
IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 1

Security Weaknesses in IoT Management Platforms
Bhaskar Tejaswi, Student Member, IEEE, Mohammad Mannan, and Amr Youssef, Senior Member, IEEE

Abstract—A diverse set of Internet of Things (IoT) devices
are becoming an integrated part of daily lives, and playing
an increasingly vital role in various industry, enterprise and
agricultural settings. The current IoT ecosystem relies on several
IoT management platforms to manage and operate a large
number of IoT devices, their data, and their connectivity.
Considering their key role, these platforms must be properly
secured against cyber attacks. In this work, we first explore
the core operations/features of leading platforms to design a
framework to perform a systematic security evaluation of these
platforms. Subsequently, we use our framework to analyze a
representative set of 52 IoT management platforms, including
42 web-hosted and 10 locally-deployable platforms. We discover
a number of high severity unauthorized access vulnerabilities
in 9/52 evaluated IoT management platforms, which could be
abused to perform attacks such as remote IoT SIM deactivation,
IoT SIM overcharging and IoT device data forgery. More
seriously, we also uncover instances of broken authentication in
13/52 platforms, including complete account takeover on 8/52
platforms along with remote code execution on 2/52 platforms.
In effect, 17/52 platforms were affected by vulnerabilities that
could lead to platform-wide attacks. Overall, vulnerabilities were
uncovered in 33 platforms, out of which 28 platforms responded
to our responsible disclosure. We were also assigned 11 CVEs
and awarded bounty for our findings.

Index Terms—IoT management platforms, IoT security, web
security.

I. INTRODUCTION

THE pace of IoT adoption is rapidly increasing. It is
estimated that the number of IoT devices will reach 38.6

billion worldwide by 2025 and 50 billion by 2030 [2]. IoT
devices play a significant role in our daily lives (e.g., home
automation), as well as at the enterprise level (e.g., device fleet
management). A key component of the IoT ecosystem is an
IoT platform, which hosts a number of endpoints supporting
the business operations utilizing IoT devices. Some of these
platforms provide data management services to enable data
collection from the IoT devices, followed by its processing
and analytics. Some platforms offer device management ser-
vices for users (e.g., enterprise IoT device administrators)
to remotely connect to their devices by using a platform’s
web portal and APIs. In others, users are also allowed to
remotely execute commands on the IoT devices (by installing
an edge client on the devices), and to upload firmware files
to IoT devices. Such versatile functionalities, if not properly
designed/implemented, can result in serious security issues.

Bhaskar Tejaswi, Mohammad Mannan and Amr Youssef are
with the Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, QC H3G 1M8, Canada (e-mail:
{b tejasw,mmannan,youssef}@ciise.concordia.ca).

This paper is an extended version of an ACM CODASPY 2023 paper [1].
This work is partially supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

In 2021, researchers at FireEye disclosed a critical vulnera-
bility in the device onboarding process of the Kalay cloud
platform [3], allowing a remote attacker to collect the login
credentials and execute commands on millions of IoT devices
managed by the platform. Beyond WiFi/LAN, IoT devices are
increasingly being internet-connected via cellular networks.
Cellular IoT SIM sellers provide connectivity management
platforms [4], to facilitate their customers to easily and ef-
ficiently manage all of their IoT SIM cards (e.g., remotely
activate/deactivate SIM cards). IoT connectivity services can
also be abused to compromise IoT devices, and to commit
financial frauds and criminal activities (see e.g., [5]–[7]).

The term “IoT platform” is used by different vendors
offering various combinations of services. Given the hetero-
geneous nature of platforms, to perform a systematic eval-
uation, we focus on three key IoT management services:
connectivity, device, and data management. We define an IoT
management platform as a platform that provides either one
or a combination of these services for IoT devices. These
platforms can be used by enterprises for the devices used by
them, or businesses that sell IoT devices to consumers. Such
platforms can be web-hosted (managed by a third-party service
provider), or locally-deployable (managed by the enterprise
using the platform). IoT management platforms are different
from other web management platforms in many aspects [8].
For example, these platforms obtain data from multiple sources
(devices, SIM cards, users), and each of them could become a
potential source of malicious data entry. Also, these platforms
manage real world IoT deployments. As many of them support
critical operations in industrial and enterprise IoT setups,
exploiting vulnerabilities in them could have severe physical
world consequences in addition to revenue loss and day to day
business disruption.

Existing work demonstrated several attacks on cellular IoT
that could cause overcharging through voice services [9], and
create financial losses for the cellular operators by using IoT
SIMs inside non-IoT devices [10]. Connectivity management
services are a major component of cellular IoT for SIM man-
agement tasks. Apart from a recent BlackHat presentation [11]
(conducted on 9 platforms), there is no comprehensive eval-
uation of vulnerabilities in these services. Unauthorized ac-
cess control issues in IoT platforms have been studied in
the past [12] by analyzing IoT devices’ mobile companion
applications. However, such studies have only covered the API
endpoints called from the client-side, i.e., management APIs
with more serious security issues remaining unexplored. Apart
from web-hosted platforms, there are also widely-used locally-
deployable solutions (both open and closed-source) for IoT
deployment, which so far have not been analyzed.

We design and implement a generalized security framework
to evaluate the security posture of IoT management platforms

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 2

from an external attacker’s perspective, focused on the key
services provided by them—i.e., connectivity, device, and
data management. Our evaluation framework comprises a
wide range of vulnerabilities such as broken authentication,
unauthorized access, vulnerable trigger-action function and
lack of input validation. For the evaluation, we rely on
a combination of automated, semi-automated and manual
vulnerability detection techniques; for web-hosted platforms
these tests are carefully applied not to interfere with the
platform operations. The scope of evaluation comprises the
web requests generated upon using the platforms’ websites,
and those corresponding to the platforms’ standalone APIs.
We use custom Python scripts to simulate the behavior of
IoT devices making API calls to the platforms. We also use
virtual machines (VMs) to mimic Linux-based IoT devices for
evaluating platforms that provide agent software for device
management. To evaluate locally-deployable platforms, we
install their Linux-compatible versions inside VMs.

We used our framework to conduct a security evaluation of
52 IoT management platforms (42 web-hosted and 10 locally-
deployable), and found major security weaknesses in several
platforms. Vulnerabilities detected in them could impact multi-
ple stakeholders—the platform itself, the enterprise users, the
end consumers, and all the devices connected to these plat-
forms, with consequences such as: disconnecting IoT devices
from the cellular network, sending arbitrary unauthorized com-
mands to devices, and disclosure of device metadata including
GPS coordinates. Moreover, poorly configured devices can be
leveraged for platform-level attacks against the corresponding
platforms and their users; e.g., authentication tokens/keys in-
tercepted from the IoT devices that use HTTP/MQTT (without
TLS) can be leveraged by an attacker to perform cross-site
scripting (XSS) via forged data submissions.

Contributions and notable findings.

1) We design a comprehensive security evaluation frame-
work for evaluating various complex functionalities of-
fered in modern IoT management platforms. We include
tests pertinent to core platform services—connectivity,
device, and data management for operating a large
number of IoT devices. We consider several practical
attacker models, including a regular remote attacker, an
on-path attacker, and an attacker requiring minor user
involvement (e.g., clicking on an attacker provided link).
We realize this framework using a carefully-deployed
combination of existing tools (in addition to our own
scripts), as our tests are performed on live services
(albeit on our own test accounts) along with locally-
deployable platforms.

2) We apply our framework on 52 selected IoT manage-
ment platforms of various sizes, offering a wide-range of
services. Our analysis uncovered vulnerabilities in 33/52
platforms. 17/52 platforms were affected by vulnerabili-
ties that could lead to platform-wide attacks affecting all
users and all connected devices. This indicates that our
framework is both applicable (i.e., can handle varying,
complex services), and effective (i.e., can detect serious
security problems).

3) The unauthorized access vulnerabilities that we found in
9/52 IoT platforms, involve key platform features that
can be abused to launch serious attacks against service
availability, reliability, and billing. Such attacks include:
arbitrary SIM deactivation, unauthorized Short Message
Service (SMS) delivery and forged data submission from
IoT devices.

4) 13/52 platforms are affected by broken authentication,
with varying implications on their services—e.g., full
account takeover of any user (in Aeris Neo, AskSen-
sors, Favoriot, MDash, ResIOT, Fogwing, Thingsboard,
GlobalM2MSIM), and preventing IoT SIM registration
and activation (Hologram, KeepGo and OneSIMCard).

5) A vulnerable trigger-action function (cf. [13]) in
TheThings.io grants root access to a Kubernetes con-
tainer shared across users on the platform, by breaking
out of their JavaScript sandbox. Missing sandbox im-
plementation for trigger-action function in OpenRemote
grants root access to the server to any platform user.

6) 16 platforms lack proper input validation checks, making
them all vulnerable to XSS attacks, and one (ResIOT’s
locally-deployable platform) vulnerable to SQL injec-
tion. On 9 platforms, an adversary can abuse XSS to
steal session credentials (browser cookies and login
tokens).

7) We were assigned 11 common vulnerabilities and expo-
sures (CVEs) for vulnerabilities uncovered in locally-
deployable platforms (see Table IV in Appendix A).
Among these, one CVE was rated as critical (score
9.8/10), 3 CVEs rated as high severity (2 CVEs with
score 8.8/10 and one CVE with score 7.2/10), and 7
CVEs rated as medium severity (with scores between
4.3/10 and 6.5/10). We also received monetary awards
as bounty from two companies (Boodskap and Platform
X1) along with a certificate of appreciation from Verizon.

Ethical considerations and responsible disclosure. We per-
formed all the tests on our own accounts. For inadvertent
access to sensitive data (e.g., authentication credentials in
error messages), as per our university’s ethics guidelines, we
informed the affected platform in a timely fashion and did not
retain the data. We did not perform any active scanning via
automated tools for vulnerability detection and exploitation,
to avoid any adverse effect on the day-to-day usage of the
web-hosted platforms. For sandbox breakout on TheThings.io,
we followed a coordinated disclosure process, and we were
granted a complimentary paid account by the platform for
comprehensive testing. We reported our findings to all the
affected platforms via emails/support tickets. In one instance
(Asksensors), upon not receiving any response, we also took
the help of the CERT-FR (cert.ssi.gouv.fr). At the time of
this submission, we received responses from 28 platforms.
Aeris Neo took down their portal for fixing. RemoteIOT
promptly acted on our disclosure and remediated the reported
vulnerability within a day (which we also confirmed). KeepGo,

1Actual name withheld according to the guidelines of the company’s bug
disclosure program. Throughout the article, this company will be referred to
as Platform X.

