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JavaScript is often rated as the most popular programming language for the development of both client-
side and server-side applications. Because of its popularity, JavaScript has become a frequent target for
attackers who exploit vulnerabilities in the source code to take control over the application. To address these
JavaScript security issues, such vulnerabilities must be identified first. Existing studies in vulnerable code
detection in JavaScript mostly consider package-level vulnerability tracking and measurements. However,
such package-level analysis is largely imprecise as real-world services that include a vulnerable package may
not use the vulnerable functions in the package. Moreover, even the inclusion of a vulnerable function may
not lead to a security problem, if the function cannot be triggered with exploitable inputs. In this paper, we
develop a vulnerability detection framework that uses vulnerable pattern recognition and textual similarity
methods to detect vulnerable functions in real-world JavaScript projects, combined with a static multi-file
taint analysis mechanism to further assess the impact of the vulnerabilities on the whole project (i.e., whether
the vulnerability can be exploited in a given project). We compose a comprehensive dataset of 1,360 verified
vulnerable JavaScript functions using the Snyk vulnerability database and the VulnCode-DB project. From
this ground-truth dataset, we build our vulnerable patterns for two common vulnerability types: prototype
pollution and Regular Expression Denial of Service (ReDoS). With our framework, we analyze 9,205,654
functions (from 3,000 NPM packages, 1892 websites and 557 Chrome Web extensions), and detect 117,601
prototype pollution and 7,333 ReDoS vulnerabilities. By further processing all 5,839 findings from NPM
packages with our taint analyzer, we verify the exploitability of 290 zero-day cases across 134 NPM packages.
In addition, we conduct an in-depth contextual analysis of the findings in 17 popular/critical projects and study
the practical security exposure of 20 functions. With our semi-automated vulnerability reporting functionality,
we disclosed all verified findings to project owners. We also obtained 25 published CVEs for our findings,
19 of them rated as “Critical” severity, and six rated as “High” severity. Additionally, we obtained 169 CVEs
that are currently “Reserved” (as of Apr. 2023). As evident from the results, our approach can shift JavaScript
vulnerability detection from the coarse package/library level to the function level, and thus improve the
accuracy of detection and aid timely patching.
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1 INTRODUCTION
JavaScript is a programming language used in 97.5% of all web applications [120]. Such applications
provide users with direct access to the source code, and are therefore a very common target for
attackers. According to GitHub [9] and StackOverflow [111], JavaScript has been a dominating
language for software development for at least the last 7 years. Moreover, JavaScript language
can be used in both client-side and server-side applications, and has a large amount of frequently
used development frameworks, such as React (reactjs.org), Angular (angular.io), Vue.js (vuejs.org)
(client-side) and Express.js (expressjs.com), Koa (koajs.com), Nest.js (nestjs.com) (server-side).

Due to its wide usage, JavaScript is a very common target for attackers. Client-side attacks
occur on a user’s system when the user initiates malicious actions knowingly (as an attacker),
or unknowingly (as a victim). These attacks exploit vulnerabilities in the client-side JavaScript
code, which is fully accessible to the user. Client-side attacks include Cross-site Scripting (XSS),
data infiltration, content injection, etc. In contrast, server-side attacks target the vulnerabilities in
server-based JavaScript applications that manage databases, web/mail/file servers, etc. These attacks
include SQL injection, improper access control, authentication bypass, Denial of Service (DoS),
etc. The consequences of exploiting vulnerabilities in JavaScript source code include information
theft or forgery [4], malicious code injection [109], redirection to attacker-controlled sources [88],
disruption of an application functionality [89] and much more.
Previous work [3, 17, 18, 23, 27, 126, 127, 131] on JavaScript vulnerabilities mostly cover the

propagation of vulnerable NPM packages among real-world projects, primarily based on the project
dependency information. While such work is very useful in identifying projects with vulnerable
dependencies, they do not provide fine-grained information on using actual vulnerable functions
from the vulnerable packages. This leads to the flagging of projects as vulnerable due to their use
of vulnerable dependencies, when in reality, many such projects (73.3% according to Zapata et
al. [126]) are not vulnerable as they do not actually use the vulnerable functions.
On the other hand, only a few studies rely on code-based approaches for JavaScript vulnera-

bility detection. Ferenc et al. [30] use static code metrics, generated for each function by static
analysis tools (OpenStaticAnalyzer [85] and escomplex [28]), as features for machine learning (ML)
algorithms that predict the probability of the function being vulnerable. Mosolygó et al. [79] use
generalized representations of code lines, and calculate vulnerability likelihood based on cosine
distance between vulnerable and analyzed code lines. However, results from both approaches are
not very encouraging (F1-measure of 0.7 for [30], and 97.3% false positives for [79]).
The issue of insufficient vulnerable code datasets also hinders research in this area. Ferenc et

al. [30] compiled the first publicly accessible dataset of JavaScript functions which includes 1,496
functions marked as vulnerable. Later, Mosolygó et al. [79] reduced the dataset from [30] to 443
vulnerable functions by manually filtering out false positives. We still found several non-vulnerable
functions in this filtered dataset after briefly examining them manually.

The objective of our study is to assess active JavaScript projects in the real-world to find vulnerable
functions in their source code. We gather JavaScript code from three different sources: NPM
packages, Chrome web extensions, and top popular websites. Then we develop a vulnerability
detection framework based on the following approaches: (1) vulnerable pattern recognition, which
uses our manually developed patterns to perform a semantics-based search in code; (2) search based
on textual similarity, which uses content-sensitive and cryptographic hash comparison; and (3)
static taint analysis to verify the exploitability of the vulnerability.

For the first approach, we utilize a static analysis tool Semgrep [97], which allows us to develop
advanced patterns based on JavaScript semantics. For the second one, we tokenize each function
from vulnerable and real-world datasets and generate a content-sensitive hash value using the
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SimHash [1] algorithm along with a SHA-1 cryptographic hash value. For each hash value from
the real-world dataset, we then search for matches in the vulnerable function dataset. In the third
approach, we develop a static taint analysis tool to verify that a flagged vulnerability is reachable by
an attacker in the related project. We combine an Abstract Syntax Tree (AST) representation with
our proposed File Dependency Graph (FDG), which enables multi-file taint-tracking. By combining
these three approaches into a vulnerability detection and verification framework, we achieve good
scalability from the first two approaches, and excellent precision from the third one.
Contributions. Our contributions can be summarized as follows:
(1) We automatically crawl for vulnerable JavaScript functions from Snyk [103] and VulnCode-

DB [34], allowing us to add the newly reported vulnerable functions and keep our dataset up-
to-date. Then, we create vulnerability patterns and a web-based tool for efficient manual ver-
ification of vulnerable functions. In the end, we compose an informative, semi-automatically
verified dataset of 1,360 JavaScript vulnerable functions.

(2) We develop an experimental vulnerability detection and verification framework that consists
of the combination of pattern and textual-similarity-based approaches, and of a static taint
analyzer with a novel representation of file dependency graphs. The framework includes our
manually developed rule sets for vulnerable pattern detection of two common JavaScript
vulnerability types: prototype pollution and Regular expression Denial of Service (ReDoS).

(3) We gather a large dataset of 9,205,654 JavaScript functions from active real-world projects from
three different application types (NPM packages, Chrome extensions, and top websites). This
collection process is also fully automated. We use this dataset in our evaluation framework.

(4) We detect 124,934 vulnerable functions with an estimated average precision of 94.5% (based
on manual verification of a small subset). We perform a case study on 17 popular/critical
projects that contain 20 vulnerable functions; all these functions flagged by our framework
are found to be, indeed, exploitable.

(5) With our taint analysis, we identify 301 cases from 134 NPM packages (5.7% of all findings
in NPM packages), which are exploitable in the project context. Manual verification of 100
cases detected no false positives produced by the taint analysis mechanism.

(6) To deal with a large number of disclosure notices, we develop a semi-automated technique
to report our findings. We firstly search for duplicates of our findings in the CVE database
(and identify 19 cases), and then automatically compose readable vulnerability reports for
the remaining 290 findings and send them to 112 responsible project developers. For 11 of
these findings, we received a response from the developers, who are expected to submit these
findings for CVEs through the GitHub Security Advisory [44]; we submitted the remaining
279 cases directly to MITRE [78].

(7) We obtain 25 published CVE IDs as of writing (Apr. 2023), with 19 severity scores “Critical”
and six scores “High”. Additionally, we obtain 169 CVE IDs that are currently in the “Reserved”
status. We are working with the package owners to responsibly publish the CVEs.

(8) We open-source our framework code and datasets at: https://github.com/Marynk/JavaScript-
vulnerability-detection.

Differences with the ACM ASIACCS version [63]. This article is built on our initial findings re-
ported in our conference publication. We make the following substantial changes. (1) We extend our
initial framework with a static taint analyzer to effectively verify the exploitability of the identified
vulnerable functions in NPM packages. For this approach, we develop our own data representation
called File Dependency Graph to achieve multi-file tainting (to the best of our knowledge, no such
functionality is present in open source taint analyzers for JavaScript) and combine it with an AST
representation. As a result of applying the extended approach to 5,389 findings from NPM packages,
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we verify the exploitability of 309 findings (from 134 NPM packages). (2) We utilize our vulnerable
function detection framework (based on Semgrep patterns) for analyzing a large-scale dataset of
real-world functions, processing 8,409,742 more functions from NPM packages, web extensions, and
websites, compared to the conference paper. (3) We perform an experimental comparison of three
existing static patter-based vulnerability detectors with our Semgrep-based approach and discuss
in detail the results of the evaluation. (4) We develop a semi-automated vulnerability reporting
technique that checks for duplicates in the CVE database and sends readable reports by email to the
responsible developers. We also discuss the process of responsible disclosure of the vulnerabilities
and highlight the challenges we faced when dealing with a large number of vulnerabilities across
several projects. (5) We submitted 279 findings to MITRE [78] and received 194 CVE IDs; 25 of
them are already (as of Apr. 2023) published and have severity ratings critical (19 vulnerabilities)
and high (six vulnerabilities).

2 BACKGROUND
In this section, we provide a brief background on vulnerability detection based on static analysis,
and the JavaScript vulnerability types that we consider.

Vulnerability detection in source code is an active research area, and most existing approaches
can be classified into two main categories: static and dynamic code analysis [60]. Static source code
vulnerability analysis examines the code without running it. This approach has more coverage than
the dynamic one, as it can find vulnerable code regardless of the execution conditions. Moreover,
static analysis is usually more efficient and therefore more suitable for analyzing a large codebase.
On the other hand, static analysis tools are more likely to produce higher false positive rates, as
they do not actually follow the program logic, therefore omitting code paths that may mitigate the
vulnerability [24]. Dynamic code analysis examines an application during (or after) its execution.
Tools that use dynamic analysis for vulnerability detection are given specific rules and inputs
for the code to run with. This approach is usually more precise and accurate, however, it suffers
from such disadvantages as low code coverage, poor scalability, slow speed, etc. Additionally, taint
analysis techniques, which track the propagation of the tainted vulnerable values, can be applied
either directly to the code lines (statically), or to the program during its execution (dynamically).

2.1 Vulnerability detection with static code analysis
We divide static vulnerability analysis methods into two: (1) textual similarity approaches which
use syntactical structures of the code to reveal new vulnerable syntax based on records of previ-
ously discovered vulnerable code; and (2) semantic similarity approaches which use previously
discovered vulnerable code to extract vulnerable behaviors and develop patterns of this behavior in
an abstracted representation. We also briefly discuss the static taint analysis approach that we use
for distinguishing exploitable functions from the flagged vulnerable functions.

2.1.1 Textual similarity methods. The main principle of textual similarity methods is finding
matches between examined real-world code instances and a known vulnerable code dataset. De-
pending on the pursued similarity degree of the code, several approaches are used. To detect slightly
modified code (e.g., different layout, renamed variables), the instances are usually represented
in a generalized version, e.g., bag-of-tokens, Abstract Syntax Trees (AST), and then compared
either directly, or using transformations like cryptographic hashing or vectorization (e.g., with
Word2Vec [76]). To match code with more significant differences, other abstract representations
can be used, such as Control Flow Graphs (CFG), and Program Dependency Graphs (PDG). Some
studies [16, 49] also use context-sensitive hashing (i.e., hashes, which depend on the content)
to allow limited alterations in the examined code. However, this approach may introduce false
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positives in detecting vulnerable functions, because it cannot distinguish a vulnerable piece of
code from a patched one if the code modification is minor. This limitation is also applicable to
Machine Learning (ML) based approaches, which create signatures for code instances based on their
syntactic features, and then compare the signatures between vulnerable and targeted functions.

