all 310 apps. 7 indicates the app declares the permission requirement in the
AndroidManifest file; Read Profile allows an app to read the user’s personal profile
data; Read Phone State allows the app to access the device’s phone features; Get Tasks
allows the app to retrieve information about currently and recently running tasks; and
Request Install Packages allows app to install additional packages on the device.

Root exploitation: In the Android ecosystem, root exploitation is well-known [46].
There are legitimate Android apps available in the Google Play Store that facil-
itate rooting of phones, referred to as root providers or one-click root apps. In
2016, 85 million devices downloaded such root provider apps, and the devices are
soft-rootable [22]. In wallet apps, we find 70 apps out of 310 are checking if the
device is rooted before starting its operation; see Table 4. However, none of the
apps terminates upon root detection; instead, the app displays a non-blocking
alert and lets the user continue using the app.
Strandhogg attack: This attack [17] is applicable when a malicious app that
targets a wallet app opens up before the wallet app. When the user taps on the
wallet app, the malicious app opens up instead. The malicious app can mimic

Horus 15

Application ID

R
o
o
t

D
e
te

c
ti

o
n

In
te

g
ri

ty
V

e
ri

fy

S
c
re

e
n

sh
o
t

D
is

a
b
le

d

B
io

-m
e
tr

ic

C
u

st
o
m

K
e
y
bo

a
rd

S
ec

u
re

R
a
n

d
o
m

H
a
rd

w
a
re

S
ec

u
ri

ty
M

o
d
u

le

asia.coins.mobile D D D
co.bitx.android.wallet D D D
co.mona.android D D
com.binance.dev D D D D
com.bitcoin.mwallet D D D D D
com.breadwallet D D D
com.coinomi.wallet D D D D
com.mycelium.wallet D D D
com.paxful.wallet D D
com.polehin.android D D D
com.unocoin.unocoinwallet D D
com.wallet.crypto.trustapp D D D D
com.xapo D D D D D
de.schildbach.wallet D
org.toshi D D
piuk.blockchain.android D D D D
zebpay.Applicaiton D D
Total 70 33 44 46 20 292 10

Table 4. Static module analysis summary. Here, D indicates the existence of security
standard implementation in the app and a blank cell indicates the absence of it. Last
row provides the total number for all 310 apps.

the wallet app’s UI and ask for its PIN, mnemonic phrase, etc. No permission
is required for the malicious app, and Android versions 8.0-9.0 are vulnerable to
this attack.
Exported Components: Depending on the responsibilities of a component, it
may leak information or perform unauthorized tasks. For example, if a con-
tent provider is exported, it can reveal sensitive database information to any
other app on the device. We find each one of the top wallet apps exports from 3
to 25 components, expanding the attack surface on wallet apps.

6 Discussions

In this section, we discuss Horus’s current capabilities and limitations. Horus’s
static module is based on the app call graph, enabling the framework to survive
the code obfuscation. Android obfuscation techniques work on the app code and

16 Uddin et al.

not on the SDK APIs. We note that Android API calls remain unobfuscated
in the call graph. Our dynamic module is based on the app’s artifacts and net-
work trace. The dynamic module does not have any dependency on the app
platform and source code. The artifacts analysis technique is equally effective
in apps developed using hybrid and cross-platform technologies. Overall, Horus
can quickly assess the security standards followed by a crypto wallet app using
the static module, and provide a deeper understanding of the app’s sensitive
data handling process using the dynamic module. However, static analysis tools
suffer from obvious limitations. They can only determine whether specific APIs
or syntax patterns are present in the source code but cannot indicate whether
the implementation is error-free. Depending on the syntax pattern, Horus may
indicate that an app has implemented a security feature, but in reality, the
implementation may be flawed and may still contain serious bugs.

To make Horus fully automated, we evaluate tools like Monkey21 and Droid-
bot22 to perform signup, import wallet, and complete a transaction. However, in
our evaluation, we find that the pseudo-random events that Monkey generates
cannot accomplish a set of pre-defined tasks. It is possible to accomplish specific
tasks using Droidbot, but it is not well-suited for a generalized workflow. We
have to write a customized script for each app. Considering apps’ versatility,
writing a script for each app beats the purpose of an automated framework, and
we settled for a semi-automated solution.

We identify some wallet apps that encrypt key revealing information, use salt
with the encryption key. We find hard-coded salt value in the source code and
also salt value printed in logs. In Horus we are not automating when salt is used
in the encryption key.