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 3

Favoriot, Fogwing, SocketXP and ResIOT have also resolved
the reported issues. Asksensors and Verizon claimed to have
fixed all issues, but on a second inspection, we found some
fixes to be inadequate, and as such informed the companies
again. 6 other platforms applied partial fixes. Another 9
platforms indicated that they are working on the fixes. 4
platforms (Telnyx, Pelion, Tago, SIMControl) where minor
security issues were reported, responded that they consider
those issues as acceptable risks.
Differences with the CODASPY version [1]. This article
is an extended version of a 6-page conference paper [1].
The main addition in this article is a comprehensive security
evaluation of 10 locally-deployable platforms, including 8
open-source and 2 closed-source solutions. We provide details
of the vulnerabilities found in locally-deployable platforms
and the CVE-IDs assigned for them. We also include five
additional vulnerabilities in our testing framework: cross-
site request forgery, insecure communication, misconfigured
cookie attributes, information disclosure via error messages,
and information leakage to third parties. The article also
contains an additional set of results for the four main vul-
nerabilities discussed in [1]. We provide a detailed update
on the responses received from the affected platforms to our
responsible disclosure. Finally, this article also includes key
insights from our analysis and recommendations for platform
developers and users.

II. BACKGROUND AND THREAT MODEL

In this section, we summarize key functionalities offered by
IoT management services, and provide our threat model.
IoT connectivity management. With the widespread deploy-
ment of 4G/5G technologies, cellular connectivity is becoming
the preferred option for many consumer/industrial IoT devices.
Although the IoT SIM cards (also called as programmable
wireless SIM cards, Machine to Machine/M2M SIM cards)
use the same network as the cellular network, there are some
notable differences. Firstly, IoT SIM cards are typically offered
for global connectivity via multiple carriers. Secondly, the IoT
SIM owners can manage their SIM cards via connectivity
management services, e.g., to register, activate, pause, track
usage, change subscription plans, and decommission devices.
These tasks can be performed automatically at scale, through
web APIs provided by the connectivity services.

IoT SIM cards can typically be purchased from the
providers’ websites after creating a user/business account on
the portal; some providers do not sell SIM cards to individual
users, and involve a manual verification process. Following is a
brief outline of each state in the IoT SIM card’s lifecycle [14]:
when the SIM card is delivered to the user, it remains at
the initial state (not connected to the cellular network); after
registering a card on the portal (e.g., by entering an activation
code printed on the card), it reaches the active state and can
connect to the cellular network, and the user is billed for the
SIM usage; a temporarily suspended card is in the paused state
(unable to access the cellular network); and a permanently dis-
connected card from the cellular network is in the terminated
state (e.g., when an IoT device is decommissioned).

Key features offered by the connectivity management ser-
vices for enterprise users include: managing the SIM state
and connection troubleshooting in real-time; setting usage
limits on data consumption for each SIM card, or a group of
SIM cards; sending/receiving SMS messages to/from the SIM
card (e.g., for commands/outputs); setting the International
Mobile Equipment Identity (IMEI) lock to prevent abuse of
stolen cards; generating reports on data usage and billing; and
creating rules to generate alerts in case an anomalous behavior
is detected, e.g., exceeding data consumption limit.

IoT device management. Enterprises typically deal with a
large number of devices and these deployments need to be
managed remotely. IoT device management services offer a
centralized web portal to perform such key administrative tasks
on the IoT devices, as well as web APIs to enable automation.
Key features in device management include [15]: provisioning
and authentication of devices (devices are assigned unique IDs,
and authentication tokens, which are then used for onboarding
on the platform); adjusting the configuration of the IoT device
as needed (e.g., adding a new variable in the JSON object sent
to the platform, modifying the API’s URL), monitoring usage,
and diagnostics for troubleshooting; and allowing enterprises
to upload software/firmware updates, which are subsequently
pushed to IoT devices.

IoT data management. IoT data management services en-
able the centralized data aggregation and processing for IoT
devices. Similar to device management, the IoT device is
onboarded on the platform with a unique device ID and au-
thentication token. Data is typically submitted to the platform
via protocols such as HTTP, MQTT, AMQP and COAP [16].
Users can also create visualization dashboards based on IoT
device data for analytics purposes.

Threat model. The scopes of the considered attacks are
defined as follows. A platform-wide attack affects all users
and all connected devices of the platform; examples include:
remote code execution via sandbox escape (platform infras-
tructure compromise), attacks involving broken authentica-
tion and unauthorized access issues that require the use of
easily-enumerated identifier values (e.g., short numeric IDs,
sequential SIM numbers). A user-specific attack can affect
only a specific user and the devices owned by that user;
examples include: session hijacking via cross-site scripting
(XSS), password reset via cross-site request forgery (CSRF),
user credential theft via secure sockets layer (SSL) stripping,
attacks involving broken authentication and unauthorized ac-
cess vulnerabilities that require specific user/device IDs that
are not easily-enumerated/guessed (e.g., UUIDs, registered
email address of the target user). A device-specific attack can
affect a specific device (e.g., intercepting HTTP traffic to steal
device authentication credentials). To perform these attacks,
we assume three types of attackers in our threat model. A
user-independent remote attacker directly interacts with the
platform and does not need to involve the victim user/device
in any manner. Such an attacker can create a user account
on the platform’s website, and perform the intended attacks.
A user-dependent remote attacker also performs the attack
remotely, but requires user involvement (such as clicking on

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 4

a phishing URL). An on-path attacker must be on the same
network path as the victim user/IoT device, and collect and
analyze the traffic flow between the user’s browser/IoT device
and the platform’s server. Attacks requiring physical access to
an IoT/user device are out of scope.

III. SECURITY ANALYSIS FRAMEWORK

In this section, we provide a framework for performing the
security analysis of IoT management platforms. At first, we
identify key platform functionalities by manually analyzing a
few platforms and perusing their API documentations. Then
we select an initial list of potential security vulnerabilities that
is motivated by prior research in the field of IoT security [8],
[12], [13], [17]–[25], and online services security [26]–[28].
We then iteratively refine the list of associated vulnerabilities
based on their impact on the key functionalities, and focus
on the vulnerabilities applicable to multiple platforms. Figure
1 provides an overview of the proposed framework. In this
section, we discuss the process of detection of each vulnera-
bility along with the potential impact on the affected platforms,
users, and connected devices. For each platform, we create two
user accounts, and use one as an attacker and the other as a
victim user. We also check for some other security and privacy
issues (detailed in Appendix B) that can amplify/augment the
primary attacks discussed in this section.

A. Broken Authentication

Broken authentication [8], [21], [22] in IoT management
platforms can lead to platform-wide attacks such as SIM state
tampering, device data tampering, user information disclosure,
arbitrary command delivery, and firmware theft. Broken au-
thentication could also lead to user-specific attacks such as
account takeover, which grants an attacker read and write
access to all functionalities accessible to the targeted user. We
perform the following checks to detect insecure implementa-
tion of authentication.

We log in to the platform and capture all the web requests
that require authentication (e.g., cookies and API keys). We
also capture requests by issuing API requests from standalone
API collections (if provided). We exclude web requests for
loading static content such as JavaScript files and images. We
then remove the session credentials from each request and
resend it to the platform; we label the platform as vulnerable
if the response for any modified web request is the same as
the original one. We use Auth Analyzer [29] for these checks,
followed by manual review to assess the impact.

We check for logic bugs in the forgot password and pass-
word reset functionalities of the platforms’ websites. We test
if it is possible to reset the password of another user by
tampering parameters (e.g., email address, username) in the
underlying web requests.

After purchasing an IoT SIM card (where possible), to
activate the card and manage its lifecycle, the card owner
must create an account on the platform and add the card
to their platform account. We check if the platform validates
whether the user owns the card that they are trying to add to
their account. Absence of such validation could allow forged

Fig. 1. Overview of proposed security analysis framework. Yellow box
indicates that vulnerability detection requires active interaction with the IoT
management platform’s web server; the blue box ones can be detected by
passively monitoring the web traffic between the browser and the platform.
The attacks can result from one or multiple vulnerabilities.

IoT SIM registration, wherein an attacker is able to add an
unassigned card to their account, which when purchased by
a legitimate user, would fail to register, and may require
intervention from the platform’s technical support.

B. Unauthorized Access

Unauthorized access [12], [24], [27], [30] refers to the
inability of an IoT management platform to validate if the
entity requesting a resource is allowed to access that resource,
and to what extent. These vulnerabilities could result in

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 5

platform-wide attacks such as SIM state tampering, device
data tampering, arbitrary SMS messages, user information
disclosure, alerts configuration leakage, SMS message leakage
and device data leakage. We perform the following actions to
identify such issues. (a) We create two user accounts for each
target platform – one as the victim account, and the other as
an attacker account. (b) We log in with the victim account
on the platform, and capture the underlying web request to
test for unauthorized access. (c) We replace the authentication
details in the web request captured in step (b) with those
of the attacker account, and send the modified request to
the platform. (d) We observe the response of the modified
request sent from the attacker’s account. If the modified
request is successfully processed, we flag the platform as
vulnerable to unauthorized access. We use Auth Analyzer to
detect unauthorized access vulnerabilities, followed by manual
review of the affected requests to assess the impact. For this
vulnerability, the platforms do check for the authentication
credentials in the web requests, but fail to validate if the
requesting users have the permission to access the resources.
Unauthorized access can lead to several abuse scenarios in the
following key functionalities of device, data and connectivity
management services.
IoT SIM management. A user needs to manage the IoT
SIM card through different state changes (activation, deacti-
vation, pause) in its lifecycle, which must be properly access-
controlled. Unauthorized activation of SIM cards in non-
functional IoT devices can lead to unnecessary subscription
charges, and unauthorized deactivation of a card would dis-
connect the corresponding IoT device.
SIM and service alerts. A user can set up notification alerts
to limit data usage for IoT SIM cards. A user can also write
custom trigger functions for conditional alerts based on data
transmitted by the devices. By abusing unauthorized read
access to these alert settings, an attacker could infer the nature
of data transmitted by the devices and could obtain sensitive
information such as the API keys for third-party services
used in the trigger-functions. Unauthorized write access allows
an attacker to change the notification rules for the user’s
SIMs/devices, affecting day-to-day operations and causing
financial losses.
SMS. SMS messages are widely used for managing configu-
ration of IoT devices and for sending and receiving data from
IoT devices [31]. Unauthorized read access could allow an
attacker to obtain sensitive information exchanged between
IoT devices and the platform via SMS, whereas unauthorized
write access can be abused to send SMS messages to users’
IoT SIMs, which may lead to arbitrary command execution in
IoT devices and overcharging of the victim’s account.
IMEI lock. Users can set up an IMEI lock for their IoT
SIM cards by specifying the IMEI number of the devices
whitelisted for using the SIM card. This helps to prevent
the misuse of stolen IoT SIM cards. Unauthorized IMEI lock
could allow an attacker to interrupt the cellular connectivity for
the affected card, disable the IMEI lock protection altogether,
and use the IoT SIM card outside the designated IoT devices,
leading to financial loss for the card owner.