2.1.2 Semantic similarity methods. These methods detect semantic (functional) similarities by
searching for vulnerability patterns and can be divided into two categories based on how patterns
are developed: manual and automated. Compared to textual similarity approaches, these methods
are generally better suited to functions with significant implementation differences, as they mostly
focus on abstracted code structures without relying on the code text itself.
Manually created vulnerable patterns are developed by researchers based on their expertise.

Each vulnerable pattern targets a specific implementation of one vulnerability type (e.g., XSS,
SQL injection, DoS). Abstract code representations such as AST, and Code Property Graphs (CPG)
can also be used. However, instead of performing a direct comparison with previously reported
vulnerabilities, templates are generated based on useful properties from these representations. As
part of our work, we manually develop vulnerable patterns as well. More precisely, we utilize
Semgrep [97] – a static analysis tool, which allows us to develop patterns with regard to the
language semantics based on AST representations of the code.
Automatically extracted vulnerable patterns (or features) are usually the result of machine

learning algorithms (e.g., approaches in [91, 102]). Certain features, which are supposed to make
a function vulnerable, are extracted by analyzing a large set of the representations of known
vulnerable functions. While these tools aim to reduce manual effort, we did not choose machine
learning approaches as such algorithms rely on a large dataset of vulnerable and patched functions
with clear ground truth which, to the extent of our knowledge, does not exist for JavaScript.

2.1.3 Taint analysis. Taint analysis is a type of dataflow analysis that examines the path of input
data through a program. Specifically, inputs from defined untrusted sources (i.e., inputs that
can be controlled by the user) are tainted and followed from the “source” (an initial place in
code, where the input was introduced) to the “sink” (potentially vulnerable functionality that
can be exploited if the input is malicious). The objective is to determine whether a function
containing a potential exploit is reachable by an attacker with her chosen inputs. Therefore,
this approach requires correct identifications of “vulnerable sinks” and possible “malicious data
sources”. Taint analysis can be implemented both statically and dynamically, and we choose to use
a static approach. In terms of vulnerability detection, static taint analysis commonly refers to a
traversal through an abstracted code representation that contains information on the data nodes
and their relationships [59, 64, 67, 72]. The traversal instrument uses a set of language-specific
taint propagation rules for every operation in the code. As a result, we can determine the behavior
of the dataflow and whether the tainted input can reach a vulnerable functionality and potentially
exploit it.

2.2 JavaScript vulnerability types
For JavaScript projects, the most frequent vulnerability reports in the Snyk vulnerability data-
base [103] belong to four vulnerability groups (as enumerated in July 2021, see Table 7 in the
appendix for all vulnerability types): cross-site scripting (XSS), code injection (CI), prototype pol-
lution (PP), and Regular Expression Denial of Service (ReDoS). We discuss prototype pollution
and ReDoS, as we consider detecting these two vulnerability groups in our work for the following
reasons. (1) They belong to the list of the most frequently reported vulnerabilities. (2) Unlike
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XSS and CI, they have a very specific set of mitigating patterns, allowing the elimination of “pro-
tected” functions and therefore help us avoid false positives. (3) The implementations of both of
the vulnerability types are mostly consistent, so we can ensure good coverage.

2.2.1 Prototype Pollution. This vulnerability occurs in JavaScript when the “reserved” object keys
are reassigned. In JavaScript, all data types are essentially objects (including functions and primi-
tives). All objects have common “root” properties, which are __proto__, constructor (for objects
created using the “new” operator, e.g., new Date()), and prototype for function objects. The at-
tacker manipulates these properties by tampering with their values. Once one of the root properties
is changed for one object, it is changed for all JavaScript objects in a running application, including
those created after property tampering. The prototype pollution attack occurs when the objects
receive properties and/or values that they are not designed to have. For example, a common way to
represent a user on the server side of the web application is in an object with the following structure:
{"name": "Jane Doe", "age": 30,"education": {"primary": true, "secondary": false}}.
To change their education information, a user sends a request with the following informa-
tion: {"education": {"secondary": true}}. This data then gets recursively merged into
the user’s record. If the functionality that performs the merging operation does not check
for the validity of the received data, the attacker can send a forged request, for example:
{"__proto__": {"isAdmin": true}}.

When merging object properties, the program performs the following assignment operation:
userID.__proto__.isAdmin = true. As a result, all users in the system will inherit the isAdmin
property by default, which grants them full access to the system. Depending on the implementation,
prototype pollution vulnerability can cause several attack types, including XSS, remote code
execution, DoS, and SQL injections [25].

To avoid prototype pollution attacks, modification of an object’s root keys should be prohibited.
This can be done while creating the object: by “freezing” it so that it becomes immutable, e.g., by
using Object.create(null) which replaces the object’s prototype with null. In addition, the
developers can include explicit checks of the object properties and performed operations, where
the property names equal to __proto__, constructor and prototype.

2.2.2 Regular Expression Denial of Service. The second vulnerability type that we develop patterns
for is ReDoS. It is a specific case of a DoS attack that happens when a program runs a user’s input
through an evil regular expression [123], which takes exponential time to process specially-crafted
complex strings. This usually happens when operators in the regular expression are used in a
particular combination. For example, due to the irresponsible use of the repetition operator ‘+’ a
regular expression ˆ(([a-z])+.)+[A-Z]([a-z])+$will result in a long execution loop, which may
cause denial of service, if ran on the input ‘aaaaaaaaaaaaaaaaaaaaaaaa!’ [123]. The protection
measures for ReDoS are either sanitizing the input (e.g., limiting the length or discarding repetition
patterns), or rewriting regular expressions without using dangerous combinations of operators
(such as ‘+’ and ‘*’, ‘?’ and ‘>’, ‘?’ and ‘=’).

3 METHODOLOGY: DATASET OF VULNERABLE FUNCTIONS
To detect vulnerable JavaScript functions in the wild, we first need a dataset of such functions.
Since we are unable to find a suitable dataset, we develop one, relying on the existing approaches
for function collection, and developing our own methodology to verify the dataset.

3.1 Vulnerable function dataset preparation
In this section, we describe the process of creating our vulnerable functions dataset. First, we collect
possibly vulnerable functions from major vulnerability sources. We then analyze the collected
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Fig. 1. Vulnerable dataset compilation approach.

functions and develop an approach to assist us in vulnerability verification. Finally, we perform
a semi-automated filtering step to distinguish the truly vulnerable functions. Our approach is
depicted in Figure 1.

3.1.1 Collecting possibly vulnerable functions. We use two sources for vulnerable functions collec-
tion: Snyk vulnerability database [103] and Google VulnCode-DB project [34].
Snyk database gathers information from other vulnerability databases (e.g., NVD, CVE), from

threat intelligence systems, research and developer communities, and from scanning multiple
platforms by the Snyk security team. Then each entry is manually verified and enriched by Snyk,
and published on their website [103]. Snyk collects data for various programming languages. For
JavaScript, they store vulnerabilities from NPM packages only, even though their sources for
vulnerability collecting include other types of projects [82]. While having a large codebase (350,000
packages), the NPM repository is only one part of a massive JavaScript ecosystem, hence we
reach out to an additional JavaScript vulnerability source that collects vulnerabilities from other
environments. Like Snyk, VulnCode-DB also gathers data from CVE and NVD but additionally
includes projects beyond NPM packages. VulnCode-DB also relies on the community to add relevant
information for each vulnerability [34], as well as actual vulnerable code examples.
An entry from either of the vulnerability sources contains the following: vulnerability scores

in several categories (difficulty, impact, scope); CVE (common vulnerabilities and exposures [78])
identifier; CWE (common weakness enumeration [77]) identifier; affected project name, version,
and a short description; remediation actions; references; and other relevant information, e.g., a
detailed description of the vulnerability, and proof of concept attacks.
We develop a JavaScript program to automatically collect available JavaScript vulnerability

entries from Snyk and VulnCode-DB websites. We only collect entries that have at least one link
under the “References” section, because later we extract source code from the provided links.

We accessed Snyk and VulnCode-DB websites to collect all applicable entries for our dataset on
April 2021. The Snyk database had 2,975 entries under the category “NPM”, 2,810 of which had at
least one code reference link. In the VulnCode-DB project, there were 3,680 entries, 201 of which
were for JavaScript projects with at least one reference link.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2023.



3.1.2 Function extraction and preliminary filtering. To extract functions for our dataset, we first
collect all the links that are provided for each entry of our vulnerability sources and isolate the links
that lead to the source code. We also collect detailed metadata on each vulnerability. Out of the
3,011 collected entries with links, only four entries overlapped between Snyk and VulnCode-DB.
We then sort the reference links for each vulnerable entry into multiple categories. If an entry

has multiple references, we rank them by priority, based on our assumption that some categories
are more useful and convenient for our purposes than others (e.g., links directly leading to the
vulnerable source code), and save the link with the highest rank. Other links in the same entry
are discarded. The distribution of the remaining 2906 links by category is as follows: GitHub
commits (1291, 44.43%), Advisories (474, 16.31%), GitHub issues (244, 8.40%), Pull requests (201,
6.92%), Vulnerable code (170, 5.85%), Bug reports (123, 4.23%), and other links (403, 13.87%).

For function extraction, we take two categories of links into consideration: GitHub commits and
GitHub vulnerable code (50.3% of all links). Links of the first category point to the GitHub “diff”
page, where all code changes in the given commit are displayed with the vulnerable files on the left
and patched files on the right. Links of the second category point to a specific vulnerable file and
include a range of lines that contain vulnerable code. The function extraction process from GitHub
commits and GitHub vulnerable code is straightforward, while other categories of the links either
do not contain the source code or have too many unrelated code parts that cannot be automatically
filtered (e.g., pull request links). We extract functions from GitHub commits as follows. First, for
each commit link, we use GitHub REST API to get vulnerable and patched versions of the committed
files, along with positions of code lines that were modified (added, deleted, or changed). Secondly,
we parse both versions of files with espree [31] and receive the range of each function (first and
last symbol positions in the string). Lastly, we extract all functions with modified lines within their
range. We also collect nested functions that include modified lines.

Links of GitHub’s “vulnerable code” type contain a modified line range at the end, in the format
“#Li-j”, where i is the first affected line, and j – the last. We save the modified line range and retrieve
code from the same link using a GitHub REST API. We then repeat the procedure of function
extraction same as for commit links.
For each vulnerability entry, we place the affected files in the “files” property (see Figure 2). If

the link category is “GitHub commit”, we include references to both vulnerable and fixed files
(“link” and “fixedLink” properties) and a list of extracted functions in “vulnerable-fixed” pairs
(“affectedFunctions” property). For “vulnerable code” links, we just add a vulnerable link to the
“files” property, and vulnerable functions in the “affectedFunctions” property.

After collecting these possible vulnerability entries, we perform preliminary filtering to remove
the following: (1) test files (links to such files contained “spec.js” or “test” keywords); (2) files that
do not contain JavaScript functions; (3) empty functions (with no body); and (4) cases where the
code snippets for both the vulnerable and fixed functions were identical.1
After filtering, the number of functions from Snyk and VulnCode-DB “GitHub commit” links

reduced to 4,288 (from 9,552) and 184 (from 538), respectively; “vulnerable code” functions remained
unaffected (169). At this point, our dataset contains 4,870 functions (from 895 entries). We also group
entries by vulnerability type. Note that we clustered 116 vulnerability types into 25 generalized
groups—e.g., code injection group includes SQL, template, hash, and content injection; and procedure
bypass group includes sandbox, signature, and authentication bypass. The most frequently reported
vulnerabilities are XSS (228 entries), command injection (167 entries), ReDoS (121 entries), and
prototype pollution (101 entries); see Table 7 in the appendix.