Starting with Android 7.0 (API level 24), system-wide private certificates are
not accepted in Android. Optionally, an app can explicitly choose to rely on a
private certificate [14]. Also, as of Android 9.0 (API level 28), plaintext traffic
is not allowed and cannot be configured as well [6]. To overcome this, we use
mitmproxy23 to monitor network traffic and place the mitmproxy certificate in
the system certificate folder. Also, we use tcpdump to capture network requests
in a pcap file to look for key revealing information in network communication.

7 Related Work

Several wallet app analyses have been carried out in recent years, which expose
vulnerabilities and propose new defenses. Volety et al. [48] perform offline brute
force dictionary attacks on the mnemonic phrase to gain access to two wallet
apps. Guri et al. [23] infect a cold wallet with malicious code during the in-
stallation phase and get hold of the private keys. Further, Koerhuis et al. [30]
conduct forensic analysis on two popular cryptocurrencies, Monero and Verge,

21 https://developer.android.com/studio/test/monkey
22 https://github.com/honeynet/droidbot
23 https://mitmproxy.org/

Horus 17

in the desktop environment. They analyze the host machine’s volatile mem-
ory, network traffic, hard disks and find critical artifacts like seed and plaintext
passphrase. A similar study is carried out on Bitcoin by Zollner et al. [51].

Several studies also look into the security of Android wallet apps. He et
al. [26] demonstrate two attack scenarios by capturing sensitive information from
device display using accessibility permissions and obtaining user input via USB
debugging. This analysis is conducted on only two wallet apps (not among the
top 50 wallets in the Google Play Store). Hu et al. [27] devise 3 proof-of-concept
attacks targeting deanonymization, spamming, and violating P2P (peer-to-peer)
protocol requirements of Bitcoin. Capturing clipboard values [31] also presents a
significant risk to crypto wallet apps, e.g., when importing non-HD wallet keys
from another app/device, or when copying mnemonic phrases. Haigh et al. [25]
analyze the forensic artifacts of seven wallet apps, and develop a Trojan POC
by repackaging a wallet app that can steal the users’ passwords. Gangwal et
al. [1] use machine learning to identify a wallet app by tracing a user’s network
activity.

UI deception attacks that include clickjacking, phishing, and activity hijack-
ing [20] in Android, are generally applicable for any wallet app. Bergandano et
al. [11] develop a hybrid analysis tool by following OWASP guidelines that ana-
lyzes vulnerabilities in varying categories of apps (e.g., wallet, food, social). The
work lacks manual inspection; thus, the tool’s conclusion is unverifiable and fo-
cuses on generic vulnerabilities instead of taking into account any specific nature
of the apps.

Contrary to prior studies, we explicitly focused on crypto wallet apps and
discovered several new attack surfaces specifically applicable to Android wallets.

8 Conclusion

With the massive growth of cryptocurrencies, the number of threat vectors
against crypto wallet apps is also increasing. This puts millions of users at risk
if security concerns are not adequately addressed in leading wallet apps. We
introduced Horus, a semi-automated framework to analyze and detect security
issues in crypto wallet apps. We analyzed 310 apps on the Android platform and
discover a unique set of vulnerabilities. Our analysis indicates that security stan-
dards are not followed when developing apps, and there are vulnerabilities in the
protection of key revealing information. Serious security gaps appear in popular
wallet apps, including asking for dangerous permissions without a proper need.
Based on our analysis, there is a lack of checks and balances in our understanding
of wallet apps’ security and their actual implementation. Users should be more
vigilant and proactive in evaluating apps before relying on them. Additionally,
developers should be better informed about the industry’s security standards
and strictly adhere to the best practices and recommendations.

18 Uddin et al.

References

1. Aiolli, F., Conti, M., Gangwal, A., Polato, M.: Mind your wallet’s privacy: iden-
tifying Bitcoin wallet apps and user’s actions through network traffic analysis. In:
34th ACM/SIGAPP Symposium on Applied Computing. pp. 1484–1491 (2019)

2. Android Developers: Auto backup data, https://developer.android.com/guide/
topics/data/autobackup

3. Android Developers: Dangerous permissions, https://developer.android.com/
reference/android/Manifest.permission

4. Android Developers: HSM, https://developer.android.com/training/articles/
keystore

5. Android Developers: Input, https://developer.android.com/guide/topics/text/
creating-input-method.html

6. Android Developers: Network security, https://developer.android.com/training/
articles/security-config

7. Android Developers: SecureRandom, https://developer.android.com/reference/
java/security/SecureRandom

8. Android Developers: Shrink, obfuscate, and optimize your app, https://
developer.android.com/studio/build/shrink-code#obfuscate