Remote commands. Users can remotely execute commands
on their IoT devices via the platform’s website. Insufficient
access control may allow an attacker to execute arbitrary
commands on target devices. Some platforms also store the
output of the executed commands, for later viewing by the
user. If unprotected, potentially sensitive information may be
exposed from these outputs.
Firmware updates. Users can upload firmware files for their
IoT devices on the platform’s website. These files can also
be downloaded from the platform. By abusing unauthorized
read access, an attacker can download files uploaded by other
users, which may cause breach of intellectual properties [32].
On the other hand, unauthorized write access could be abused
to inject malicious firmware in targeted IoT devices.
IoT device data. Platforms must ensure that an IoT device’s
data is available only to the device owner. A platform also
must validate incoming data submission requests to confirm
if the requests are coming from a legitimate IoT device, e.g.,
via checking access tokens. Unauthorized read access to these
tokens could be abused by an attacker to submit forged data
from the affected IoT devices.
Account information. Users provide personal identifiable
information (PII), e.g., user name, email ID, mobile phone
number, address, and organization name, during registration
of an account. Unauthorized read access can leak such PII,
and unauthorized write access in functionalities such as change
password could allow an attacker to take over a user’s account.

C. Vulnerable Trigger-Action Functions
Trigger-Action Platforms (TAPs [13], [23]) connect IoT

devices and cloud services with the help of trigger-action
applications. When a trigger is received by the application,
certain actions are performed, which are programmed into the
trigger-action application. Some IoT management platforms
offer similar trigger-action features on their websites, allowing
users to write code for custom functionality (typically in
JavaScript), e.g., unit conversion, and periodic tasks. Custom
functions must be written for parsing and processing data
payloads received from IoT devices; see [33] for an example of
such a function which triggers an email when the temperature
reading received from a device goes beyond a set limit.

Platforms use sandbox libraries with limited set of
JavaScript methods to securely execute these user-supplied
trigger-functions in an isolated environment, and to avoid
attacks such as remote code execution. Popular NodeJS
libraries are known to have sandbox bypass vulnerabili-
ties and can be exploited in IoT communication (cf. [13]
for TAPs vulnerabilities on IFTTT and Zapier platforms).
We first try to find out the sandbox library used by
the platform through a stack trace using the follow-
ing JavaScript code: function main(params, callback)

{callback(new Error().stack);}
If the detected JavaScript sandboxing library has known

vulnerabilities, we check for those vulnerabilities, and use
benign system commands such as id for confirming the priv-
ilege level of the system access granted by the vulnerability.
We follow a process of coordinated disclosure with affected
platforms to minimize any accidental system impact.

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 6

D. Lack of Input Validation

IoT management platforms must validate the inputs present
in the web requests before processing them. Also, any data
received from IoT devices must be suitably encoded before
displaying on the platform’s website. The lack of input
validation [22], [34] enables attacks, e.g., XSS and SQL
injection. While XSS can lead to user-specific attacks, e.g.,
account takeover, SQL injection can cause platform-wide
database compromise. We detect the presence of these vul-
nerabilities by sending web requests with malformed input
parameters and analyzing the corresponding web responses.
To detect XSS, we provide custom JavaScript payloads (e.g.,
<script>alert(1)</script>) in the input parameters, and
check if the supplied payload is executed in the browser while
navigating the website. Similarly, we checked if SQL errors
are returned upon appending a single quote at the end of input
parameter values. Due to ethical/legal concerns, we do not use
automated scanning tools to flood the platforms with requests
containing malicious inputs. All instances of this vulnerability
on web-hosted platforms have been solely detected via manual
inspection. Burp’s active scanner is used to supplement manual
testing on locally-deployable platforms.

E. Other Vulnerabilities

We also check for some other security issues as follows (de-
tailed in Appendix B). (1) Cross-site request forgery (CSRF):
We check if a user-dependent remote attacker can tamper
with the victim user’s assets (user account and underlying
IoT SIMs/devices) by exploiting missing CSRF protection
in key platform functionalities. (2) Poorly configured cookie
attributes: We check if the Secure and HTTPOnly attributes are
set for the session related cookies. Absence of these attributes,
coupled with XSS/insecure communication could be exploited
by a user-dependent/on-path attacker respectively to takeover
a target user’s account. (3) Insecure communication: We check
if the platform allows an on-path attacker to passively capture
device API keys (upon using HTTP/MQTT without TLS),
or collect login password (via SSLStrip). (4) Information
disclosure via error messages: While testing for lack of input
validation, we also check if the platform returns verbose error
messages, and check if any sensitive information is disclosed
in the error messages, as they might help an attacker know
more about the target platform’s architecture. (5) Information
leakage to third parties: While browsing a platform’s website,
we check if any sensitive information is sent to a third-party.

The first three issues can be abused along with lack of input
validation to perform chained attacks with amplified impact.
The fourth issue can be abused by any remote attacker for
platform reconnaissance. The last issue pertains to privacy
leakage on IoT platforms.

IV. TARGET PLATFORMS AND ANALYSIS SETUP

Target platforms. Since the IoT platforms are used mostly
by enterprise users/developers and not meant for mass con-
sumption, typical website ranking services (such as Tranco2)

2https://tranco-list.eu

TABLE I
LIST OF ANALYSIS TOOLS AND APPROACHES

Security Vulnerability Analysis Type Tool/Technique
Broken authentication Semi-automated Auth Analyzer [29]
Unauthorized access Semi-automated Auth Analyzer [29]
Vulnerable trigger-action functions Manual -
Lack of input validation Manual -
Cross-site request forgery Semi-automated CSRF Scanner [40]
Insecure communication Automated Bettercap [41]
Information disclosure via error messages Automated Error Message Checks [42]
Misconfigured cookie attributes Automated Burp Suite
Info. leakage to third parties Semi-automated Regex based search

cannot be used for platform selection. Instead, we rely on a
combination of the following sources to gather the list of 52
web-hosted/locally-deployable platforms: (a) survey papers on
IoT platforms [35]–[38]; (b) top search engine results with
keywords such as IoT platform, IoT device management, IoT
data management, IoT connectivity, IoT SIM, M2M SIM.
The selected web-hosted platforms cater to a large number
of IoT devices (self-reported by the platforms, as of Sept. 1,
2022): e.g., Verizon (31M), Telenor (17M), Emnify (10M),
RemoteIOT (10M). For the selected locally-deployable plat-
forms, we found (as of Sept. 1, 2022) several instances from
Censys.io, e.g., Thingsboard (2206), DGIOT (130), OpenRe-
mote (57); note that these counts include only the internet
exposed deployments, and each deployment may serve many
IoT devices.

30 platforms allowed creation of trial enterprise user ac-
counts, in which we registered using fictitious company names
such as TestCompany. For the rest, we registered for trial
accounts as individual users. 20 platforms (all web-hosted) we
assessed offer connectivity management service via cellular
networks. We purchased IoT SIM cards from 6/20 platforms,
namely, Telnyx, Telenor, Hologram, OneSIMCard, KeepGo
and OpenM2M. For these 6 platforms, we performed the
security analysis with the privileges of valid enterprise users
of these platforms. For the remaining 14/20 platforms offering
connectivity management services, and for all the platforms
analyzed that offer device and data management services, we
conducted the analysis with the trial user accounts, typically
having access to a limited set of functionalities. In addition
to 42 web-hosted platforms, we also evaluated 10 locally-
deployable IoT platforms, which includes 2 closed-source and
8 open-source platforms.
Analysis setup. We perform a black-box security assessment
of the platforms and analyze their web applications and web
APIs. We use Burp Suite [39] as a man-in-the-middle proxy
to intercept the web requests and send crafted web requests to
the platforms.

We use the following approaches in our analysis (see
Table I). We perform manual testing to check lack of input
validation and vulnerable trigger-action functions; no auto-
mated scanning tools are used to avoid affecting the platform
operations. For trigger-action functions, we manually explore
the available sandbox-escape attacks for a given library. The
following tests are semi-automated: broken authentication and
unauthorized access (manually exploring key functionalities
on the website to capture underlying web requests), CSRF
(removing false positives reported by CSRF Scanner [40]),

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 7

TABLE II
OVERVIEW OF THE DISCOVERED ATTACKS, THEIR SCOPE, CORRESPONDING VULNERABLE PLATFORM FUNCTIONALITIES AND UNDERLYING

VULNERABILITIES: BROKEN AUTHENTICATION (�), UNAUTHORIZED ACCESS (º), VULNERABLE TRIGGER ACTION FUNCTIONS (Ð), LACK OF INPUT
VALIDATION (ù), CROSS-SITE REQUEST FORGERY (⋆), INSECURE COMMUNICATION (.), MISCONFIGURED COOKIE ATTRIBUTES (5). NOTATIONS

SEPERATED BY ∥ INDICATE THAT THE ATTACK IS POSSIBLE BY EXPLOITING EITHER OF THE DENOTED VULNERABILITIES. NOTATIONS SEPERATED BY +
INDICATE THAT THE ATTACK REQUIRES A COMBINATION OF VULNERABILITIES TO BE EXPLOITED.

Attack
Scope Attack Description Vulnerable Platform Functionalities

SIM
Mgmt.

Alerts
Mgmt. SMS IMEI

Lock
Device
Commands

Firmware
Updates

Device Data
Handling

User
Accounts

Platform-wide

Sandbox escape Ð

Database compromise ù + ⋆

Arbitrary command issuance �

Mistimed alerts � ∥ º

SIM state tampering � ∥ º º

Device data tampering � ∥ º

Arbitrary SMS messages º

User information disclosure � ∥ º

Alerts config. leakage º

SMS message leakage º

Firmware theft º

Device data leakage º � ∥ º

User-specific Account takeover � ∥ ⋆ ∥ (ù + 5 + .)
Partial account modification ⋆

Device-specific API key theft . . .

information leakage to third parties (tuning the regular expres-
sions for each platform). Finally, information disclosure via
error message, misconfigured cookie attributes, and testing for
insecure communication are performed automatically. Impact
analysis is done manually.

To mimic the behavior of real IoT devices, we used Curl3

and custom Python scripts to issue test HTTP requests to the
platforms. We needed to install an edge agent on an IoT device
to perform the analysis on 10/52 IoT platforms. We installed
Linux-compatible versions of these agents inside virtual ma-
chines. To evaluate the locally-deployable IoT platforms, we
set up each platform inside a separate VM. While testing these
local deployments, we used Burp Suite’s active scanner in
conjunction with manual testing. Since we perform a black-
box assessment, we do not conduct a source code review for
the open-source locally-deployable platforms.

V. RESULTS

We use our framework to analyze the security posture
of 52 IoT management platforms. The analysis was done
between January 2021 and June 2022. We summarize the
attack types and underlying vulnerabilities that are affecting
various functionalities in Table II. In this section, we provide
a detailed discussion on the findings of our analysis; Table III
provides an overview of the findings based on the discovered
instances of data exposure and malicious write along with the
type of attacker and the scope of attack.