1This happened when, even though the range of the function overlapped with the range of affected lines, modified parts
belonged to a different function – such as where one function ends and another one begins on the same line.
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Fig. 2. Structure of an entry in our vulnerable function dataset.

Following a similar approach, Ferenc et al. [30] produced a dataset of 1,456 vulnerable functions;
however, at least 1,013 of these functions are in fact not vulnerable [79]. We identify two main
reasons for this: (i) not considering cases with identical vulnerable and fixed functions–i.e., item (4)
above; and (ii) not excluding the non-vulnerable functions from commits, where a given commit
includes patched functions along with several unrelated/new functions. The second case is difficult
to resolve automatically as it requires a clear distinction of vulnerable functions from the rest,
which we address using a semi-automated verification step (see Sec. 3.3).

3.2 Manual verification of vulnerable functions
To perform further verification, we develop a web application that makes manual verification faster
and easier. We upload our collected data to the web interface, which allows us to easily navigate
between entries, files, and functions. For each function, the objective is to make a decision, on
whether the function is vulnerable or not. For that, we examine the vulnerability description and the
differences between vulnerable and fixed functions. If necessary, we also check Snyk and GitHub
for additional information (sometimes other technical sources: e.g., blog articles, relevant forums)
to make a concrete decision for each entry.
With help of our tool, we manually analyzed 150 vulnerability entries (∼17% of the collected

data) and found that, while some vulnerability types do not have any consistent patterns (each
case is very specific to each project), others are often implemented in a similar way. Based on
this observation, we implement a pattern-based detection approach for the functions that follow
specific patterns. For these functions, the manual verification process involves less scrutiny than
for other functions.

3.3 Semi-automated function verification
To improve the efficiency of the verification of vulnerabilities in our collected functions we develop
an approach that uses vulnerable pattern search to detect functions of certain vulnerability types.
For that, we utilize the Semgrep [97] static analysis tool, which performs an advanced semantic
search in code based on provided patterns. Semgrep can understand variables and structures unlike
a simple grep search. Thus Semgrep can also detect patterns in minified (and, in most cases, uglified)
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Fig. 3. Example of a Semgrep rule for prototype pollution.

code. Note that this does not apply to the obfuscated code, as the syntax and semantics may be
distorted by obfuscation.

3.3.1 Semgrep rule development for selected vulnerability types. Semgrep search is performed with
rule sets, provided in .yaml format.2 Each rule defines which patterns the tool should look for,
which to dismiss, and whether the target is inside of a specific structure or not. There are multiple
open-source rule sets for many programming languages developed by Semgrep authors, as well as
by the community. Most of them are written to find common bugs and inconsistencies in the code,
but some rule sets also target vulnerabilities.
We performed a Semgrep search with the available community rules for JavaScript on our

dataset, but unfortunately, it produced no matches. To understand the reason, we examined several
patterns from those rule sets and reached several conclusions. Some rules, while covering a certain
vulnerability type, come with patterns that are too specific. For example, a pattern requiring two
code lines to be placed together would not be triggered if other code separates them. In other
situations, our functions are simply not covered by the rules.

Therefore, we decided to develop our own rules for Semgrep pattern search. To write a Semgrep
rule, we need to create a pattern for a line (or lines) of code that we want to match. Semgrep also
allows to add conditions like: pattern-not, pattern-inside, pattern-not-inside etc. to make
rules more targeted and avoid false positives. In the end, we add meta-information to each rule to
describe the pattern. To develop rules for pattern recognition, we need to clearly understand each
targeted vulnerability type and the protection measures against the vulnerability. The inclusion of
patterns for preventive measures helps us avoid flagging fixed functions as vulnerable.
We create rule sets for several common vulnerability types, covering as many functions from

each vulnerability type as possible. However, to rely on a pattern as an indicator of a vulnerability,

2https://yaml.org/
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we need to consider the context where it appears. This proved challenging for certain vulnerability
types, such as cross-site scripting and command injection, where these vulnerabilities can be
mitigated by the surrounding context in numerous ways. As such, creating patterns for these
vulnerability types is bound to generate many false positives, which we want to avoid. Therefore,
we choose to create pattern rules only if the vulnerability has a very specific set of mitigating
patterns. Prototype pollution (11.3% of all types) and ReDoS (13.5% of all types) vulnerability types
primarily meet our selection patterns.
By understanding the vulnerability and its preventive measures described in Section 2.2.1, we

can develop Semgrep rules for prototype pollution. The pattern for this vulnerability is the object
key assignment statement, e.g., object[key] = value. The key, and possibly the value and the
object have to come to the function from the outside (through arguments, global variables, or in
another way). Thus, we add more rule properties to account for the context of the pattern, including
mitigating factors. Finally, we created seven rules with different prototype pollution scenarios. The
scenarios differ by the way the function argument gets into the property reassignment. Examples
of such scenarios are iteration through arguments with map, flatMap, forEach methods, and
Object.keys applied to one of the arguments; see Figure 3 for a rule example, along with two
vulnerable functions, targeted by the rule. Additionally, all rules and the information on them are
available on our GitHub page.3

To detect ReDoS vulnerability we utilize a tool that analyzes regular expressions and can identify
them as “evil” or “benign”. For this purpose, we choose to use the NPM module safe-regex [46].
To extract regular expressions from the functions, we utilize the AST function representation, and
collect nodes representing regular expressions, such as “new RegExp(“...”)” and “/regex/”. Then we
perform safe-regex check on each regular expression, and save the functions that are flagged.
The presence of the evil regular expression in the code is already potentially dangerous, but

we also perform a pattern search to check whether the evil regular expression is applied to a
user-supplied string. As a result, we created two Semgrep rules that account for four different
ReDoS scenarios. Figure 4 shows an example of a ReDoS rule and two different targeted functions.

3.4 Final vulnerable functions dataset
With two rule sets developed for prototype pollution and ReDoS vulnerability types, we executed a
Semgrep pattern search on the remaining unverified functions from our vulnerable function dataset.
We repeated the search several times, each time modifying the rule sets to match as many true
positives as possible while reducing the rate of false positives. We summarize the results in Table 1;
for each vulnerability type, the table includes the number of vulnerability entries, the number of
all functions in this type, how many of them were flagged by our pattern search, and how many
from all functions were then manually verified. Iteratively we adjusted our rule sets to not match
any false positives in our dataset.
Although we cannot rely on the pattern search completely and all flagged functions still need

to be manually confirmed, it does speed up the process of verification. Instead of performing an
in-depth analysis of all the available information about a given vulnerability, we simply ensure
that the flagged code is not an exception to the patterns.
During the manual verification, we observed that in some cases, the “fixed” file version that

is supposed to eliminate the vulnerability contains only partial fixes. For example, for the proto-
type pollution vulnerability, the function performs a check for the value __proto__, but not for
constructor or prototype that can still be used in a malicious way. An example of the ReDoS

3github.com/Marynk/JavaScript-vulnerability-detection/tree/main/semgrep
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Fig. 4. Example of a Semgrep rule for ReDoS.Proto. Pollution ReDoS
No. vulnerability entries 101 121
No. functions 356 582
No. functions flagged 141 68
No. functions manually verified 166 164

Table 1. Summary on the vulnerable pattern findings in our vulnerable function dataset.

partial fix scenario is when one evil regular expression is removed, but the others remain present,
or new evil regular expressions are introduced.
We had another unexpected but positive outcome from our manual validation. Since we ran a

pattern search on the whole vulnerable function dataset, and not only on the targeted vulnerability
types, the other functions were checked too, and matches were found. This means that a function
that was reported to Snyk or VulnCode-DB under one vulnerability type also has another potential
vulnerability present. In general, Semgrep search with our rule sets matched 195 prototype pollution
patterns and 121 evil regular expressions (106 of them have ReDoS patterns) in other entries. This is
an important finding, because while developers might fix a specific vulnerability after it is reported,
other vulnerable code snippets may remain unchanged (discussed more in Section 7).
As a result, from the semi-automated verification step, we confirm 1,360 unique vulnerable

functions of 43 different vulnerability type groups. This makes our dataset three times bigger than
the dataset created by Mosolygó et al. [79] and to our knowledge the biggest dataset of verified
vulnerable JavaScript functions.

4 METHODOLOGY: JAVASCRIPT VULNERABILITY DETECTION
In this section, we discuss the collection and preparation of the target dataset of real-world functions,
as well as the implementation of our JavaScript vulnerability detection and verification framework.
For an overview of the approach, see Figure 5.
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Fig. 5. Vulnerable function detection and exploitability verification approach.

4.1 Dataset of real-world functions
To collect functions from real-world projects we choose three sources: NPM packages, Chrome
web extensions, and popular websites (as per the Cisco Umbrella Popularity List [20]). In the NPM
open-source package registry, packages are mostly written in JavaScript. We extract JavaScript
files from GitHub repositories of the 3,000 most popular NPM packages.4 These data sources were
accessed between January and March of 2021.
The majority of scripts in Chrome web extensions are also written in JavaScript. To collect

JavaScript files from extensions we download and unpack the source code for the 600 most popular
extensions from Chrome Web Store. In 43 cases, our script was not able to retrieve the source code
from Chrome Web Store API, hence only 557 extensions are processed further for our dataset.
From the Cisco Umbrella popularity list, we choose the 20,000 most popular websites. After

sending an HTTP request to each website we receive a response with an HTML page. Then we
either extract the JavaScript code from the <script> tag or save JavaScript files by following the
links, defined in the same tag. In 18,108 cases the websites instead returned either a static HTML
page with no JavaScript, a response in a different format, or an HTTP error. As a result, we collected
JavaScript files for 1,892 websites.

From the crawled JavaScript files we extract all functions. The datasets contain a list of functions,
mapped with the file link of the source URL. Finally, we filter all collected data to exclude test files
(by searching for “spec.js”, “test” keywords in file links) and those functions that either had an
empty body or only one statement such as printout to a command line or return. The resulting
dataset may contain duplicate functions that belong to unique sources. A summary of the dataset
is provided in Table 2 in the first 3 columns.

4.2 Vulnerable function detection
Our primary approach for detection is vulnerable pattern search. While this procedure can detect
most of the vulnerable function variations, as long as the vulnerable pattern is present, it is limited

4We used a list of packages sorted by the frequency of their usage: https://github.com/nice-registry/all-the-package-names
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to detecting only the patterns of the vulnerable types that we cover. To extend our detection range to
the remaining vulnerabilities from our dataset, we also utilize textual similarity detection methods:
content-sensitive fuzzy hashing and cryptographic hashing, which only target near-duplicate
functions (used for completeness).

4.2.1 Vulnerable pattern search. For implementing vulnerable pattern search, we use the Semgrep
static analysis tool with the rule sets we developed for prototype pollution and ReDoS vulnerability
types; note that we also use these rule sets for a semi-automated verification of our vulnerable
function dataset (see Section 3.3).

Our search logic is implemented using JavaScript, which iterates over the real-world functions,
and for each of them executes the following steps: (1) Run Semgrep search with the rule set for
prototype pollution, and flag the function if a match is found. (2) Find and extract regular expressions
from the function. If successful, run the safe-regex module and flag the function if safe-regex
finds any evil regular expressions. (3) Run Semgrep search with the rule sets for ReDoS patterns on
functions with evil regular expressions; flag the function if the pattern is matched.
We save all flagged functions, including the projects/files where they are found. Note that for

this approach, we do not need to refer to the functions of our vulnerability dataset until we want
to find new patterns and develop additional rules.
Since our Semgrep rules are biased towards entries of our vulnerable functions dataset, it

is reasonable to expect false positive matches among the real-world functions. To improve the
precision of our approach, we make adjustments to the rules after analyzing around 100 flagged
real-world functions (i.e., adding new conditions pattern-not and pattern-not-inside).