9. Antonopoulos, A.M.: Mastering Bitcoin. O’Reilly Media, Inc. (03 2021)

10. Bankhead, P.: Android developers blog: Improving discovery of apps and games on
the Play Store, https://android-developers.googleblog.com/2018/06/improving-
discovery-of-quality-apps-and.html

11. Bergadano, F., Boetti, M., Cogno, F., Costamagna, V., Leone, M., Evangelisti, M.:
A modular framework for mobile security analysis. Information Security Journal
29(5), 220–243 (2020)

12. Bitcoin: BIPS: Bitcoin Improvement Proposals, https://github.com/bitcoin/bips

13. Bitcoin: Transactions, https://www.bitcoin.com/get-started/how-bitcoin-
transactions-work

14. Brubaker, C.: Android developers blog: Changes to trusted certificate authorities
in Android Nougat, https://android-developers.googleblog.com/2016/07/changes-
to-trusted-certificate.html

15. Cimpanu, C.: Bitcoin wallet update trick has netted criminals more than
$22m — ZDNet, https://www.zdnet.com/article/bitcoin-wallet-trick-has-netted-
criminals-more-than-22-million/

16. Cimpanu, C.: Hacker group has stolen more than $200m, https:
//www.zdnet.com/article/cryptocore-hacker-group-has-stolen-more-than-200m-
from-cryptocurrency-exchanges/

17. NVD - CVE-2020-0096, https://nvd.nist.gov/vuln/detail/CVE-2020-0096

18. Diao, W., Liu, X., Zhou, Z., Zhang, K., Li, Z.: Mind-reading: Privacy attacks
exploiting cross-app keyevent injections. In: European Symposium on Research in
Computer Security. pp. 20–39. Springer (2015)

19. Druffel, A., Heid, K.: Davinci: Android app analysis beyond Frida via dynamic sys-
tem call instrumentation. In: International Conference on Applied Cryptography
and Network Security. pp. 473–489. Springer (2020)

20. Fernandes, E., Chen, Q.A., Paupore, J., Essl, G., Halderman, J.A., Mao, Z.M.,
Prakash, A.: Android UI deception revisited: Attacks and defenses. In: Inter-
national Conference on Financial Cryptography and Data Security. pp. 41–59.
Springer (2016)

Horus 19

21. ForensicFocus.com: Forensics and Bitcoin, https://www.forensicfocus.com/
articles/forensics-bitcoin/

22. Gasparis, I., Qian, Z., Song, C., Krishnamurthy, S.V.: Detecting Android root
exploits by learning from root providers. In: 26th USENIX Security Symposium
(USENIX Security 17). pp. 1129–1144 (2017)

23. Guri, M.: Beatcoin: Leaking private keys from air-gapped cryptocurrency wallets.
In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData). pp. 1308–
1316. IEEE (2018)

24. Gutoski, G., Stebila, D.: Hierarchical deterministic Bitcoin wallets that tolerate
key leakage. In: International Conference on Financial Cryptography and Data
Security. pp. 497–504. Springer (2015)

25. Haigh, T., Breitinger, F., Baggili, I.: If I had a million cryptos: Cryptowallet ap-
plication analysis and a trojan proof-of-concept. In: International Conference on
Digital Forensics and Cyber Crime. pp. 45–65. Springer (2018)

26. He, D., Li, S., Li, C., Zhu, S., Chan, S., Min, W., Guizani, N.: Security analysis
of cryptocurrency wallets in Android-based applications. IEEE Network 34(6),
114–119 (2020)

27. Hu, Y., Wang, S., Tu, G.H., Xiao, L., Xie, T., Lei, X., Li, C.Y.: Security threats
from Bitcoin wallet smartphone applications: Vulnerabilities, attacks, and coun-
termeasures. In: Eleventh ACM Conference on Data and Application Security and
Privacy (CODASPY ’21). pp. 89–100 (2021)

28. Kachakil, D.: Discovering and exploiting a vulnerability in Android’s per-
sonal dictionary, https://ioactive.com/discovering-and-exploiting-a-vulnerability-
in-androids-personal-dictionary/