A. Broken Authentication

We found several broken authentication vulnerabilities with
varying security consequences: complete account takeover in
AskSensors, Fogwing, MDash, Aeris Neo, ResIOT, Favoriot,
GlobalM2MSIM and Thingsboard; data exposure in Aeris
Neo, Favoriot, TheThings.io and AskSensors; and several IoT
SIM registration issues (e.g., denial of service) in Hologram,

3https://github.com/curl/curl

KeepGo and OneSIMCard. Below we discuss these vulnera-
bilities, grouped by the affected resources.

Account information. Broken authentication in user account
management was found on AskSensors, Fogwing, Boodskap,
Aeris Neo, ResIOT, GlobalM2MSIM and Thingsboard. On
AskSensors, an attacker can obtain sensitive account informa-
tion for any user, by providing a 4-digit ID value, which can
be easily enumerated for all users. Details such as username,
email ID, number of connected IoT devices, account creation
date, user’s address and the password reset token are exposed.
Specifically, the reset token can be exploited to completely
takeover any user account by submitting a forgot password
request with the victim’s email address. On Fogwing’s ana-
lytics portal, an attacker could reset the password of any user
by providing the victim’s registered email ID. On Boodskap,
all APIs return valid responses for unauthenticated requests.
Although most of the requests contain UUIDs which cannot
be known to a remote attacker, an existing user can abuse
this to elevate their role to an admin. An attacker could
view sensitive information of any user of Aeris Neo, by
providing a 5-digit account ID of the victim. Using a trial and
error approach, the attacker can retrieve sensitive information,
e.g., name, email ID, account type and API key for other
users. The API key leaked in this vulnerability is used for
authentication throughout the platform and can be further
abused to gather information, e.g., SIM card details, billing
details and data usage. Upon submitting a password reset
request on GlobalM2MSIM’s website, the password reset link
sent to the registered email ID contains a random password
reset key. The key parameter is not validated by the platform.
Thus, a valid reset link can be made by providing any random
string in the key parameter and the email address of the
victim user. An attacker could reset the victim user’s password
and takeover their account, granting access to the IoT SIM
cards owned by the victim user. In ResIOT, an attacker could
get any user’s authentication token by providing the victim’s
email address. Thereafter, the attacker could log in to the

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 8

TABLE III
OVERVIEW OF THE DISCOVERED INSTANCES OF DATA EXPOSURE AND MALICIOUS WRITE ALONG WITH THE TYPE OF ATTACKER AND THE SCOPE OF

ATTACK (SEE SEC. II). ANY REMOTE ATTACKER CAN PERFORM PLATFORM-WIDE () OR USER-SPECIFIC () ATTACKS; A USER-DEPENDENT REMOTE
ATTACKER CAN PERFORM PLATFORM-WIDE () OR USER-SPECIFIC () ATTACKS; ANY ON-PATH ATTACKER CAN PERFORM USER-SPECIFIC (q) OR

DEVICE-SPECIFIC (�) ATTACKS. IN INSTANCES EXPLOITABLE BY MULTIPLE ATTACKER TYPES, WE CONSIDER THE WORST ONE (E.G., REMOTE
ATTACKERS ARE WORSE THAN ON-PATH ATTACKERS), WITH THE BROADEST SCOPE. PLATFORM NOTATION: WEB-HOSTED IF NOT MENTIONED, (O):

OPEN-SOURCE LOCALLY-DEPLOYABLE, (C): CLOSED-SOURCE LOCALLY-DEPLOYABLE.

Data Exposure Malicious Write

A
le

rt
s

C
on

fig
.

SM
S

M
es

sa
ge

s

D
ev

ic
e

M
et

ad
at

a

C
om

m
an

d
ou

tp
ut

A
cc

ou
nt

In
fo

SI
M

St
at

e

SI
M

R
eg

is
tr

at
io

n

A
le

rt
s

C
on

fig
.

SM
S

M
es

sa
ge

s

IM
E

I
L

oc
k

D
ev

ic
e

C
om

m
an

ds

Fo
rg

ed
Io

T
da

ta

D
as

hb
oa

rd

A
cc

ou
nt

Ta
ke

ov
er

D
B

M
od

ifi
ca

tio
n

Po
te

nt
ia

l
R

C
E

Verizon’s Thingspace
Platform X
Aeris Neo
RemoteIOT
OneSIMCard
Hologram
KeepGo
Tago � � �
Favoriot
TheThings.io
Mdash
Fogwing
Asksensors
CSL q q q q q

GlobalM2MSIM
Imvvy q q q q q

Open M2M
ResIOT
Thingsboard
ResIOT (C)
Bevywise (C)
Thingsboard (O)
OpenRemote (O)
Boodskap (O)
DGIOT (O)

victim user’s account on the platform, and perform IoT SIM
management tasks. On MDash, the registration web request
contains a URL parameter; a user-dependent remote attacker
can submit a registration request, even for an existing user, and
provide an attacker-controlled website in the URL parameter.
The platform sends an email to the victim user with the
activation link containing the attacker’s website URL. Similar
attack is possible via password reset requests on Asksensors
(by modifying URL parameter in request) and Thingsboard
(by modifying Host header in request).

IoT device. Broken authentication could be abused for remote
command execution and device data forgery. An attacker could
send arbitrary commands to the IoT devices connected to
AskSensors, where the attacker needs to supply the command
and the device ID (a 5-digit numeric value) in a POST request.
An attacker could also obtain the GPS coordinates of each IoT
device on the platform. We found broken authentication on
Favoriot that could let an attacker obtain sensitive information
such as user ID, Bcrypt hashed password, API keys with read-
only and read-write permissions—by providing only the email
address of a victim user. The leaked API keys could be used to
read data sent by the victim’s IoT devices, as well as to send

forged data on behalf of those IoT devices to the platform. On
TheThings.io, an attacker could download the firmware image
files uploaded by any user through an unauthenticated web
request, by supplying a 5-digit organization-id.

IoT SIM registration. We found a lack of authentication
in the IoT SIM card registration process of 3/6 platforms
from whom we purchased IoT SIM cards. KeepGo users
can register their IoT SIM card on the platform by entering
their Integrated Circuit Card Identification (ICCID) number;
no other verification is required. Upon registration, a request
is sent to the platform to check the SIM card’s availability.
We refer to such endpoints as IoT SIM validation endpoints.
ICCID numbers are susceptible to enumeration as evident from
past attacks [43]. We altered the last few digits in our own
IoT SIM card’s ICCID number and observed three types of
responses: a) SIM Card Not Found, b) This line already in use,
c) Success. We found an unassigned ICCID number within
under 100 requests, which we could successfully register from
another test account. Similarly, an attacker can enumerate
valid unassigned ICCID (in Hologram) and SIM numbers (in
OneSIMCard) and add them to fake accounts. If such an
unassigned SIM card is later purchased by a customer, she

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 9

would receive an error message during registration of the SIM
card (and may require intervention of the support team).

On Telnyx, registering a SIM card requires the user to
provide a 10-digit unique code printed on the physical card.
In both Telenor and OpenM2M, IoT SIM registration is not
performed by the user. Thus, these three platforms are not
affected by this issue.

B. Unauthorized Access

We found that 9/52 platforms are vulnerable to unauthorized
access. We provide the details below.
IoT SIM. On KeepGo and OneSIMCard, an attacker can
disrupt IoT SIM cards’ cellular connectivity. On KeepGo,
users can create sub accounts within their own account and
assign IoT SIM cards to these sub accounts. An attacker can
view other users’ sub accounts, by inputting a 4-digit account
ID (easily enumerated). More importantly, an attacker can
deactivate another user’s sub account, which deactivates all the
IoT SIM cards assigned to that sub account; the attacker needs
to send the victim sub account’s ID. We also found another
instance of unauthorized access vulnerability in KeepGo, with
which an attacker can set any arbitrary future date as the date
of IoT SIM card deactivation (requires the ICCID number of a
targeted SIM, or can be guessed in a trial-and-error approach
for arbitrary targets). Both of these attacks can be performed
by anyone with a registered account on the platform, with or
without an IoT SIM card from KeepGo.

On OneSIMCard, we found four unauthorized access vul-
nerabilities affecting IoT SIM cards (the first three issues have
been fixed). An attacker can block the cellular connectivity and
internet access for any IoT SIM in the platform, by sending
web requests with the SIM number of the victim, which is a
unique 15-digit numeric value.4 An attacker could remove the
IMEI lock set on any IoT SIM card as well as set arbitrary
IMEI lock on any IoT SIM card by providing the victim’s 15-
digit SIM number. An attacker can also set country restrictions
for any IoT SIM card, which would restrict the data access of
the IoT SIM card in the countries specified by the attacker.
Only existing users with SIM cards assigned to their accounts
can perform these attacks. An attacker can use the broken
authentication in SIM registration process (see Sec. V-A) to
obtain such an account.
Alerts. We found unauthorized access vulnerabilities in the
alerts configuration on KeepGo and TheThings.io, using which
attackers can exfiltrate sensitive information as well as modify
the configured alerts. On KeepGo, users can set rules to trigger
an email alert notification if the account balance falls under a
set threshold. An attacker could modify this rule for any user
by providing account ID (a 4-digit number), condition value
(containing the threshold amount in USD) and the desired
email address in a POST request. The attacker could set a
large negative value as the threshold and as a result, the alert
would not be triggered. An attacker could also redirect the
alerts to an arbitrary email address. In both cases, the user
would not receive the notification in time, which may lead to

4As from the purchased cards, OneSIMCard apparently uses sequential SIM
numbers.

service disruption. KeepGo users can set rules to keep track of
data usage and detect changes in IMEI corresponding to IoT
SIM cards. An attacker can view the rules set by other users
by providing the 3-digit line rule ID. However, the platform
blocks unauthorized attempts to modify or delete these rules.

TheThings.io contains a module named Cloud Code, al-
lowing users to write jobs, functions, and triggers on the
platform [44]. An attacker can view the cloud codes of other
users, by providing a 5-digit organization ID (easily enu-
merated). TheThings.io lets users utilize third party services
e.g., Twilio (for SMS/voice alerts), and SendGrid, Mandrill,
SES, and Gmail (for emails) while defining triggers. The
unauthorized access vulnerability in Cloud Code exposes the
authentication credentials (e.g., API keys, tokens) for these
third party services as well. These credentials can be abused
in several ways, e.g., to retrieve sensitive information such as
metadata of emails previously sent, to use the service APIs for
free (incurred cost will be billed to the victim), and to launch
phishing attacks via emails and SMS messages. Another access
vulnerability in the Alerts Manager module (which generates
alerts depending on user-set conditions), allows an attacker to
delete the alerts set by any user, leading to potential service
disruptions.