4.2.2 Textual-similarity based approaches. We use fuzzy hash and cryptographic hash comparison
for vulnerable function detection.
Data abstraction. Before conducting the experiments with textual-similarity-based methods, we
tokenize both vulnerable and real-world functions in order to bring functions to the same generalized
format. We apply tokenization representation similar to the approach in [79]. After taking into
consideration multiple syntactic parts of JavaScript code, and deciding on their importance and
influence on the functionality, we decided to apply the following tokenization rules: (1) remove
all space characters and comments; and (2) rename all variables and arguments to unified format
(e.g., varName1, varName2). Note that we leave all punctuators, as assignments or arithmetical
operators play a vital role in the meaning of the function. We also do not generalize the primitive
variable values, such as strings, numbers, and regular expression patterns; note that we want to
account for the variable values, since the difference between numbers 0 and 1 can be crucial for the
vulnerability context (or, in the prototype pollution case, we want to check if the values of object
keys are checked in the code).
To rename function variables, we parse each function to its AST and recursively process each

node (i.e., tree leaf). In each round we look for “Variable declaration” and “Function declaration”
nodes, save their position in the function (range), and then locate and replace characters between
stored ranges. As for the arguments, we locate them by searching “Function declaration” nodes and
looking for identifiers between the parentheses that follow. Then we perform the same renaming
procedure as for variables. Figure 6 shows an example of a function and its tokenized version.
Content-sensitive hash comparison. Content-sensitive hashing (also known as fuzzy hashing),
creates a fixed-size string that reflects the content of the input. It means that, unlike cryptographic
hashing, small changes in the input result in small changes in the hash. It allows more flexibility
in the function content, so if a few lines are added, removed, or modified, the content-sensitive
hash will still be similar. It enables detecting slightly modified functions but may introduce false

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2023.



Fig. 6. Example of a function and its tokenized version.

positives or false negatives. For example, this approach cannot distinguish the difference between
vulnerable and patched functions, if the patch requires only small changes.

For fuzzy hash comparison, we use the SimHash [1] Python module. First, we create content-
sensitive hashes for all functions of real-world and vulnerable datasets using the SimHash()method.
Then we utilize the get_near_dups() method, which uses the hamming distance to compare the
hashes. SimHash allows choosing the similarity threshold, by which it decides whether to flag
hashes as near-duplicates. The value of the threshold can vary from 1 (strings are almost identical)
to 64 (strings are completely different). To minimize the false positives rate we set the threshold to
1 so that it matches only highly similar functions. Finally, if SimHash finds a match, we save the
function from the real-world dataset.
Cryptographic hash comparison. We also create SHA-1 hashes for all tokenized functions from
both vulnerable and real-world functions datasets. We then perform a search for matches: for each
hash of the tokenized function from the real-world project, we search for the same hash in the
vulnerable function dataset. Finally, we save the real-world function and its source link, if a hash
match is found.

4.3 Exploitability verification
In this section, we provide details of our design and implementation of a static taint analysis method
to verify the potential exploitability of the flagged vulnerable functions (see Section 4.2).
Several existing tools offer taint analysis for JavaScript (see e.g., [32, 51, 97]); however as of

writing, none of them support multi-file taint tracking—essential for real-world projects, which
often consist of several JavaScript files. Our taint analyzer tracks an input datum, verifying that it has
a path between a “source” and a “sink” across all the files in a given project. Our current prototype
is tailored for vulnerable functions in NPM packages. Support for Chrome Web Extensions and
websites can be added in future work, e.g., by leveraging the list of common sources for websites
(such as URLs, Document.location, location.search, client-side storage) as defined by Kang et al. [56].
Note that capturing all input sources in extensions and websites comprehensively is non-trivial as
there are numerous such options.

Note that we assume that the package is vulnerable if the vulnerable functionality of the package
is reachable externally. The vulnerability can be exploited, only if a developer combines obtaining
and processing a user’s input with a vulnerable functionality in the NPM package. Here the term
“user” refers to a person who interacts with the developer’s project and enters some data in the
context of this interaction. Despite the specific prerequisites for the exploitation, the vulnerabilities
in the NPM packages are perceived seriously and often get the highest severity ratings (e.g., both
CVE-2022-21189 and CVE-2021-23518 rated as critical with 9.8/10 scores).
NPM packages are meant to be included in projects as external dependencies. As such, they

contain distinctly marked “exports”, which are the only objects accessible to the user. These objects
are potential “sources” of user-controlled inputs. An NPMpackage consists of one or more JavaScript
files that interact with each other by exporting and importing functionality, and a “package.json”

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2023.



file that contains package metadata. Among other information, this file contains the top-level
export location (or an “index file”) that is made accessible to the developer when this package is
included in the project. However, there are multiple competing standards and formats to specify
export information, and any NPM package owner can choose to implement any number of them.
For an example of a typical implementation of “package.json” that contains three different export
declaration standards, see the “Underscore” NPM package [5].

To address the absence of a single generalized data format in package.json, we create an automated
approach that allows identifying which functionality may be accessible to the user without relying
on unstructured metadata. Instead, we utilize the code structure to locate exported functionality
that is not accessed within the project and therefore is likely intended for external use. Note that
sometimes the package owners choose not to include some top-level exports in their “index file”,
resulting in the unreachable module of functionality. This may be due to the module being shelved,
under ongoing development, etc. We argue that if a vulnerability is found in such a module, it may
become potentially exploitable in the future, if the package owners decide to change the module’s
accessibility, or the developers use the source code of the package rather than downloading it from
the NPM repository.
File Dependency Graph. To identify the package modules intended for external usage, and to
enable a multi-file static taint tracking, we introduce our File Dependency Graph (FDG) structure.
Firstly, a multi-file project is represented in AST, preserving the file structure. From each file’s
AST we locate nodes that indicate an “import” or an “export” of certain functionality. For this, our
algorithm uses a predefined set of rules, specific to each type of the import and export nodes (there
are six import types, such as “ImportSpecifierNames” and “requireNames” and five export types,
such as “ExportAllDeclaration” and “ModuleExportNames”). Each rule provides instructions to
extract relevant information: the name of the imported/exported functionality, the origin file, and
the node itself.
Secondly, after processing the nodes with the rules we iterate through the selected nodes to

find and group the matching pairs: the functionality exported by one file, which is then imported
by another file. Note that for each “import” node, there can be only one matching “export” node,
whereas for the export nodes we include the array of all corresponding “imports”. If there is an
export node, for which no matching import is found, the node is marked as top-level. Since the
node is a function, we consider the arguments passed to it a taint “source”. This way we obtain a
graph that indicates the relationship between project files, where each node has the information
about its matching pair.
The taint approach implementation. The process to verify the exploitability of a vulnerable
pattern in an NPM package consists of six steps (for the corresponding pseudo-code, Algorithm 1):

(1) Download the project that contains the detected vulnerable function;
(2) Create an AST representation of the project;
(3) Create an FDG of the project based on its AST and find a “source”;
(4) Get the location of the vulnerable “sink” from the Semgrep-based approach results, find the

corresponding node in the AST;
(5) Build a “taint graph” that goes over the AST with FDG and taints nodes, which are affected

by input data; and
(6) Look for a path in the “taint graph” that includes a “sink” variable. If there is such a path,

then the user-controlled input can reach the vulnerable code.

Our algorithm starts by taking the resulting dataset of the functions marked as vulnerable by
the previous step of our framework (see Section 4.2). Each vulnerable entry of the dataset has a
URL link to a file within a project on GitHub. Using this link we get the information on the name
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Algorithm 1 Algorithm of taint analysis tool.
1: 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 (𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑈𝑟𝑙, 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑃𝑎𝑡ℎ + “/𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙”)
2: 𝑎𝑠𝑡𝑔𝑒𝑛.𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 (𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑃𝑎𝑡ℎ + “/𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙”, 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑃𝑎𝑡ℎ + “/𝑎𝑠𝑡”) ⊲ create an AST

representation of the project
3: 𝑎𝑠𝑡𝑠 ← []
4: for all file in (projectPath + “/ast”) do ⊲ create an array of generated ASTs
5: 𝑎𝑠𝑡𝑠 .𝑝𝑢𝑠ℎ(𝑝𝑎𝑟𝑠𝑒 (𝑓 𝑖𝑙𝑒))
6: end for ⊲ start: create FDG
7: 𝑎𝑙𝑙𝑁𝑜𝑑𝑒𝑠 ← []
8: 𝑖𝑚𝑝𝑜𝑟𝑡𝑁𝑜𝑑𝑒𝑠 ← []
9: 𝑒𝑥𝑝𝑜𝑟𝑡𝑁𝑜𝑑𝑒𝑠 ← []
10: for all ast in asts do
11: for all node in ast do
12: 𝑎𝑙𝑙𝑁𝑜𝑑𝑒𝑠.𝑝𝑢𝑠ℎ(𝑛𝑜𝑑𝑒)
13: 𝑛𝑜𝑑𝑒.𝑓 𝑖𝑙𝑒 = 𝑎𝑠𝑡 .𝑓 𝑖𝑙𝑒 ⊲ add file information to each node
14: if isImport(node) then
15: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐼𝑚𝑝𝑜𝑟𝑡 ← 𝑡𝑟𝑢𝑒 ⊲ mark a node as an “import” node
16: 𝑛𝑜𝑑𝑒.𝑓 𝑟𝑜𝑚 ← 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝐼𝑚𝑝𝑜𝑟𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑛𝑜𝑑𝑒) ⊲ add origin to the import node
17: 𝑖𝑚𝑝𝑜𝑟𝑡𝑁𝑜𝑑𝑒𝑠.𝑝𝑢𝑠ℎ(𝑛𝑜𝑑𝑒)
18: end if
19: if isExport(node) then
20: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐸𝑥𝑝𝑜𝑟𝑡 ← 𝑡𝑟𝑢𝑒 ⊲ mark node as an “export” node
21: 𝑒𝑥𝑝𝑜𝑟𝑡𝑁𝑜𝑑𝑒𝑠.𝑝𝑢𝑠ℎ(𝑛𝑜𝑑𝑒)
22: end if
23: end for
24: end for
25: 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← []
26: for all export in exportNodes do
27: 𝑒𝑥𝑝𝑜𝑟𝑡 .𝑖𝑚𝑝𝑜𝑟𝑡𝑒𝑑𝐵𝑦 ← []
28: for all import in importNodes do ⊲ using import origin connect export with import
29: if 𝑖𝑚𝑝𝑜𝑟𝑡 .𝑓 𝑟𝑜𝑚 = 𝑒𝑥𝑝𝑜𝑟𝑡 .𝑓 𝑖𝑙𝑒 AND 𝑖𝑚𝑝𝑜𝑟𝑡 .𝑛𝑎𝑚𝑒 = 𝑒𝑥𝑝𝑜𝑟𝑡 .𝑛𝑎𝑚𝑒 then
30: 𝑒𝑥𝑝𝑜𝑟𝑡 .𝑖𝑚𝑝𝑜𝑟𝑡𝑒𝑑𝐵𝑦.𝑝𝑢𝑠ℎ(𝑖𝑚𝑝𝑜𝑟𝑡)
31: 𝑖𝑚𝑝𝑜𝑟𝑡 .𝑖𝑚𝑝𝑜𝑟𝑡𝑒𝑑𝐹𝑟𝑜𝑚 ← 𝑒𝑥𝑝𝑜𝑟𝑡

32: end if
33: end for
34: if export.importedBy is empty then ⊲ if found export but no import, mark as “source”
35: 𝑠𝑜𝑢𝑟𝑐𝑒𝑠.𝑝𝑢𝑠ℎ(𝑒𝑥𝑝𝑜𝑟𝑡)
36: end if
37: end for ⊲ end: create FDG
38: 𝑡𝑎𝑖𝑛𝑡𝑠 ← []
39: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑣𝑒𝑠 ← 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ⊲ define found sources as an initial “taintor”
40: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑣𝑒𝑠 is not empty do ⊲ do while new values are tainted each iteration
41: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑣𝑒𝑠 ← 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑇𝑎𝑖𝑛𝑡𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑣𝑒𝑠, 𝑡𝑎𝑖𝑛𝑡𝑠, 𝑎𝑙𝑙𝑁𝑜𝑑𝑒𝑠) ⊲ this step is

described in Algorithm 2
42: 𝑡𝑎𝑖𝑛𝑡𝑠 ← 𝑡𝑎𝑖𝑛𝑡𝑠 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑣𝑒𝑠 ⊲ add tainted nodes to an array
43: end while

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2023.



and version of the project. We craft a new link with extracted information and clone the project
repository in our temporary folder (using the git clone command).
Out of several JavaScript parsers that generate ASTs [2, 31, 40, 73], we found ASTgen [52] to

be the most applicable. ASTgen is a multi-language parser that uses Babel [73]. The Babel parser
efficiently deals with any JavaScript variations, bringing them to one general format when parsed.
This parser is constantly adapting to the updates in ECMAScript standards, implementing changes
even from stage 0 proposals [6]. In comparison, Acorn [2] and esprima [40] only support basic
JavaScript syntax that is already in the standard. ASTgen provides additional convenience by
preserving the file structure of the project when parsing scripts to AST.
As a third step, we create an FDG of a project. Then we create one consolidated AST for the

whole project and merge it with the nodes from our FDG (we replace the “import” and “export”
nodes in the joined AST with the corresponding FDG nodes). For the unaffected nodes, we simply
include a link to their origin file.