29. Kim, T., Ha, H., Choi, S., Jung, J., Chun, B.G.: Breaking ad-hoc runtime in-
tegrity protection mechanisms in Android financial apps. In: 2017 ACM on Asia
Conference on Computer and Communications Security. pp. 179–192 (2017)

30. Koerhuis, W., Kechadi, T., Le-Khac, N.A.: Forensic analysis of privacy-oriented
cryptocurrencies. Forensic Science International: Digital Investigation 33, 200891
(2020)

31. Li, C., He, D., Li, S., Zhu, S., Chan, S., Cheng, Y.: Android-based cryptocurrency
wallets: Attacks and countermeasures. In: 2020 IEEE International Conference on
Blockchain (Blockchain). pp. 9–16. IEEE (2020)

32. Ling, Z., Borgeest, M., Sano, C., Fuller, J., Cuomo, A., Lin, S., Yu, W., Fu, X.,
Zhao, W.: Privacy enhancing keyboard: Design, implementation, and usability test-
ing. Wireless Communications and Mobile Computing 2017 (2017)

33. Maksim, B.: What is wallet import format (wif)?, https://allprivatekeys.com/
what-is-wif

34. Neal, W.: Cryptocurrency hackers steal $3.8B in 2020, https://www.occrp.org/en/
daily/13627-cryptocurrency-hackers-steal-3-8-billion-in-2020

35. Newburger, E.: Bitcoin surpasses $60,000 in record high as rally acceler-
ates, https://www.cnbc.com/2021/03/13/bitcoin-surpasses-60000-in-record-high-
as-rally-accelerates-.html

36. Online, FE: Market Cap $1.24T (Feb 2021), https://www.financialexpress.com/
market/bitcoin-rally-takes-market-cap-of-over-6000-cryptocurrencies-to-
whopping-new-high-of-1-24-trillion/2189730/

37. Osborne, C.: AT&T dragged to court, over SIM hijacking and cryptocurrency theft
— ZDNet, https://www.zdnet.com/article/at-t-dragged-to-court-again-over-sim-
hijacking-and-cryptocurrency-theft/

20 Uddin et al.

38. Palatinus, M., Rusnak, P.: Official specification of BIP-0044 (Mar 2019), https:
//github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

39. Palatinus, M., Rusnak, P., Voisine, A., Bowe, S.: Official specification of BIP-0039
(Feb 2021), https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

40. Powers, B.: This elusive malware has targeted crypto wallets for a year (Jan 2021),
https://www.coindesk.com/elusive-malware-electrorat-targets-crypto-wallets

41. Rahman, M.: Developers are facing huge drop in new installs after Play Store
algorithm changes, https://www.xda-developers.com/developers-huge-drop-new-
installs-play-store-algorithm-changes/

42. Ranganath, V.P., Mitra, J.: Are free Android app security analysis tools effective
in detecting known vulnerabilities? Empirical Software Engineering 25(1), 178–219
(2020)

43. Redman, J.: The $700m wallet crack, https://news.bitcoin.com/the-700-million-
wallet-crack-bitcoins-7th-largest-address-is-under-constant-attack/

44. Sedgwick, K.: Bitcoin address formats – Wallets Bitcoin News, https://
news.bitcoin.com/everything-you-should-know-about-bitcoin-address-formats/

45. Testnet - Bitcoin Wiki, https://en.bitcoin.it/wiki/Testnet
46. Unuchek, R.: Android: To root or not to root — Kaspersky official blog, https:

//www.kaspersky.com/blog/android-root-faq/17135/
47. /dev/random - Wikipedia, https://en.wikipedia.org/wiki//dev/random
48. Volety, T., Saini, S., McGhin, T., Liu, C.Z., Choo, K.K.R.: Cracking bitcoin wallets:

I want what you have in the wallets. Future Generation Computer Systems 91,
136–143 (2019)

49. Wuille, P.: Official specification of BIP-0032 (Aug 2020), https://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki

50. Zhang, H., She, D., Qian, Z.: Android root and its providers: A double-edged sword.
In: 22nd ACM SIGSAC Conference on Computer and Communications Security.
pp. 1093–1104 (2015)

51. Zollner, S., Choo, K.K.R., Le-Khac, N.A.: An automated live forensic and post-
mortem analysis tool for Bitcoin on Windows systems. IEEE Access 7, 158250–
158263 (2019)