SMS. We found unauthorized SMS access vulnerabilities on
KeepGo and OneSIMCard platforms, enabling an attacker to
view SMS messages exchanged between the IoT devices and
the platform, and send arbitrary messages to the IoT devices.
KeepGo users can send SMS messages to their IoT SIM
cards from the platform, and the responses from the IoT
devices can be viewed on KeepGo’s website. For each inbound
and outbound message, the user is charged 0.05 USD. An
attacker could view all the exchanged IoT SMS messages
by providing the ICCID of the victim’s IoT SIM card (see
Sec. V-A, under “IoT SIM Registration”), and the billing cycle.
More importantly, an attacker can send arbitrary messages
by inputting the target SIM’s ICCID and the SMS text in a
POST request, after which, the victim’s account balance is
reduced by 0.05 USD. Similarly, on OneSIMCard, an attacker
could view messages sent to any SIM card, and send arbitrary
messages to an IoT SIM card by inputting the target SIM
number and the SMS text in a POST request, for which the
victim’s account balance is reduced by 0.01 USD. Note that
the attacker’s account is not charged at all in these attacks.
On OpenM2M, an attacker could read SMS messages for any
SIM card by providing a 6-digit subscription ID.

IoT device data. We found unauthorized access vulnerabili-
ties pertaining to IoT device data with varying implications:
arbitrary dashboard modification on TheThings.io; IoT device
data forgery in Fogwing and AskSensors; sensitive device data
exposure in TheThings.io, Fogwing, AskSensors, and Platform
X.

On TheThings.io, each organization has a dashboard (con-
taining smaller units known as widgets) with an overview of
the status of connected IoT devices. An attacker could view
the dashboard configuration for any organization by supplying
the victim organization’s ID (5-digit numeric value, easily
enumerated). The exposed information includes: dashboard ID

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 10

and configuration of individual widgets on the dashboard (e.g.,
name of widgets used, source of data). More importantly, by
using the exposed dashboard ID, an attacker could edit/delete
the dashboard configuration of any organization by inputting
the dashboard ID and the desired dashboard settings in a PUT
request. One of the widgets, iFrame Link, lets users load con-
tent from external pages in an iFrame. Through unauthorized
access, an attacker could add a malicious iFrame Link to any
organization’s dashboard, which could load content from an
attacker-controlled website. On Fogwing, an attacker could
view sensitive information of any IoT device by providing the
4-digit gateway ID; exposed details include name, edge ID,
geolocation, health status, and data received from the device.
An attacker could further abuse the leaked edge ID to send
forged data on behalf of the targeted IoT device to the platform
by providing the victim’s edge ID and the attacker’s API key
as URL parameters along with the forged data payload in the
POST request.

On AskSensors, for any device, simply by providing a 4-
digit ID, an attacker could view the API keys, and remove
the device. An attacker could also read data submitted by any
IoT device, and send forged data on behalf of any device to
the platform. The exposed API key could be further abused to
launch XSS attacks (see Sec. V-D).

On Platform X, an attacker could view details of the security
updates deployed on any device by providing the 5-digit
update ID in a POST request. Exposed details include device
ID, device name, device state (online/offline), update status,
update message and update time. For any device, the last
fetched log file could be obtained by providing the 6-digit
device ID in a POST request. An attacker could view outputs
of commands issued by other users (fixed during our testing)
by providing their own user token, the command ID and device
ID (both 5-digit numbers) and their own CSRF token.
Account information. We found access control viola-
tions leading to exposure of account information on the
TheThings.io, Fogwing, ResIOT, AskSensors and Aeris Neo
platforms. AskSensors uses Stripe APIs5 for payment pro-
cessing, and exposes the stripe card objects6 of all users,
through an API, where an attacker needs to supply only a 4-
digit ID value. Exposed details include card company’s name,
card expiry month and year, last 4 digits of the card, CVC
check status (pass, fail, unavailable, unchecked), card type
(debit, credit, prepaid) and billing address. On TheThings.io,
an attacker can obtain organization details such as organization
name and subscription ID for all organizations on the platform.
An attacker could also obtain user information such as the
email address and the permissions granted for all users within
an organization. In both cases, the attacker needs to provide
a 5-digit numeric organization ID value. On Fogwing, an
attacker could access details of all the connected enterprises by
providing a 4-digit numeric ID, which can be enumerated eas-
ily. Exposed details include enterprise name, business location
and type of business. On Aeris Neo, there are two user roles,
namely standard user and account manager. Only an account

5https://stripe.com/en-ca
6https://stripe.com/docs/api/cards/object

manager can access account management functionality of a
given account. However, all users in an account use the same
API key for authentication/authorization. A standard user can
use the shared API key to make themselves the account
manager. ResIOT provides a graphical representation of the
available credit amount in the user’s account. An attacker can
obtain information about the credit amount available in any
account in the past. The request contains a 4-digit numeric id
in the URL. However, the attack has limited impact since the
exact user for a given exposed graph cannot be determined.

C. Vulnerable Trigger-Action Functions

In TheThings.io, users can execute JavaScript code in the
Jobs, Triggers, and Functions of the Cloud Code module on
the platform’s website. These code segments are executed in
a sandbox as mentioned in the official documentation [44].
We discovered a remote code execution vulnerability on the
platform’s server, by following the steps below. Note that the
vulnerability affects all the three functionalities (Jobs, Triggers
and Functions).

When we used the require module (from Node.js) in a
JavaScript function, we obtained an error indicating that its
use is disallowed. Therefore, we tried to find more about
the sandbox library used by the platform; see Sec. III-C.
From the stack trace returned in the error message, we found
that Jailed [45] sandbox is used. We followed a coordinated
disclosure approach, wherein we were provided a perpetual
access account by the platform’s CEO for further testing.
We leveraged known sandbox bypass attacks [46] against
Jailed, to use require module inside a function to invoke
the child process (from Node.js) module, and test for remote
code execution using process.exec(). We executed the
system command id to confirm that we attained remote code
execution with root user privileges. We found that the Cloud
Codes functionality was running inside a kubernetes pod,
shared by all users on the platform. We could attain root access
on this shared pod. No further commands were executed which
could alter any existing system configuration or exfiltrate any
sensitive information.

On OpenRemote, users can write rules in Groovy program-
ming language to create event-based workflows. We found that
the functionality has not been sandboxed, and allows users to
run commands on the server itself. We verified the issue on
a local installation on Linux. We were assigned a CVE (rated
9.8/10, critical severity) for this vulnerability. Post disclosure,
the functionality has been restricted to super users, and the
developers are working on a sandbox implementation.

D. Lack of Input Validation

We found SQL injection on ResIOT’s locally-deployable
platform. We found cross-site scripting (XSS) vulnerabilities
on 16/52 evaluated platforms. On 9 of them (OpenM2M,
OneSIMCard, Favoriot, TheThings.io, AskSensors, Things-
board, Boodskap, Bevywise, DGIOT), an attacker could steal
session cookies and authentication tokens stored in browser’s
LocalStorage/SessionStorage from active user sessions via
XSS. Note that on each of these 9 platforms, we attained

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 11

stored XSS, providing an attacker perpetual access to session
cookies/tokens whenever the user visits the affected pages,
leading to account takeover. On ResIOT’s locally-deployable
platform, a user-dependent remote attacker could use cross-
site request forgery to execute arbitrary SQL queries on the
platform’s database.

On Platform X, an IoT device’s log file content is displayed
without proper sanitization. Hence, any JavaScript payload
injected into the log file can be used to trigger XSS attacks
against the corresponding user. An attacker can insert such
payloads in devices that may collect attacker-controlled inputs.
On RemoteIOT, users can execute commands to fetch files
from the devices. Similar to Platform X, an attacker could
insert XSS payloads on devices that collect attacker-controlled
inputs (remediated after our disclosure).

On KeepGo, by exploiting the unauthorized access vulnera-
bility in the SMS functionality (see Sec. V-B), an attacker can
send a JavaScript payload as an SMS message, which executes
when the IoT SIM owner views the list of sent SMS messages
on the platform’s web portal. Similarly, an unauthorized access
vulnerability in AskSensors (see Sec. V-B) allows adding
JavaScript payload in an IoT device’s description field; the
payload is executed on the browser when the victim user views
the device details. The victim’s authorization token stored in
the browser’s LocalStorage can be stolen via XSS.

On Thingspace’s Freeboard portal, a user-dependent remote
attacker can abuse CSRF to embed XSS payloads on a user’s
dashboard. Similar abuse scenarios involving use of CSRF
for injecting XSS payloads were found on OneSIMCard and
OpenM2M. On Thingsboard, an existing user can inject XSS
payloads into the user logs, which can also be accessed by an
admin user. Thus, any user can steal the admin’s authentication
token. An existing user can inject XSS payloads on Boodskap,
Bevywise and DGIOT to steal admin cookies/tokens.

Broken authentication in Aeris Neo (see Sec. V-A) can be
used to launch XSS attacks against the users by injecting
JavaScript payloads in the first/last name parameters. An
attacker could abuse broken authentication (see Sec. V-A) in
Favoriot to make forged data submissions containing XSS pay-
loads. On TheThings.io and Imvvy, an on-path attacker could
capture the authentication credentials from HTTP requests and
MQTT(without TLS) messages, respectively and abuse them
to launch XSS attacks.

E. Other Vulnerabilities

For the other vulnerabilities listed in Sec. III-E, here
we summarize the corresponding findings (detailed in Ap-
pendix B). We found cross-site request forgery on 6 platforms,
leading to account takeover and partial account modification
on 3 platforms each. ResIOT’s web-hosted platform was avail-
able on both HTTP and HTTPS (HTTP access removed post
our disclosure). Five platforms support API calls on HTTP
without TLS, enabling API key theft by on-path attackers.
Eight platforms are vulnerable to SSLStrip attacks, enabling
account takeover by on-path attackers. Secure and HTTPOnly
attributes are not set for session cookies on 7 and 10 platforms,
respectively. Five platforms return verbose error messages that

contain details about platforms’ technology stacks and internal
directory structures. Five platforms send sensitive information
such as IMEI, API keys and ICCID to third parties.

VI. DISCUSSION

In this section, we discuss our limitations, key takeaways
from our analysis, and recommendations for platform devel-
opers and users.

A. Limitations

For 14/20 platforms offering connectivity management ser-
vices, and for all the platforms offering device and/or data
management services, we performed the assessment with trial
accounts with a limited set of functionalities. Thus our findings
may represent a lower bound of the vulnerabilities. Several
platforms do not allow self-registration of user accounts, and
require manual verification (e.g., proof of business ownership)
before granting access to the platform; we excluded such
platforms. Also, most of the vulnerabilities tested and their
detection techniques are no different from those adopted in
traditional web security. However, results from our vulnera-
bility assessment demonstrate the practical consequenses of
such known issues in the IoT management platforms.