Next, we start an iterative process of data tainting. In the first iteration, we find all nodes in the
AST that are tainted by defined “sources” and add them to the accumulator. The newly tainted
nodes are then marked as new “sources” for the next iteration. This process is repeated until no
new nodes are tainted. Additionally, each tainted node in the accumulator has information about
its “taintor” (a node that causedr5 tainting of the current node).

During the node tainting process, the algorithm first finds all instances of already tainted “source”
identifiers. Since every node type in the AST has a different influence on the related nodes, a set of
predefined taint rules is required, which regulates taint propagation based on the node type. For
example, when a function is called with a tainted argument (e.g., myFunc(tainted_arg)), the cor-
responding argument is tainted in the function declaration (e.g., function myFunc (tainted_arg,
arg2) return tainted_arg;). Similarly, if a tainted value is assigned to a variable, the variable
becomes tainted as well. The pseudo-code of a single iteration is displayed in Algorithm 2. In total,
we have 29 rules of tainted variable propagation for different syntactic constructs (e.g., variable
declaration or reassignment, value assignment to the array and object entries, function calls, value
returns, etc.). At the moment, the rules do not include handling for JavaScript classes and the
try/catch construct, as well as the eval() construct. All rules are listed in our GitHub repository.5

Finally, we obtain the resulting accumulator that contains the list of the tainted nodes. We locate
the “sink” node in the AST based on the information retrieved from Semgrep or a textual similarity
algorithm. Then, to determine if the vulnerability is exploitable, we check if this node is present in
the accumulator. If it is found, we can further obtain a full taint path by traversing the “taintor”
properties. Later we use the taint path to provide the following information on the exploitability:
where the vulnerability is introduced, which input is potentially controlled by the attacker, and
where the functionality is exported.

5 RESULTS
In this section, we first present the results of running our vulnerable function detection approaches.
Then we manually validate a randomly selected set of findings to provide an estimated precision
measurement of our detection framework. Next, we provide the results of identifying the exploitable
vulnerabilities in NPM packages (including our findings from manual validation). Furthermore,
we describe our semi-automated vulnerability reporting process and discuss the overall response
dynamics. Finally, we discuss several case studies for high-profile projects and ethical considerations
for our responsible disclosure.

5github.com/Marynk/JavaScript-vulnerability-detection/blob/main/taintAnalysis/taintGraph.js
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Algorithm 2 Algorithm of one iteration of taint propagation.
1: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑣𝑒𝑠 ← 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 [0] ⊲ “taintors”
2: 𝑎𝑙𝑙𝑇𝑎𝑖𝑛𝑡𝑠 ← 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 [1] ⊲ array with previously tainted nodes
3: 𝑎𝑙𝑙𝑁𝑜𝑑𝑒𝑠 ← 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 [2] ⊲ all AST
4: 𝑛𝑜𝑑𝑒𝑠𝑇𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑣𝑒𝑠

5: for all node in currentLeaves do
6: 𝑠𝑎𝑚𝑒𝐼𝑑𝑁𝑜𝑑𝑒𝑠 ← 𝑓 𝑖𝑛𝑑𝑆𝑎𝑚𝑒𝐼𝑑 (𝑎𝑙𝑙𝑁𝑜𝑑𝑒𝑠, 𝑛𝑜𝑑𝑒) ⊲ nodes with the same name
7: for all sameIdNode in sameIdNodes do
8: 𝑠𝑎𝑚𝑒𝐼𝑑𝑁𝑜𝑑𝑒.𝑡𝑎𝑖𝑛𝑡𝑒𝑑𝐵𝑦.𝑝𝑢𝑠ℎ(𝑛𝑜𝑑𝑒) ⊲ add the information about the “taintor”
9: if sameIdNode not in allTaints then
10: 𝑎𝑙𝑙𝑇𝑎𝑖𝑛𝑡𝑠.𝑝𝑢𝑠ℎ(𝑠𝑎𝑚𝑒𝐼𝑑𝑁𝑜𝑑𝑒)
11: 𝑛𝑜𝑑𝑒𝑠𝑇𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒.𝑝𝑢𝑠ℎ(𝑠𝑎𝑚𝑒𝐼𝑑𝑁𝑜𝑑𝑒)
12: end if
13: end for
14: end for
15: 𝑛𝑒𝑤𝑇𝑎𝑖𝑛𝑡𝑠 ← []
16: for all node in nodesToPropagate do
17: 𝑡𝑎𝑖𝑛𝑡𝑠 ← 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑇𝑎𝑖𝑛𝑡 (𝑛𝑜𝑑𝑒) ⊲ with propagation rules for different nodes
18: for all taint in taints do
19: 𝑡𝑎𝑖𝑛𝑡 .𝑡𝑎𝑖𝑛𝑡𝑒𝑑𝐵𝑦 ← 𝑛𝑜𝑑𝑒 ⊲ add the information about “taintor”
20: if taint not in allTaints and taint not in newTaints then
21: 𝑛𝑒𝑤𝑇𝑎𝑖𝑛𝑡𝑠.𝑝𝑢𝑠ℎ(𝑡𝑎𝑖𝑛𝑡)
22: end if
23: end for
24: end forreturn 𝑛𝑒𝑤𝑇𝑎𝑖𝑛𝑡𝑠

5.1 Vulnerable function detection results
We perform our textual-similarity tests and pattern recognition search on our real-world dataset of
9,205,654 functions. First, we run the Semgrep-based approach, which flagged 284,413 potential
prototype pollution and 22,496 potential ReDoS vulnerabilities. The distribution of the detected
vulnerabilities among all tested projects is presented in Table 2.

Note that sometimes a vulnerable pattern search matched multiple functions from the same file
to one vulnerable finding. This happened because of nested functions that have the same vulnerable
code. We create a script to find all nested functions and keep only the child function. As a result,
we get 117,601 unique detected functions for prototype pollution and 7,333 functions for ReDoS.

The SimHash algorithm matched 1,320 functions from the whole real-world dataset (Table 3).
The vulnerability types of the detected functions are distributed as follows: cross-site scripting
(307), ReDoS (306), prototype pollution (138), command injection (133), directory traversal (72), SQL
injection (68), denial of service (59), and others (such as arbitrary script injection (16), directory
traversal (12)). Similar to the vulnerable pattern search algorithm, SimHash also detected several
nested functions. We apply the same filtering script to all detected functions and as a result, we get
965 unique vulnerabilities.

Finally, the cryptographic hash matching algorithm produced 131 matching cases from all real-
world functions (Table 3). All of these matches were already detected by SimHash. However, since
the findings of cryptographic hash matching are guaranteed to be identical (except for variable
names) copies of vulnerable functions, there is no need to manually verify them, and we can
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# sources # functions # prototype pollution # ReDoS
total unique total unique

NPM packages 3,000 413,774 10,338 4,896 1,325 493
Websites 1,892 5,739,271 179,626 77,504 14,586 4,648
Chrome extensions 557 2,659,649 94,449 35,201 6,585 2,192
Total 5,449 9,205,654 284,413 117,601 22,496 7,333

Table 2. Results of vulnerable function detection in real-world projects by the Semgrep-based approach.

NPM packages Extensions Websites Total Unique
Fuzzy Hash 56 201 1,063 1,320 965
Crypto Hash 30 85 16 131 131

Table 3. Detected vulnerable functions by textual similarity methods (all vulnerability types).

automatically count them as true positives. The findings belonged to the following vulnerability
types: ReDoS (29), cross-site scripting (26), command injection (25), prototype pollution (14), timing
attack (5), denial of service (1), and others (e.g., arbitrary script injection (1), directory traversal (1)).

Note that all ReDoS and prototype pollution vulnerabilities detected by textual similarity methods
were also detected by our Semgrep rules. This is expected, as the rules are based on functions
from our vulnerability dataset, and SimHash and cryptographic hash are detecting near-duplicate
versions of those functions.

As a result, our experiment identifies 125,555 unique functions, detected by at least one method
in our framework. 124,934 findings belong to either prototype pollution or ReDoS vulnerabilities
(i.e., the total number of unique functions detected by Semgrep), and the remaining 621 to other
types of vulnerabilities that appeared in our vulnerable functions dataset.

5.2 Manual validation of the results
To evaluate the performance of the vulnerable pattern search, we randomly picked 100 functions
for prototype pollution and 100 for ReDoS vulnerability from all the detected functions. For each
finding, we examine three main features. Firstly, we confirm that the flagged pattern is detected
correctly. Secondly, we verify that the input to the pattern comes from the outside of the function.
Lastly, we make sure that there are no sufficient protection measures, missed by our Semgrep rules.
As a result, we identified 8 false positives for prototype pollution and 3 for ReDoS, resulting in the
precision rate of 92% and 97%, respectively.
Among the prototype pollution functions, patterns got false matches for mainly two reasons.

Firstly, in JavaScript the following assignment syntax: obj[key] = value is valid for an object
and an array (ordered collection of elements). In the case of the assignment to the array element,
the “key” is an index of the element. However, the prototype pollution applies only to the object’s
properties modification. Since JavaScript does not have explicit data types, the patterns fail to
distinguish array and object assignments. The second reason for false positives for prototype
pollution was the use of a function obfuscation technique, which did not modify the vulnerable
pattern but heavily obfuscated the protection measures that prevent the vulnerability.

In three false positive matches from ReDoS, the function contained multiple regular expressions.
The input variable was matched with some of the regular expressions, but not with the ones, marked
as dangerous in the previous steps of our experiment. Since the dangerous regular expression was
not used with the user input, we do not see a possibility of a ReDoS attack in this scenario.

Since the fuzzy hashing comparison approach may introduce false positives (as described in the
previous section), we need to manually verify the findings as well. Therefore, for 90 out of 965
matches we checked the differences between the real-world function and the vulnerable function
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with similar content. As a result, we identified two false positive matches, which gives us a precision
rate of 98%. There were two reasons for false positives: one function was patched, but the fix was
only in one line, so the function remained similar enough; the other flagged function matched a
ReDoS vulnerable function, but did not have a regular expression in its body (otherwise it was
identical to the vulnerable function).

5.3 Exploitable project identification results
Next, we perform our static taint analysis on the findings from Section 5.1. We aim to identify the
functions that make corresponding projects exploitable by an attacker. We run this experiment
on 5,389 findings in 204 NPM packages flagged as vulnerable. Our tool identified taint paths for
259 prototype pollution findings and 52 ReDoS functions (from 134 NPM packages), reducing the
number of flagged functions by 94%. After manual verification of 100 randomly-chosen findings
in this experiment, we detected no false positives, meaning that all the identified paths correctly
indicate a relation between the vulnerable “sink” and top-level export. We list top-20 NPM packages
(as of April 2022) containing such potentially exploitable findings in Table 4. The second column in
the table shows the number of NPM packages that depend on the vulnerable one. The third column
refers to the weekly downloads number of vulnerable packages. In the fourth column, we present
the number of findings by Semgrep, and in the last column, we show the number of vulnerable
findings that are reachable by the top-level exported functions. Note, that for the “Lodash” package
we do not include values in the second and third column, as our findings belong to the master
branch of the package, which is different from a branch that is located in the NPM package registry
(for detailed explanation see Section 6 about Lodash).

During a detailed analysis of vulnerabilities, we came across two scenarios, which are not
considered in our approach. According to principles of best practices in coding, we assume that the
protection measures for vulnerable functionality are implemented within one function to achieve
better granularity and code reusability. However, in one scenario the protectionmeasures were taken
out in a separate function, which was then called directly before the vulnerable pattern, therefore
negating the vulnerability. In the second scenario, the protection measures were implemented
outside of the function, on an earlier step of the tainted variable propagation. These cases are
current limitations of our approach, which can be solved in the future, particularly by searching for
protection measures within the whole project and establishing their connection (or lack thereof)
with the vulnerable pattern using taint paths.

5.4 Vulnerability reporting
From taint analysis, we obtain vulnerability entries with the following details: the taint path, the
detected vulnerability type, the “sink” variable, the link to the targeted project, and the code itself.
Before reporting the findings, we need to make sure that they were not disclosed earlier in the

MITRE CVE database [78]. We develop a script that automatically compares project vendors and
vulnerability types from our findings with existing entries in the CVE database. If a match is found,
the CVE ID is added to the finding, and afterward, we check manually if the existing vulnerability is
the same as our finding. The script matched 11 findings as duplicates. We noticed that the naming
of vendors and products is not regulated, and thus project vendor names in the CVE database
may not match the actual names used in GitHub repositories. Therefore, we perform an additional
search for vulnerability duplicates manually, and as a result, find additional 10 matches. At this
point, our exploitable dataset contains 290 unique vulnerability reports.
Next, we use the information in our unique findings objects to automatically create reports

in a readable format. Firstly, we extract three nodes from each taint path: the exposure of the
vulnerability to the user (i.e., top-level function export), the point of entry for a user-controlled
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NPM package # depended projects # weekly downloads
Identified
vulnerable
functions

Identified
paths

Lodash (master) unknown unknown 86 56
Request 35,681 21,155,428 12 6
Async 22,704 46,511,068 72 4
Minimist 11,310 40,869,389 6 4
Body-parser 11,207 26,897,728 2 2
Ramda 5,016 8,958,095 48 20
Morgan 3,897 3,502,973 2 1
Qs 3,790 56,395,909 9 2
Loader-utils 3,777 41,352,810 2 1
Validator.js 2,445 5,671,275 2 2
Grunt 2,059 601,235 16 4
Js.merge 1,411 1,905,969 3 1
Js-beautify 1,313 2,246,662 6 1
Nodemon 1,277 4,895,728 1 1
Vinyl 1,234 4,077,423 1 1
Html-minifier 1,203 3,207,164 134 47
Clean-css 1,164 11,415,710 22 11
Reselect 1,089 3,960,959 1 1
Url-parse 858 9,114,628 1 1
Restify 754 188,600 9 4

Table 4. Top-20 NPM packages and vulnerable findings as of April 3, 2022.

variable, and the vulnerable sink. We then use the GitHub link to the corresponding file, and for
each node add a specific line reference to the link, so that it points directly to the location of the
taint node in question. We also use GitHub APIs to extract information on the project name and
version. Finally, we write a readable template for the reports, and then we automatically insert all
of the extracted data into placeholders to generated easy-to-understand reports.
For the responsible disclosure of vulnerabilities, we choose to send emails to the developers

responsible for NPM projects. Using GitHub APIs and file links for each finding, we query the repos-
itory owner’s information and collect their email address. If the email of the owner is unavailable,
we query the repository information and find the list of its contributors. Then we iterate through
the list until one of the contributors has a publicly available email address. Then we map collected
emails to the findings, and group readable reports by the same project, and then by the same email
(sometimes one person is responsible for multiple repositories). Lastly, we use the “nodemailer”
NPM package [90] to create and send emails to the responsible developers.
Using this vulnerability reporting algorithm we notified 112 responsible developers about 290

exploitable vulnerabilities in their NPM packages.

5.5 Ethical considerations during vulnerability disclosure
We performed our experiments in two batches: between May 2021 and October 2021, and between
February 2022 and March 2022. After detecting and manually verifying vulnerabilities (during the
first period of our experiments), we responsibly disclosed the findings to the owners by contacting
them privately via email. In the statement, we included a detailed description of the finding, the
corresponding proof-of-concept attack (in selected cases), and our suggested fix. We only received
a response from 8/20 contacted owners, all of them are the developers of NPM packages.
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Async’s owner replied after 10 days, acknowledging the vulnerability, and notifying us about
the fix applied in the next version.Minimist’s owner replied on the second day after the disclosure,
promising to look into it soon. However, after more than 4 months the issue was not addressed.
After the CVE ID was obtained, we contacted the owner again, notifying them about publicly
disclosing the vulnerability as a GitHub issue. Since it was over 120 days since our first contact, we
followed the best practices of ethical disclosure. After the issue was created, the developers of the
package deployed a fix in two days.

QueryString cooperates with TideLift, a company that acts as an intermediary in the disclosure
process. After several weeks of discussion between TideLift representatives and the package owner,
they claimed that the developer who uses the affected functionality of the QS package must provide
protection measures themselves. We provided further explanations, however, received no response.
After 4 months of the last communication, the CVE ID on this issue was received with a 7.5/10
severity rating, and we contacted them again with a notification about publicly disclosing the
vulnerability. We received no response. After some time we discovered that the owners sent a
request to MITRE to withdraw the vulnerability. Their request was successful, and the CVE ID
was revoked on April 11, 2022. Ramda’s owners asked us to disclose security vulnerabilities in
GitHub issues and, after our statement, started a discussion with fellow developers as well as with
an external security company, which advise the developers on related issues. After the CVE ID
with severity rating 9.1/10 was issued, Ramda owners tried to withdraw it from MITRE, but did not
succeed. The vulnerability is not addressed as of July 27, 2022.
SailsJS owners argued that the vulnerable functionality is not intended to be accessible to the

attacker (“This code runs when Sails starts up, not on a per request basis”). We provided them with
a proof-of-concept attack video but received no response. Then we obtained a CVE ID for this
issue and made it public. Instead of fixing the vulnerability, the owner then provided a way for
the developers to work around this problem. The AngularJS team decided not to fix the findings
(“the reported problems don’t pass the threshold of a dangerous vulnerability that would require
changes to AngularJS”). The requested CVE IDs are being processed by MITRE as of writing.
Finally, SheetJS did not acknowledge the disclosed vulnerability as significant, as it does not

belong to their main functionality, and Highland’s owner mentioned that this package was no
longer maintained, despite being downloaded by over 44 thousand users weekly.

After the second period of our experiments, we used our semi-automated vulnerability reporting
process. As of writing, we received 22 feedback emails. 13 project owners claimed that either
there is no vulnerability, or the vulnerability is insignificant and will not cause any damage. Three
owners requested additional information on the vulnerabilities. Another three acknowledged the
vulnerabilities and have started to address them. One project owner notified us, that the project
contains the preventive measures for the vulnerability. The applied protection measures are specific
to the project functionality and hence were not detected by our approach. Finally, two of the
contributors provided the wrong contact information, so the emails bounced back.

6 CASE STUDIES
After analyzing manually the results of our vulnerability detection and verification framework we
conduct several case studies on some of them to understand how these vulnerabilities affect the
projects containing them, and what threats they pose to users. We choose the projects from the top,
middle, and bottom of the popularity list to understand the vulnerabilities in different project types.
Additionally, we select two JavaScript frameworks (both client-side and server-side) to explore
possible implications of the found vulnerabilities. All rankings, as well as the usage numbers in
this section, are dated by April 2022.
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We isolate 20 findings from 17 different projects to describe their impact in detail in this section.
11 projects are from the NPM registry, while the remaining six are from popular websites. From
the NPM projects, we select nine packages that were flagged by the taint analysis algorithm;
additionally, we select two NPM projects that are JavaScript frameworks (AngularJS, SailsJS), rather
than packages (libraries). Note that the vulnerable functions found in the frameworks cannot be
detected by taint analysis due to the differences in the usage of such projects by the developers.
More precisely, while the functionality from NPM libraries is just imported by the developer in
their project, frameworks work as engines, which the developer uses to execute their project.
Therefore, the top-level export concept that we utilize to define “sources” of user-controlled data is
not applicable in the framework scenario.

By vulnerability types, we targeted 12 prototype pollution findings, six ReDoS findings, and one
finding with both vulnerability types (in the SailsJS project). Note that after searching automatically
through the MITRE CVE database [78] and manually checking the information available on the
web on specific projects and the functions in question, we were unable to locate any reports on
these vulnerabilities in publicly accessible sources.
Minimist [36]. This NPM package (40.8 million weekly downloads) is used to parse command-line
arguments in Node.js applications. Minimist was previously reported for prototype pollution6
and the authors issued an updated version with a fix. However, our framework flagged this code
piece (with the fix) as vulnerable in the latest version of the package. After the manual analysis,
we discovered that the fix does not cover all malicious scenarios. Therefore, we were able to
implement PoC attacks that violate both integrity and availability of a JavaScript application.7 This
vulnerability received a critical (rated 9.8/10) CVE entry: nvd.nist.gov/vuln/detail/CVE-2021-44906.
It was fixed by the authors 4 months after the initial disclosure.
SailsJS [7]. This framework is a model–view–controller web application framework written in
JavaScript. Currently, there are 8,415 active websites built on this framework [12]. At least 24
of these websites appear on the top 1-million Tranco list [87]. Our findings indicate that the
loadActionModules() method is vulnerable to both ReDoS and prototype pollution, due to the
absence of sanitization of the strings extracted fromfilenames. There is a conceivable scenario, where
filenames are controlled by the end-user (e.g., dynamic creation of API endpoints). In this case, the
method can be exploited in a form of a prototype pollution attack that leads to denial of service.8 This
vulnerability received a critical (rated 9.8/10) CVE entry: nvd.nist.gov/vuln/detail/CVE-2021-44908.
As of writing, it has not been addressed. Additionally, certain filenames may also cause availability
issues due to the usage of an “evil” regular expression in the method.
Ramda [96]. This NPM package (8.9 million weekly downloads) provides utility functions with a
focus on functional programming style. Our findings indicate that the method mapObjIndexed()
is vulnerable to object property injection vulnerability. Due to insufficient protection measures, it
is possible to pollute Function.prototype by supplying a crafted object, causing threats to the
integrity and/or availability of the JavaScript application.9 This vulnerability received a critical
(rated 9.1/10) CVE entry: nvd.nist.gov/vuln/detail/CVE-2021-42581. However, the owner did not
acknowledge the threat, and thus no fix is available.
Async. Async [13] is an NPM package (46.5 million weekly downloads) that provides functionality
for working with asynchronous JavaScript. Similar to Ramda, the method mapValues() in async

6Prototype pollution in Minimist, https://security.snyk.io/vuln/SNYK-JS-MINIMIST-559764
7The PoCMinimist attack is available at github.com/Marynk/JavaScript-vulnerability-detection/blob/main/minimist%20PoC.
zip
8The PoC Sails.js attack is available at github.com/Marynk/JavaScript-vulnerability-detection/blob/main/sailsJS%20PoC.zip
9The PoC Ramda attack is available at jsfiddle.net/3pomzw5g/2/
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package is vulnerable to object property injection.10 This vulnerability received a high (rated 7.8/10)
CVE entry: nvd.nist.gov/vuln/detail/CVE-2021-43138. It was fixed by the owner 10 days after
disclosure in package version 3.2.2.
Lodash [54]. This is a library for JavaScript with various utility functions, mainly for array and
object manipulations. It is used in approximately 3.6% of websites as of July 2021 and has 38.9
million weekly downloads [53]. Our findings indicate that the master branch of the lodash GitHub
repository contains code exposed to a prototype pollution attack. Vulnerabilities of this type have
been reported and subsequently fixed in multiple lodash functions [105–108]. However, lodash
does not apply security fixes to the source code in their master branch. While in the distributables
that are supplied to the NPM registry, the found vulnerability is fixed, if developers decide to
clone source code from lodash and use it locally, they can clone the master branch. Hence, the
discovered vulnerability still bears a significant impact on some applications. More specifically, the
internal function baseAssignValue() offers no protection measures against modifying prototype
or constructor properties, which potentially exposes any project that uses specific methods from
cloned lodash source code, such as _.set(), _.copyObject, _.keyBy, _.countBy, _.groupBy, to
a prototype pollution attack. We implemented a proof-of-concept attack,11 which targets _.set()
method and successfully injects a custom property to Object.prototype, thus adding this property
for all objects of the running application.
Additionally, among detected vulnerable functions we discovered that two of them are from

projects that contain local copies of the lodash library: the Highland NPM package [14] and
accompany.com web domain; these projects use lodash functionalities, but do not automatically
receive security updates for it. As a result, both projects are exposed to attacks that can exploit both
newly detected and previously found vulnerabilities that were reported and fixed in the original
lodash. In particular, the Highland package and accompany.com website contain an older version
of the baseAssignValue() function from our findings, pre-dating even the partial fix.
AngularJS [33]. This is a client-side JavaScript framework for developing web applications. This
version of Angular has been discontinued since the end of 2021, however, there are still more
than 1 million live websites written with this framework [11]. We have identified three prototype
pollution vulnerabilities in the source code of AngularJS:
(1) The AngularJS routing system, implemented by the $routeProvider service, contains vulner-

able code that exposes certain AngularJS-based applications to a prototype pollution attack.
It is possible in the scenario when the paths in such applications are created dynamically
based on user inputs. As a consequence, the attacker can disrupt the routing of the applica-
tion (e.g., navigating between UI components). We implemented a proof-of-concept attack for
this.12 If the AngularJS-based application allows the user to supply a custom payload to the
$routeProvider.when() method, an attacker can manipulate the prototype of the routes
object by providing __proto__ as the route path.