B. Key Takeaways

We draw the following key takeaways and observations from
our findings.
Platform-wide attacks. Compared to attacking a single IoT
device, the IoT platform provides a large attack surface that
encompasses a large number of registered enterprises, their
connected devices, and their users [47]. Thus, the impact of
vulnerabilities detected in the platforms is amplified signifi-
cantly. 17/52 platforms are affected by vulnerabilities leading
to platform-wide attacks.
Platform design flaws. On 9/52 platforms, user resources
are not properly isolated, which lead to unauthorized access
vulnerabilities. There needs to be a strong binding between
the device/SIM IDs and the corresponding users, along with
adequate isolation of users and their resources. Also, on 9/52
platforms, the use of short numeric/guessable IDs (e.g., 4-digit
values, SIM numbers) instead of longer IDs, coupled with
a lack of sufficient rate limiting of web requests, makes it
easier for an attacker to quickly launch enumeration/guessing
attacks against all IoT entities—enterprises, users, devices.
Furthermore, on 3/52 platforms, the absence of unique tokens
for registering SIM cards makes it possible for an attacker to
register multiple SIM cards which they don’t own. As a result,
the customers purchasing those cards would not be able to
register and activate them.
Multifaceted nature of attacks. Platform issues (broken-
authentication/unauthorized-access) can compromise IoT de-
vices, and forged data submissions containing XSS payloads
can be used to launch user-specific attacks. This highlights
the need for a more carefully considered adversary model.
For example, in Asksensors, we found a broken authentication
vulnerability on the platform that allows a remote attacker to

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 12

issue arbitrary commands to any connected device. On the
other hand, on TheThings.io, we found that it is possible
for on-path attackers to steal device authentication tokens,
and further abuse them to launch XSS attacks against the
corresponding device owners on the platform.

In addition, we observed that chaining of multiple vul-
nerabilities can be used to launch attacks with more severe
impact. For example, the SQL injection vulnerability on Re-
sIOT’s locally-deployable platform could only be performed
by platform users. However, by leveraging CSRF, a user-
dependent remote attacker could also exploit the SQL in-
jection vulnerability. Additionally, CSRF can be used as a
vector to inject XSS payloads on the victim’s web dashboard,
leading to account takeover (e.g., Bevywise, OneSIMCard
and OpenM2M). Similarly, API key theft from devices using
insecure communication (HTTP without TLS) can be used
to send forged data with XSS payloads, leading to account
takeover (e.g., TheThings.io).
Unique challenges in locally-deployable platforms. Com-
pared to a Software-as-a-Service (SasS) based web-hosted
IoT platforms, locally-deployable platforms are configured and
maintained by the enterprises using the platforms. Thus, the
administrators are responsible for performing several crucial
tasks to ensure security of their deployments. Administrators
are required to monitor available patches for newly discov-
ered vulnerabilities and deploy them in a timely manner. In
addition, administrators must harden the default installations,
which includes changing the default credentials (e.g., pass-
words, secret keys). Weak, guessable, or hardcoded passwords
are the among the top 10 security risks for IoT systems iden-
tified by OWASP [48]. Similar to IoT devices, some locally-
deployable platforms (e.g., OpenRemote, DGIOT, dojot) have
a default user account (typically with admin privileges) that
is created upon installation, with a default username and
password. If the login credentials for the default account are
not changed, an attacker can abuse this configuration flaw to
log in to the platform. Furthermore, in case a JSON web token
(JWT) is used for platform-wide authentication of an open-
source platform (e.g., in Thingsboard, Mainflux), the default
value of the signing key used to generate JWT can be obtained
from the configuration files. Enterprises deploying any such
platform must change the key’s value to a non-guessable one;
otherwise, an attacker would be able to generate valid JWTs
using the default key value (and a target user’s email/user
ID), and impersonate any user on these platform deployments.
Due to ethical considerations, we did not perform an active
measurement to determine platform deployments using default
credentials.

C. Recommendations

We propose the following recommendations for the platform
developers and their users. (1) Some platforms continue to sup-
port devices using cleartext protocols (HTTP, MQTT without
TLS). The abuse scenarios (see Sec. V-D) in such cases are
deployment-specific (i.e., depends on their users). However,
the platforms must emphasize the security implications of
such choices, and perhaps adopt strict platform-wide TLS

enforcement. (2) Data sent by devices using APIs and via
MQTT should not be assumed to be secure, and should be
appropriately validated and escaped while processing them at
the platform’s end. (3) Custom code functionalities on IoT
platforms must run inside sandboxes, which should be secured
against sandbox escape attacks. As a defense in depth measure
to limit the exploit’s impact, the custom functionality should
not run with root privileges on the server (see Sec. V-C). (4)
With regards to broken authentication in IoT SIM registra-
tion (as discussed in Sec. V-A), the IoT connectivity providers
may give a unique and randomized (alphanumeric) token to the
SIM card owner when the SIM card is purchased to ensure that
only legitimate IoT SIM card owners can add the SIM cards to
their management platform accounts. This randomized token
could be printed on the SIM card’s packaging (as observed in
case of Telnyx), or sent to the SIM owners via email or SMS.
(5) The web requests responsible for IoT SIM enumeration
must be rate-limited to make it infeasible for an attacker to
obtain valid IoT SIM numbers, which have not yet been regis-
tered on the platform (see Sec. V-A). (6) We observe that only
12/52 platforms have publicly disclosed vulnerability reporting
programs such as responsible disclosure and bug bounty; all
platforms should adopt such programs. (7) Besides fixing
the vulnerabilities that we disclosed, platform administrators
should also regularly check for new issues, e.g., using our
test framework, especially when major code changes are made
or when new functionalities are added to the platforms. (8)
Business/organization users of these platforms may also use
our framework for choosing a platform with adequate security
support, and for performing periodical security auditing. Our
findings can be used to raise awareness of potential security
and privacy issues among the users that rely on management
platforms for their IoT operations.

VII. RELATED WORK

Here, we summarize related past research in IoT cellular
connectivity, and IoT security in general.
IoT cellular connectivity. Trend Micro, in collaboration with
Europol [49], studied how IoT SIM cards from compromised
IoT devices are misused for committing cyber telecom frauds
such as subscription fraud (i.e., abusing business processes
to access sensitive data from victim’s account), and toll
fraud (i.e., initiating high volumes of expensive international
calls). Some cellular connectivity providers offer lower data
charges for IoT SIMs compared to non-IoT SIM cards. Past
research [10] has revealed that it is possible to use IoT
SIM cards of such providers outside the IoT devices (e.g.,
in a smartphone), causing financial loss to the connectivity
providers. Another study [50] uncovered several vulnerabilities
that can be exploited to launch data and text spamming attacks
against IoT SIM card owners. Big-data based algorithms have
been proposed to detect anomalous behavior in IoT SIM card
usage [51]. In a recent BlackHat presentation [11], a study
on 9 IoT platforms found vulnerabilities such as unautho-
rized access, insecure communication, and XSS. The work
covered the platforms that grant access to the website/APIs
only after purchasing SIM cards. Our concurrent study of

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 13

20 platforms providing connectivity management services un-
covered several other critical attack scenarios (e.g., account
takeover, user information disclosure, SIM registration failure,
IMEI lock reset) by exploiting vulnerabilities in key platform
functionalities. We also found that even with the limited set
of functionalities offered to trial accounts with no SIM cards,
attackers can launch platform-wide (e.g., obtaining sensitive
information of all customers), and user-specific (e.g., account
takeover) attacks.
IoT security. Past research mostly focused on specific
domains—e.g., home-automation [17], [18], [32], video-
surveillance [19], smart-buildings [25], [52]. They relied on
vendor-specific devices and mobile companion applications,
and as such, did not cover all the platform APIs compre-
hensively. Our work is device/app-agnostic, and covers both
client-side and management APIs—the latter APIs are not
covered in prior work. We also cover websites and stand-
alone APIs from a variety of IoT platforms: consumer IoT
(e.g., Tuya), enterprise IoT (e.g., thethings.io, Kaa IoT), and
industrial IoT (e.g., Siemens’ Mindsphere, Fogwing), and
more generic IoT platforms (e.g., AWS, Azure). Also, we
tested both web-hosted as well as locally-deployable platforms
(the latter ones were not analyzed for security vulnerabili-
ties in the past). Past work on trigger-action platforms [13]
motivated us to check for sandbox escape issues in trigger-
action functionalities on IoT platforms. Insecure ecosystem
interfaces are included in OWASP’s list of top 10 security
issues in IoT systems [48]. The websites and web APIs of
IoT management platforms are among the most vital interfaces
and vulnerabilities in them can be abused to target a large
set of users and their devices. IoT platforms have been
compared based on the security features mentioned by the
platforms in their documentation [53]; however, no actual
security evaluation was performed. In [54], the authors discuss
twenty security considerations in cloud-supported IoT and the
state of research for them. Our study presents an experimental
evaluation of vulnerabilities in real-world IoT platforms and
how they can be exploited to cause widespread impact.

VIII. CONCLUSION

We provide a security evaluation framework for IoT man-
agement platforms which offer data management, device man-
agement and connectivity management (cellular) services for
consumer/business/industrial IoT devices. We use our frame-
work to perform a systematic review of 52 real-world IoT
management platforms. Our security analysis revealed major
unauthorized access flaws in 9 IoT management platforms.
We also uncovered other severe vulnerabilities such as broken
authentication in 13 platforms, and remote code execution on
2 platforms. All the vulnerabilities in our framework can be
exploited by attackers with no or minimal expenditure (e.g.,
to purchase trial SIM cards for connectivity management ser-
vices). We hope that our study would help the IoT management
platform developers secure their platforms against these easy-
to-launch but severe attacks.

REFERENCES

[1] B. Tejaswi, M. Mannan, and A. Youssef, “All Your IoT Devices Are
Belong to Us: Security Weaknesses in IoT Management Platforms,”
in The 13th ACM Conference on Data and Application Security and
Privacy, Charlotte, NC, United States, Apr. 2023, pp. 1–6.

[2] Findstack.com, “21 Internet of things statistics, facts & trends for 2022,”
online article (Feb 15, 2022). https://findstack.com/internet-of-things-
statistics/.

[3] Duo.com, “Critical bug in Kalay IoT protocol threatens millions of de-
vices,” online article (Aug 18, 2021). https://duo.com/decipher/critical-
bug-in-kalay-iot-protocol-threatens-millions-of-devices.

[4] Emnify.com, “What is a connectivity management platform (CMP)?”
https://www.emnify.com/iot-glossary/connectivity-management-
platform.

[5] Trend Micro Research, “The Internet of Things in the
cybercrime underground,” online article (Sept. 10, 2019).
https://documents.trendmicro.com/assets/white papers/wp-the-internet-
of-things-in-the-cybercrime-underground.pdf.

[6] Trend Micro Research Europol’s European Cybercrime Centre
(EC3), “Cyber-telecom crime report 2019,” online article (2019).
https://www.europol.europa.eu/sites/default/files/documents/cyber-
telecom crime report 2019 public.pdf.