(2) A misuse of AngularJS’s Select directive can lead to prototype pollution. If the developer of
an AngularJS-based application allows the user to dynamically add/modify options associated
with Select, a special select value can be crafted to perform a prototype pollution attack.

(3) Programmatic navigation within an AngularJS-based application can be performed via the
$location service. Particularly, query parameters can be added to the current URL with
the $location.search() function. This functionality can be abused to perform a prototype
pollution attack if the query parameters in question are dependent on user inputs.

10The PoC async attack is available at jsfiddle.net/oz5twjd9/
11The PoC lodash attack is available at jsfiddle.net/evmjxaq1/
12The PoC AngularJS attack is available at jsfiddle.net/mspc3f8n/
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QueryString [38]. This is an NPM package (56.4 million weekly downloads) that provides parsing
and stringifying (i.e., transforming any data type into a string literal) functionality of query strings.
We discover a prototype poisoning vulnerability in the internal merge()method. Due to insufficient
input sanitation, attacks on the integrity and availability can be implemented by manipulating the
input to Qs.parse().13

Grunt-usemin [125]. This is an NPM package that creates a minified version of web files (HTML,
CSS, JavaScript) in a project, and it has 29,673 weekly downloads. It can also automatically replace
links to scripts in code with the minified versions of the same scripts. We found a potential ReDoS
vulnerability in the function that searches for the internal file references in the project and replaces
them. In terms of this functionality, the getBlocks() function aims to parse an HTML file line
by line, and extracts specific information. During this process, a dangerous regular expression is
applied to match patterns in every line. A maliciously crafted HTML file can cause ReDoS when
processed by Grunt-usemin.
JSON.parse polyfill [80]. Four web domains were flagged due to the use of polyfill for a built-in
JavaScript method JSON.parse. A polyfill is a piece of code (usually JavaScript) that provides
modern functionality in older browsers that do not natively support it. The flagged domains
and their rank in Cisco Umbrella [20] are: acdc-direct.office.com (#259), ad.crwdcntrl.net (#5806),
activedirectory.windowsazure.com (#6050) and 360.cn (#6291). The implementation of JSON.parse
polyfill by these domains uses an unsafe regex to sanitize the input, which can lead to a ReDoS
attack. Furthermore, it can be exploited to run arbitrary code due to the use of eval() on the parsed
text as part of the functionality implementation (command injection). This attack can be exploited
using older versions of Firefox (v.2-3), Opera (v.10.1), Safari (v.3.1-3.2), and Internet Explorer (v.6-7).
Gravatar.com [35]. This is a service for creating Gravatars (globally recognized avatars), which are
integrated into over a million websites as of July 2021. On gravatar.com, a WordPress module called
cookie-banner processes cookies with a dangerous regular expression, and if the user modifies
their cookies, such cookie processing implementation will lead to a ReDoS attack.
SheetJS [100]. This is an NPM package (1.4 million weekly downloads) that provides functionality
for working with spreadsheets. It has both commercial and open-source versions, and the open-
source version is used in more than 72,000 projects. The GitHub repository of the open-source
SheetJS project includes source code for an online demo, where we found a function deepset()
that is vulnerable to prototype pollution. This function is applied to a JSON representation of an
xlsx file supplied by users. An attacker can supply a specially crafted file to overwrite properties
of Object.prototype, thus exploiting the vulnerability. While this function is not in a library
functionality itself, it is reasonable to expect it to be used by other developers as a foundation for
actual projects, potentially retaining the vulnerability.
Highland [14]. This is an NPM package that provides functionality to work with data streams in
JavaScript, and it has 47,759 weekly downloads. Highland exports a function inspect(), which we
found to be vulnerable to a prototype pollution attack. This function assigns custom options to
the context object. By supplying a specially crafted options object, a malicious actor can reassign
the prototype of the inspection context, potentially affecting the execution of this function (e.g.,
causing denial of service, unexpected behavior, and procedure bypass).

7 EXPERIMENTAL COMPARISON
Static code analysis tools are popular among software developers, as they can detect vulnerabilities
in the early stages of the project’s life cycle. These tools also reduce the complexity and time

13The PoC QS attack is available at jsfiddle.net/pb6an1dy/
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for the developers to fix the vulnerabilities. There are several commercial [71, 92, 103] and open-
source [32, 58, 86, 97] code scanning tools, and most of themwere initially created to detect mistakes,
bad practices, bugs, etc. However, since software security became an essential component of software
development, static code scanning tools have also been adapted to detect code vulnerabilities.
For direct comparison with state-of-the-art tools, we explore static code analysis tools that use

semantic patterns to detect vulnerabilities. Specifically, we examine tools that include security pat-
terns for JavaScript. We empirically compare our semantic vulnerable function detection approach
(see Section 3.3) and publicly available JavaScript vulnerability patterns from three open-source
static code scanning tools: Semgrep [97], CodeQL [32], and ESLint security plugin [86].
As of March 2022, Semgrep has 181 security patterns for JavaScript,14 three of which address

prototype pollution, and only one for ReDoS. CodeQL offers 90 patterns, where four of them are
for prototype pollution and four for ReDoS.15 Finally, ESLint has 13 patterns in total, including two
for prototype pollution and two for ReDoS.16 For this experiment, we isolate entries for prototype
pollution and ReDoS vulnerabilities from our manually verified dataset of vulnerable functions.
As the ground truth dataset, we used all 112 functions with prototype pollution vulnerability, and
164 with ReDoS. The results are summarized in Table 5. The second and fourth columns in the
table show the number of functions where the vulnerability was correctly identified by at least
one pattern from each tool. Compared to Semgrep and CodeQL, our approach’s detection rate
is significantly higher. ESLint detected more functions that us, with a lot of additional matches
(discussed below). The additional matches flagged by each tool are of three categories: (i) false
positives, (ii) new true positives, not included in our ground truth, and (iii) vulnerability duplicates.
New true positives are the ones that were not previously found and reported to vulnerability

registries, and therefore are not listed in the Snyk database. We first identify these cases while
working on our custom patterns and testing them on our whole vulnerable JavaScript functions
dataset (see Section 3). Vulnerability duplicates occur, when a single function hasmultiple vulnerable
code instances (i.e., “sinks”) related to the same vulnerability. Note that during manual verification,
we flag a function as vulnerable if at least one vulnerable “sink” exists.

To further comprehend the precision of each tool, we perform manual analysis of the additional
matches for every analyzed approach. The results are summarized in Table 6. Note that for default
Semgrep and ESLint patterns, we randomly choose 50 matches for each of the vulnerability types
from different functions. As evident from the results, Semgrep and ESLint patterns produced between
90–100% false positives, with zero new true positives for the randomly selected flagged functions.
The reason for prototype pollution false positives in ESLint is that these patterns match almost every
syntax that has square braces in it. Semgrep also has rather generic prototype pollution patterns and
matched simple property access syntax cases, which were irrelevant to other conditions that cause
a true vulnerability (e.g., input data from outside of the function, object property assignment). In
ReDoS false positives, patterns from both tools did not check if a regular expression is used on data
from the outside, flagging instead any use of regex on non-literal data. ESLint additionally flagged
regex that it considers “unsafe”, however none of these matches were flagged by our approach.

CodeQL produced no prototype pollution false positives and flagged one new true positive case
(also found by our approach). However, all five extra ReDoS findings are falsely positive, as the
flagged evil regex is unreachable by any potentially user-controlled input.
As for our approach, most additional matches (78%) are repetitions of vulnerable sinks. We

want to highlight 12 extra true positive findings that we flag during this experiment. Five of the

14semgrep.dev/r?lang=JavaScript&cat=security
15codeql.github.com/codeql-query-help/javascript-cwe/
16github.com/nodesecurity/eslint-plugin-security/tree/main/rules
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Prototype pollution ReDoS
# true positives # additional # true positives # additional

All (manually verified) 112 - 164 -
Our approach 70 24 127 40
Semgrep 45 73 36 241
CodeQL 8 9 31 5
ESLint 104 12377 107 642

Table 5. Results of evaluation of static code scanning tools.

Additional prototype pollution Additional ReDoS
TP FP Dup. TP FP Dup.

Our approach (64/64) 9 (37.5%) 2 (8.3%) 13 (54.2%) 3 (7.5%) 0 37 (92.5%)
Semgrep (100/314) 0 49 (98%) 1 (2%) 0 50 (100%) 0
CodeQL (14/14) 1 (11%) 0 8 (89%) 0 5 (100%) 0
ESLint (100/ 13,019) 0 47 (94%) 3 (6%) 0 45 (90%) 5 (10%)

Table 6. Categorization of additional matches from static code scanning tools evaluation.

matches belong to the list of the most popular NPM packages (i.e., Lodash [54], yargs-parser [116],
marked [48], validator [84], SheetJS [100]), and as such, they were included in our dataset of real-
world functions. Therefore, they were already found by our framework (see Section 4) and reported
to the developers. The rest of the cases concerned less popular packages (e.g., Schema-inspector [45],
Ducktype [22], Subtext [37]). In two cases, ReDoS vulnerabilities were found in functions reported
for prototype pollution (yargs-parser, Subtext). In three cases, there was an additional prototype
pollution vulnerability to the one reported to Snyk (Lodash, Validator, Ducktype). The remaining
six cases include prototype pollution vulnerabilities found in ReDoS-vulnerable functions. All new
findings were manually reported to the developers and submitted to the MITRE CVE registry.
Note that we compiled our Semgrep patterns from Snyk’s list of previously reported vulnera-

bilities. As the selected functions for this experiment also came from the same list, it may appear
that the dataset is biased in favor of our approach. On the other hand, the dataset contains the
most common existing/reported implementations of prototype pollution and ReDoS vulnerabilities,
which are expected to be identified by any tool detecting such vulnerabilities.

8 RELATEDWORK
In this section, we summarize the most relevant past work on code vulnerability detection. This
includes: approaches based on static taint analysis, and textual and semantic similarity detection;
the studies that target specifically prototype pollution and ReDoS vulnerabilities; and the ones
creating JavaScript vulnerability datasets. We also briefly describe other approaches for vulnerability
detection in source code in general.

8.1 Vulnerable code detection
JavaScript static taint analysis. There are several studies that apply taint analysis and vulnerable
patterns to detect vulnerable code, utilizing various code representations. Li et al. [67] introduce
Object Property Graph (OPG) that tracks tainted object values to detect specifically prototype
pollution vulnerabilities in JavaScript. In the following work, Li et al. [68] present Object Depen-
dency Graph representation and the extended framework to model and detect various JavaScript
vulnerability types. The WALA framework developed by IBM uses Abstract Syntax Trees (AST)
together with call graphs [43]. Initially the framework was developed only for Java, but later the
developers introduced JavaScript support. Unfortunately, when we tried to utilize the framework,
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we found that their JavaScript normalizer does not convert some of the language’s features properly
(e.g., this keyword, and new features in ECMAScript 6 such as arrow functions, and block-scoped
variables), which results in the wrong representation of the code flow. Joern [51] combines ASTs
with Code Property Graphs (CPG), a representation introduced by Yamaguchi et al. [124]. This
tool also supports JavaScript. However, we found that it also fails to process several JavaScript
language features correctly (e.g., the module.exports syntax, “first-class function” concept). Due
to this limitation, Joern currently does not support multi-file taint tracking for JavaScript. The
CodeQL team presents Dataflow Graphs (DFG) [19] for taint analysis. These graphs are based on
the language-agnostic abstract code representation (called CodeQL database), developed by the
authors, and therefore can be applied to JavaScript code. As a comparison, our framework uses the
traditional AST representations combined with an FDG - a graph structure that allows multi-file
taint tracking due to the correct processing of file relationships in JavaScript.
Textual similarity detection.We base our textual similarity detection approach on comparing
tokenized code representations similar to previous studies [55, 65, 93]. Apart from tokenization,
several other representations are also used for textual similarity, such as Abstract Syntax Trees
(AST) [8, 16, 49], Control Flow Graphs (CFG) [129], Program Dependency Graphs (PDG) [66] or a
combination of these representations [10].
To optimize the textual similarity-based vulnerability detection, we use both cryptographic

hash and locality-sensitive hash comparison on our tokenized functions, similar to [47, 61, 110]
and [16, 49] studies respectively. Also Several approaches [29, 91, 118] use machine/deep learning
algorithms in order to detect near-duplicate code instances.
Semantic similarity detection. Li et al. [67] uses their OPG to create some of the common
prototype pollution vulnerable patterns. Note that since their representation is based on the
JavaScript object features, the patterns can only be created to object-related vulnerabilities. Li et al.
[68] also provide an ODG representation that allows creating patterns for several non-object-related
vulnerabilities (e.g., XSS, code injection, path traversal). GitHub’s CodeQL engine [32] also allows to
create semantic patterns. The vulnerable patterns for multiple languages (including JavaScript) are
written on a specially designed object-oriented query language called QL. CodeQL has a registry of
vulnerable patterns available to the developers. To the best of our knowledge, so far there are no
studies that incorporate CodeQL-based patterns (or “queries”) in JavaScript vulnerability studies.

8.2 Vulnerability detection by type
Prototype pollution detection. Prototype pollution was first identified by Snyk researchers in
2018 in a popular NPM package “Lodash” [25]. Kim et al. [59] proposed an approach to detect
prototype pollution with pattern recognition and utilize ASTs and CFGs for code representation.
However, their approach produces a large number of false positives (50.6%) and false negatives
(84.6%). Later, Li et al. [67] presented a novel approach called ObjLupAnsys for detecting prototype
pollution in NPM packages with a static taint analysis algorithm based on their own representation
called Object Property Graph (OPG). However, ObjLupAnsys’ false positive rate is relatively high, as
it cannot confirm if the found paths between “sources” and “sinks” are valid. It also suffers from poor
scalability, as large projects may lead to the path explosion problem. In the following study, Kang
et al. [56] introduce the ProbeTheProto tool that targets websites. The tool applies dynamic taint
analysis and introduces “joint taint flows”. Here, the algorithm first traverses from a “source”, which
has to match a predefined set of code samples (e.g., document.location, location.search), to a
“sink”, which is a concrete prototype pollution syntax (meaning that out of all possible syntactical and
semantic implementations of prototype pollution, the tool focuses on one specific implementation).
Then it traverses from a found “sink” to a “secondary sink”, which has to match a predefined set
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of potential exploit code samples (e.g., eval, innerHTML). This approach is very precise but has
a low recall, in addition to being time- and resource-intensive. A similar approach SilentSpring
is developed by Shcherbakov et al. [99] to detect prototype pollution vulnerabilities that lead to
remote code execution. The authors use a combination of static and dynamic analysis techniques,
as opposed to ProbeTheProto, and identify 11 “secondary sinks” that they refer to as “code gadgets”.
Additionally, unlike ProbeTheProto, Shcherbakov et al. [99] target NPM packages. SilentSpring
focuses on achieving high recall (75%-96%), but unfortunately results in poor precision (23%-27%).
ReDoS detection. There are several tools [21, 46, 115] that can analyze regular expressions and
flag the dangerous ones in a given codebase. Recall that a ReDoS vulnerability is exploitable under
two conditions: (1) the regular expression is constructed in a way that certain examined strings
take exponential processing time; and (2) the regular expression is applied to the data potentially
controlled by an attacker. While the second condition is shared by multiple vulnerability types,
the first one is targeted separately by studies that are focused on creating exploits/attacks on
regular expressions using static [62, 70], dynamic [74, 112] and hybrid [69] approaches. Static
regex detectors suffer from low coverage of different regular expression features, and it is difficult
to adapt them to detect continuously added features [74]. Additionally, Li et al. [69] report that
both static and dynamic approaches tend to suffer from low recall (e.g., static tools: RXXR2 [62] -
2.27%, NFAA [122] - 8.73%; dynamic tools: SDL [114] - 1.06%, ReScue [101] - 1.86%). ReDoSHunter
achieves high precision and recall rates (100% in both), although it detects only most common regex
extensions and characters and does not consider less frequently used ones.

8.3 Vulnerability datasets
To create vulnerability datasets, several past studies collect meta-information, packages, and
functions/code-snippets from known/reported vulnerabilities. For example, VulData7 [50] uses
the National Vulnerability Database (NVD) to extract information on vulnerabilities. However,
it does not extract the code from files, and the data is not classified by the language. Ferenc et
al. [30] use the GitHub repositories of the Snyk vulnerability database [104] and the Node Security
Platform (NSP [83]) as vulnerability sources, and create the first publicly available JavaScript dataset
consisting of 12,125 functions, 1,496 of which are flagged as vulnerable. However, the Snyk database
on GitHub that they used has not been maintained since 2018, and NSP has been made private by
NPM and thus is no longer publicly available. Mosolygó et al. [79] analyzed vulnerable functions
from the dataset in [30]. They manually filtered all 1,496 vulnerable functions and extracted only 443
functions, which they deemed to be actually vulnerable. However, when examining the resulting
filtered set of functions, we noticed that it still contained some false positives. This lack of a reliable
vulnerability dataset is the primary motivation for creating our own dataset, which is vital for
deriving our approach (e.g., Semgrep rules). We use up-to-date and well-maintained vulnerability
sources (Snyk [103] and VulnCode-DB project [34]), and design a comprehensive methodology to
avoid flagging unrelated or benign functions as vulnerable.

Another popular approach for dataset compilation is to perform a search through GitHub projects,
find commits that include specific keywords in the commit message, such as “bug”, “fix”, “CVE” etc.
and extract functions from commits [10, 61, 65]. This method relies on developers’ use of proper
conventions when they give a name to their commits;17 as such, only vulnerabilities with correctly
formulated commit messages can be detected.

17conventionalcommits.org/en/v1.0.0/
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8.4 Alternative vulnerable code detection approaches
Several textual similarity tools aim to detect vulnerable code regardless of the programming
language used. To be able to do that, they require any code to be brought into a generic abstracted
representation, such as a high-level tree-based representation [119], PDG and CFG [10, 61, 118].
However, cross-language tools are mostly implemented for textual similarity search due to the
specificity of each language’s design, so they can only detect nearly identical copies of the code.
Yamaguchi et al. [124] target code vulnerabilities with a semantic-similarity approach. They

model patterns for several vulnerability types in C/C++ (e.g., buffer overflow, memory disclosure)
by combining multiple function representations into a Code Property Graph (CPG) and extracting
properties that form a vulnerable pattern. Then they use the same representations to transform the
target dataset, and perform a pattern search against the obtained data representations.

Russell et al. [91] attempt to automatically extract vulnerable patterns/features by using convo-
lutional and recurrent neural networks on vectorized C/C++ code, reaching a 0.56 value for the F1
measure. Sheneamer and Kalita [102] extract features from vectorized AST and PDG representations
of Java code using 15 previously published different ML algorithms. Both studies, as well as multiple
others [29, 75, 130] focus on the textual similarity, and thus their target datasets mostly consist of
nearly-duplicate code instances.
Dynamic analysis. The dynamic analysis methods commonly used to detect vulnerabilities in
code are symbolic execution, concolic testing, and fuzzing. However, to the best of our knowledge,
there are presently no studies that use concolic testing for JavaScript vulnerability detection.

The symbolic execution method simulates program execution by replacing concrete values with
symbolic variables for inputs. The program is executed several times, each time modifying the
symbolic inputs to reach the execution of new paths. It has been used for finding concrete vulnera-
bilities in code, such as file parsing vulnerability [41], DoS [81, 117], code injection [15]. Saxena
et al. [95] use symbolic execution for JavaScript to find client-side code injection vulnerabilities.

Fuzz testing executes the program with self-generated inputs, which may contain invalid, unex-
pected, or random values. The analysis tool then monitors the behavior of the program and reports
undesired results, e.g., data leaks, unexpected modifications, and program crashes. The objective is
to generate an input that exploits vulnerabilities in the program. Fuzzers are most commonly used
for DoS detection [94, 113], but also for XSS [26], and buffer overflow [121]. Fuzzing algorithms
have also been developed for finding vulnerabilities in JavaScript [39, 42]. The main challenge in
fuzzing is the difficulty of automatically generating useful inputs. For example, the CodeAlchemist
fuzzer [42] can generate more than 40% semantically invalid JavaScript inputs [39].

Several studies conduct dynamic taint analysis on JavaScript [98, 128], although only a few target
vulnerability detection [57]. Dynamic taint analysis shares the disadvantages with other dynamic
approaches (i.e., low coverage, high complexity, time- and resource-consuming).

9 CONCLUSIONS
In summary, we propose a framework for function-level detection of JavaScript vulnerabilities in
the wild with further exploitability verification, shifting the focus from package-level vulnerability
tracking/measurements considered in the past work. We also design a semi-automated vulnerable
function collection mechanism to build a reliable dataset of known vulnerable JavaScript functions.
Our dataset contains 1,360 verified vulnerable functions. By testing 9,204,654 real-world JavaScript
functions from popular NPM packages, Chrome web extensions, and websites, we detected 124,934
potentially vulnerable functions with a precision of 94.5% (calculated based on a small randomly
chosen dataset) by vulnerable pattern search. We then checked the dataset against fuzzy and
cryptographic hashes, and detected 131 and 965 vulnerable functions with the estimated precision
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of 100% and 98%, respectively. Our static taint analysis on the 5,389 findings in NPM packages
verified 301 cases with no false positives (19 of them already have CVE IDs). All cases were privately
reported to the npm projects repository owners in terms of responsible disclosure. In addition, we
conducted an in-depth analysis of 20 detected vulnerabilities from 17 projects and described the
attack vectors that can be exploited for these vulnerabilities. Moreover, we performed successful
proof-of-concept attacks on seven projects by exploiting the detected vulnerabilities. We obtained
194 CVE IDs fromMITRE, fromwhich 25 are already published and have “critical” and “high” severity
ratings. Finally, for reproducibility and further research in JavaScript security, all the outcomes of
our work are publicly available at: https://github.com/Marynk/JavaScript-vulnerability-detection.
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APPENDIX

Vulnerability type # of entries # of functions
Cross-Site Scripting 228 1183
Code Injection 167 983
ReDoS 121 582
Prototype Pollution 101 356
Denial of Service 45 245
Directory Traversal 42 300
Information Exposure 23 201
Insecure Download Protocol 19 35
Improper Input Validation 18 50
Request Forgery 17 100
Memory Exposure 13 54
Insecure File Access 13 121
Procedure Bypass 12 316
Improper Auth 8 79
Insecure Defaults 7 26
Improper Cred. Protection 7 11
Timing Attack 6 19
Open Redirect 6 10
Insecure Randomness 6 15
Improper Access Control 6 18
Other 30 166
Total 895 4870
Table 7. Distribution of vulnerability types among all collected entries.
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