[7] Futureiot.tech, “Wuthering heights in telecom crime against IoT,” on-
line article (July 1, 2019). https://futureiot.tech/wuthering-heights-in-
telecom-crime-against-iot/.

[8] W. Zhou, C. Cao, D. Huo, K. Cheng, L. Zhang, L. Guan, T. Liu, Y. Jia,
Y. Zheng, Y. Zhang et al., “Reviewing IoT security via logic bugs in
IoT platforms and systems,” IEEE Internet of Things Journal, vol. 8,
no. 14, pp. 11 621–11 639, Feb. 2021.

[9] T. Xie, C.-Y. Li, J. Tang, and G.-H. Tu, “How voice service threatens
cellular-connected IoT devices in the operational 4G LTE networks,” in
IEEE ICC’18, Kansas City, MO, USA, May 2018.

[10] T. Xie, G.-H. Tu, C.-Y. Li, and C. Peng, “How can IoT services pose new
security threats in operational cellular networks?” IEEE Transactions on
Mobile Computing, vol. 20, no. 8, pp. 2592–2606, 2020.

[11] A. Shaik and S. Park, “Attacks from a new front door in 4G & 5G mobile
networks,” https://i.blackhat.com/USA-22/Wednesday/US-22-Shaik-
Attacks-From-a-New-Front-Door-in-4G-5G-Mobile-Networks.pdf.

[12] Y. Li, Y. Yang, X. Yu, T. Yang, L. Dong, and W. Wang, “IoT-
APIScanner: Detecting API unauthorized access vulnerabilities of IoT
platform,” in ICCCN’20, Honolulu, HI, USA, Aug. 2020.

[13] Mohammad M. Ahmadpanah and Daniel Hedin and Musard Balliu and
Lars Eric Olsson and Andrei Sabelfeld, “SandTrap: Securing JavaScript-
driven Trigger-Action platforms,” in USENIX Security Symposium, On-
line, Aug. 2021.

[14] Emnify.com, “What is SIM state management and why does it mat-
ter?” online article (Dec 10, 2020). https://www.emnify.com/blog/sim-
lifecycle-management.

[15] Avsystem.com, “IoT device management: definition and fundamen-
tals,” online article (Aug 28, 2020). https://www.avsystem.com/blog/iot-
device-management/.

[16] N. Naik, “Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP,” in IEEE ISSE’17. IEEE, 2017,
pp. 1–7.

[17] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based IoT deployments,” in IEEE Symposium on
Security and Privacy, San Francisco, CA, USA, May 2019.

[18] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in IEEE Symposium on Security and Privacy,
San Jose, CA, USA, May 2016.

[19] J. Obermaier and M. Hutle, “Analyzing the security and privacy of cloud-
based video surveillance systems,” in ACM IoTPTS’16, Xi’an, China,
May 2016.

[20] D. Wang, J. Ming, T. Chen, X. Zhang, and C. Wang, “Cracking IoT
device user account via brute-force attack to SMS authentication code,”
in Workshop on Radical and Experiential Security, Incheon, South
Korea, Jun. 2018.

[21] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the mirror:
Evaluating IoT device security through mobile companion apps,” in
USENIX Security Symposium, Santa Clara, CA, USA, Aug. 2019.

[22] X. Jiang, M. Lora, and S. Chattopadhyay, “An experimental analysis of
security vulnerabilities in industrial IoT devices,” ACM Transactions on
Internet Technology (TOIT), vol. 20, no. 2, pp. 1–24, May 2020.

[23] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action IoT platforms,” in ACM
CCS’19, London, UK, Nov. 2019.

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 14

[24] J. Chen, C. Zuo, W. Diao, S. Dong, Q. Zhao, M. Sun, Z. Lin, Y. Zhang,
and K. Zhang, “Your IoTs are (not) mine: On the remote binding
between IoT devices and users,” in IEEE/IFIP DSN’19, Portland, OR,
USA, Jun. 2019.

[25] L. Rondon, L. Babun, A. Aris, K. Akkaya, and A. Uluagac, “Light-
ningStrike: (in)secure practices of E-IoT systems in the wild,” in ACM
WiSec’21, Abu Dhabi, United Arab Emirates, 2021.

[26] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site
request forgery,” in ACM CCS’08, Alexandria, VA, USA, Oct. 2008.

[27] K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter: Au-
tomated black-box auditing for web authentication and authorization
flaws,” in ACM CCS’20, Online, Nov. 2020.

[28] P. Gadient, M. Ghafari, M. Tarnutzer, and O. Nierstrasz, “Web APIs in
android through the lens of security,” in IEEE SANER’20, London, ON,
Canada, Feb. 2020.

[29] Github.com, “Auth Analyzer,” https://github.com/portswigger/auth-
analyzer.

[30] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic discovery
of vulnerable authorizations in online services,” in ACM CCS’17, Dallas,
TX, USA, Oct. 2017.

[31] P. Pistek and M. Hudec, “Using SMS for Communication with IoT
Devices,” Mobile Networks and Applications, vol. 25, no. 3, pp. 896–
903, Jun. 2020.

[32] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang,
“Discovering and understanding the security hazards in the interactions
between IoT devices, mobile apps, and clouds on smart home platforms,”
in USENIX Security Symposium, Santa Clara, CA, USA, Aug. 2019.

[33] Thethings.io, “Cloud Code Triggers,” https://developers.thethings.io/
docs/cloud-code-triggers#setup-alarm.

[34] O. Alrawi, C. Zuo, R. Duan, R. Kasturi, Z. Lin, and B. Saltaformaggio,
“The betrayal at cloud city: An empirical analysis of cloud-based mobile
backends,” in USENIX Security Symposium, Santa Clara, CA, USA, Aug.
2019.

[35] P. P. Ray, “A survey of IoT cloud platforms,” Future Computing and
Informatics Journal, vol. 1, no. 1-2, pp. 35–46, 2016.

[36] H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, “Survey of platforms
for massive IoT,” in IEEE International Conference on Future IoT
Technologies, Eger, Hungary, Jan. 2018.

[37] J.-Y. Yu and Y.-G. Kim, “Analysis of IoT platform security: A survey,”
in International Conference on Platform Technology and Service, Jeju,
South Korea, Jan. 2019.

[38] M. Zdravković, M. Trajanović, J. Sarraipa, R. Jardim-Gonçalves,
M. Lezoche, A. Aubry, and H. Panetto, “Survey of Internet-of-Things
platforms,” in International Conference on Information Society and
Techology, Barcelona, Spain, Mar. 2016.

[39] Portswigger.net, “Burp Suite,” https://portswigger.net/burp.
[40] Github.com, “CSRF Scanner,” https://github.com/portswigger/csrf-

scanner.
[41] ——, “Bettercap,” https://github.com/bettercap/bettercap.
[42] ——, “Error Message Checks,” https://github.com/augustd/burp-suite-

error-message-checks.
[43] Threatpost.com, “Man convicted of illegally accessing AT&T

servers by ’impersonating’ an iPad,” online article (Nov. 21, 2012).
https://threatpost.com/man-convicted-illegally-accessing-att-servers-
impersonating-ipad-112012/77236/.

[44] TheThings.io, “Cloud code sandbox,” https://developers.thethings.io/
docs/cloud-code-sandbox.

[45] Github.com, “Jailed — flexible JS sandbox,” https://github.com/asvd/
jailed.

[46] ——, “Node.js sandbox is broken,” https://github.com/asvd/jailed/
issues/33.

[47] X. He, Y. Yang, W. Zhou, W. Wang, P. Liu, and Y. Zhang, “Fingerprint-
ing mainstream IoT platforms using traffic analysis,” IEEE Internet of
Things Journal, vol. 9, no. 3, pp. 2083–2093, 2021.

[48] Owasp.org, “OWASP Internet of Things Project,” https://wiki.owasp.org/
index.php/OWASP Internet of Things Project#tab=IoT Top 10.

[49] Gibson, Craig, “Toll Fraud, International Revenue Share Fraud and
More: How Criminals Monetise Hacked Cellphones and IoT Devices
for Telecom Fraud.”

[50] S. Wang, G. Tu, X. Lei, T. Xie, C. Li, P. Chou, F. Hsieh, Y. Hu,
L. Xiao, and C. Peng, “Insecurity of operational cellular IoT service:
new vulnerabilities, attacks, and countermeasures,” in MobiCom ’21,
Louisiana, New Orleans, USA, Oct. 2021.

[51] T. Zhang, H. Li, L. Xu, J. Gao, J. Guan, and X. Cheng, “Comprehensive
IoT SIM card anomaly detection algorithm based on big data,” in IEEE
International Conferences on Ubiquitous Computing & Communications
(IUCC) and Data Science and Computational Intelligence (DSCI) and

Smart Computing, Networking and Services (SmartCNS), Shenyang,
China, Oct. 2019.

[52] L. P. Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac,
“Survey on enterprise Internet-of-Things systems (E-IoT): A security
perspective,” Ad Hoc Networks, vol. 125, no. C, Feb. 2022.

[53] G. Fortino, A. Guerrieri, P. Pace, C. Savaglio, and G. Spezzano, “IoT
platforms and security: An analysis of the leading industrial/commercial
solutions,” Sensors, vol. 22, no. 6, Mar. 2022.

[54] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty security
considerations for cloud-supported internet of things,” IEEE Internet of
things Journal, vol. 3, no. 3, pp. 269–284, 2015.

APPENDIX A
SUPPLEMENTARY INFORMATION

Table IV contains the list of CVE-IDs assigned by MITRE
for the vulnerabilities we found in locally-deployable plat-
forms. Table V provides an overview of the analyzed plat-
forms. Note that for some services, access to the website/web
APIs was restricted to active subscription holders. We did
not analyze those services where obtaining such subscription
was not feasible. When the platform seeks company details
such as company name and/or company email id while setting
up an account, we consider that the account is an enterprise
account. Otherwise, we consider that the account is a regular
account. The type of account relates to the category of users
(individual or enterprise) affected by the vulnerabilities found
on the platforms.

APPENDIX B
OTHER VULNERABILITIES

A. Cross-site request forgery

Cross-site request forgery (CSRF [26]) can lead to user-
specific attacks such as account takeover and partial account
modification. We use CSRF Scanner [40] Burp extension
to passively detect CSRF vulnerabilities. We remove false
positives by checking the presence of custom headers in
the web requests. On OneSIMCard, a user-dependent remote
attacker can craft a form for password modification and trick
a user to submit the form during their active session, thereby
taking over the user account. Thereafter, the attacker would be
able to perform critical IoT SIM management tasks such as
SIM activation/deactivation, IMEI lock removal and IoT SMS
delivery. On Bevywise and Thingspace’s Freeboard portal,
CSRF can be abused to inject XSS payload on a user’s
dashboard; on Bevywise, it leads to account takeover. On
ResIOT, an attacker can target the platform’s admin via CSRF
to perform SQL injection. On OpenM2M, an attacker with the
knowledge of the victim’s 6-digit subscription ID can suspend
the victim’s IoT SIM card. However, the attacker would need
to include the victim’s 6-digit subscription identifier value
in the attack form. On GlobalM2MSIM, an attacker can
modify the victim’s profile details such as contact information,
delivery address and company VAT number using CSRF. Since
we did not have an active subscription for GlobalM2MSIM,
we could not validate other abuse scenarios.

B. Insecure communication

We check if the platforms use HTTP by default, and if the
platforms return valid responses to web requests made over

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 15

TABLE IV
OVERVIEW OF THE CVE-IDS ASSIGNED FOR VULNERABILITIES DISCOVERED IN LOCALLY-DEPLOYABLE PLATFORMS

CVE-ID Platform
Name

Base
Score Severity Underlying

Vulnerability
CVE-2022-31860 OpenRemote 9.8 Critical Missing sandbox for trigger-action function
CVE-2022-34020 ResIOT 8.8 High Cross-site request forgery
CVE-2022-35135 Boodskap 8.8 High Broken authentication
CVE-2022-34022 ResIOT 7.2 High SQL injection
CVE-2022-35136 Boodskap 6.5 Medium Broken authentication
CVE-2022-31861 Thingsboard 5.4 Medium Cross-site scripting
CVE-2022-35137 DGIOT 5.4 Medium Cross-site scripting
CVE-2022-34021 ResIOT 5.4 Medium Cross-site scripting
CVE-2022-35612 Bevywise 5.4 Medium Cross-site scripting
CVE-2022-35134 Boodskap 5.4 Medium Cross-site scripting
CVE-2022-35611 Bevywise 4.3 Medium Cross-site request forgery

HTTP, or allows MQTT without TLS. We also check if a
platform is vulnerable to SSLStrip attack by using Bettercap
v1.6.2 [41]. Upon requesting ResIOT’s website using HTTP,
the server does not redirect the user to HTTPS (fixed post our
disclosure), in which case, sensitive information such as login
credentials, SIM details, API tokens are transmitted in cleartext
via HTTP. Data transmission without TLS is supported on 3
platforms via HTTP APIs and on 10 platforms via MQTT. If
an IoT device is erroneously configured to use HTTP/MQTT
(without TLS), the IoT device would send data to the platform
over cleartext, enabling attacks such as API key theft by on-
path attackers. 10 platforms’ websites do not set HSTS header
in the web responses. We use Bettercap to confirm if the
SSLStrip attack could be launched on these platforms against
the accounts owned by us; 8 platforms are confirmed to be
vulnerable (i.e., login username and password can be captured
by an on-path attacker). On the remaining 2 platforms lacking
HSTS, the attack failed due to the use of custom headers. TLS
implementation is deployment-specific for locally-deployable
platforms. Using Censys.io, we found7 several instances of
internet exposed deployments that allow insecure communi-
cation via HTTP (without TLS): Thingsboard (1938/2206),
DGIOT (119/130), OpenRemote (57/57), Mainflux (26/28),
dojot (22/23); several deployments allow insecure communi-
cation via MQTT (without TLS): Thingsboard (1446/2206),
DGIOT(105/130), OpenRemote (7/57), Dojot (2/23).

C. Misconfigured cookie attributes

We check the following cookie attributes, which must be set
for securing session cookies: (a) the Secure attribute, which
instructs the browser to send the cookie only with HTTPS
requests, to prevent cookies from being exposed to on-path
attackers; and (b) the HTTPOnly attribute, to make cookies
inaccessible to client-side scripts, for preventing cookies from
being stolen via cross-site scripting attacks. 11 web-hosted
platforms have inadequately protected session cookies; the
Secure attribute, and the HTTPOnly attribute were not set in
7 and 10 platforms, respectively; both attributes were missing
in 6 platforms. On locally-deployable platforms, the Secure
attribute is linked to TLS implementations (measurement on

7This is measured by checking standard open ports (port 80/8080 for HTTP
and 1883 for MQTT), captured by Censys.io on each deployment as on Sept.
1, 2022.

internet exposed deployments require user logins, not per-
formed due to ethical considerations). HTTPOnly was not set
on session cookies of 4 locally-deployable platforms.

D. Information disclosure via error messages

Thingspace, ClearBlade, KeepGo, AskSensors and Aeris
Neo return verbose error messages upon supplying invalid
input in web requests, revealing internal paths and stack
trace. More importantly, Thingspace leaks the Base64 en-
coded authentication credentials (easily decoded to reveal the
plaintext username/password) in a verbose error message.
The stack trace indicates that the leaked credentials are
used for sending authenticated requests to an internal host
(b2bservices.vzwcorp.com).

E. Information leakage to third parties

On Hologram, Fullstory (session recording script) captures
sensitive information, including credit card details of users
(fixed at the time of writing). On Telnyx, customer names
and shipping addresses are sent to Fullstory and user details
such as name, phone number, company name and address
are sent to api-iam.intercom.io. On TheThings.io, details sent
to api-iam.intercom.io include user’s name, email, phone
number, and the authentication token for the user’s devices.
On Emnify, third-party analytics scripts (Mixpanel and Heap-
analytics) capture information such as email ID, organization
ID and IMSI. On SIMcontrol, the API key used for IoT
SIM management is sent to sentry.io. SIMControl responded
that they have configured server-side scrubbing of sensitive
information on sentry.io.

Bhaskar Tejaswi received the M.A.Sc. degree in
information systems security from Concordia Uni-
versity, Montreal, QC, Canada. In this program,
his research focused on two domains, namely, IoT
security and phishing. He has industry experience
in vulnerability assessment and penetration testing,
cloud security assessment, and secure configuration
review of network devices.

IEEE INTERNET OF THINGS JOURNAL , VOL. 00, NO. 0, ABC 2023 16

TABLE V
LIST OF EVALUATED IOT MANAGEMENT PLATFORMS. ✓ INDICATES THAT THE GIVEN SERVICE IS OFFERED BY THE PLATFORM AND ANALYZED IN THIS

WORK. ✓* INDICATES THAT THE SERVICE IS OFFERED BY THE PLATFORM, BUT NOT ANALYZED IN THIS WORK; NOTATION USED FOR
LOCALLY-DEPLOYABLE PLATFORMS – (O): OPEN-SOURCE, (C): CLOSED-SOURCE.

Platform
Name

Platform
Type

Account
Type

Connectivity
Management

Device
Management

Data
Management

Azure IoT Web-hosted Regular ✓ ✓
AWS IoT Core Web-hosted Regular ✓ ✓
Verizon’s Thingspace Web-hosted Enterprise ✓ ✓*
Telus IoT Web-hosted Enterprise ✓
Platform X Web-hosted Regular ✓ ✓
Tuya Web-hosted Enterprise ✓ ✓*
Sierra Wireless Web-hosted Enterprise ✓ ✓ ✓*
Cumulocity Web-hosted Enterprise ✓ ✓
Telenor Web-hosted Enterprise ✓
Truphone Web-hosted Enterprise ✓
Telnyx Web-hosted Enterprise ✓
Socketxp Web-hosted Regular ✓
Siemens’ Mindsphere Web-hosted Enterprise ✓ ✓
Aeris Neo Web-hosted Regular ✓ ✓*
Bosch IoT Suite Web-hosted Enterprise ✓ ✓
RemoteIOT Web-hosted Regular ✓
ClearBlade Web-hosted Enterprise ✓
OneSIMCard Web-hosted Enterprise ✓
Hologram Web-hosted Enterprise ✓
Emnify Web-hosted Enterprise ✓
Blynk Web-hosted Regular ✓ ✓
Thinger Web-hosted Regular ✓
Soracom Web-hosted Enterprise ✓
KeepGo Web-hosted Enterprise ✓
GigSky Web-hosted Enterprise ✓
Kaa Web-hosted Enterprise ✓ ✓
Pelion Web-hosted Regular ✓* ✓
Tago Web-hosted Enterprise ✓
Favoriot Web-hosted Enterprise ✓
SIMcontrol Web-hosted Enterprise ✓
TheThings.io Web-hosted Enterprise ✓ ✓
MDash Web-hosted Regular ✓ ✓
Luner Web-hosted Regular ✓
Fogwing Web-hosted Enterprise ✓* ✓
AskSensors Web-hosted Regular ✓ ✓
CSL Web-hosted Regular ✓
GlobalM2MSIM Web-hosted Enterprise ✓
Aikaan Web-hosted Enterprise ✓
Imvvy Web-hosted Enterprise ✓
Open M2M Web-hosted Enterprise ✓
ResIOT Web-hosted Enterprise ✓
Thingsboard Web-hosted Enterprise ✓ ✓
ResIOT (C) Locally-deployable Enterprise ✓
Thingsboard (O) Locally-deployable Regular ✓ ✓
OpenRemote (O) Locally-deployable Regular ✓
Boodskap (O) Locally-deployable Regular ✓ ✓
Bevywise (C) Locally-deployable Regular ✓
DGIOT (O) Locally-deployable Regular ✓
Mainflux (O) Locally-deployable Regular ✓
Zeus IOT (O) Locally-deployable Regular ✓
IoTGateway (O) Locally-deployable Regular ✓
Dojot (O) Locally-deployable Regular ✓ ✓

Mohammad Mannan is a Professor with the Con-
cordia Institute for Information Systems Engineer-
ing, Concordia University, Montreal, QC, Canada.
His current research interests include Internet and
systems security, with a focus on solving high-
impact security and privacy problems of today’s
Internet. Dr. Mannan is involved with several
well-known conferences (e.g., Program Committee:
USENIX Security 2022, 2018, ACM CCS 2019,
2016; the Program Co-Chair: ACM SPSM 2016, the
General Co-Chair: ACM CCS 2018), and journals

(e.g., ACM Transactions on Privacy and Security, the IEEE Transactions on
Dependable and Secure Computing, and the IEEE Transactions on Information
Forensics and Security).

Amr Youssef received the B.Sc. and M.Sc. de-
grees from Cairo University, Cairo, Egypt, in 1990
and 1993 respectively, and the Ph.D. degree from
Queens University, Kingston, ON, Canada, in 1997.
Dr. Youssef is currently a professor at the Concor-
dia Institute for Information Systems Engineering
(CIISE) at Concordia University, Canada. Before
joining CIISE, he worked for Nortel Networks, the
Center for Applied Cryptographic Research at the
University of Waterloo, IBM, and Cairo University.
His research interests include cryptology, cyberse-

curity, and cyber-physical systems security. He has more than 230 referred
journal and conference publications in areas related to his research interests.
He was the co/chair for Africacrypt 2013 and Africacrypt 2020, the conference
Selected Areas in Cryptography (SAC 2014, SAC 2006 and SAC 2001).

