
On Measuring Vulnerable JavaScript Functions in the Wild
Maryna Kluban

maryna.kluban@mail.concordia.ca
Concordia University
Montreal, Canada

Mohammad Mannan
m.mannan@concordia.ca
Concordia University
Montreal, Canada

Amr Youssef
youssef@ciise.concordia.ca

Concordia University
Montreal, Canada

ABSTRACT
JavaScript is often rated as the most popular programming language
for the development of both client-side and server-side applications,
and is currently used in almost all websites. Because of its popu-
larity, JavaScript has become a frequent target for attackers, who
exploit vulnerabilities in the source code to take control over the
application. To address these JavaScript security issues, such vul-
nerabilities must be identified first. Existing work mostly deals
with package-level vulnerability tracking and measurements. How-
ever this approach is limited to detecting usage of already known
vulnerabilities. In this paper we develop a vulnerability detection
framework that uses vulnerable pattern recognition and textual sim-
ilarity methods to detect vulnerable functions in real-world projects.
We build our framework with the help of a comprehensive dataset
of 1,360 verified vulnerable JavaScript functions that we compose
based on Snyk vulnerability database and the VulnCode-DB project.
Using our framework, we identify 11,148 vulnerable functions in
three environments: NPM packages, Chrome web extensions and
popular websites. In addition,we conduct an in-depth contextual
analysis of the findings in several popular/critical projects and con-
firm the security exposure of 15 cases. As evident from the results,
our approach can shift JavaScript vulnerability detection from the
coarse package/library level to function level, and thus improve
accuracy of detection and aid timely patching.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
JavaScript security; vulnerability detection; vulnerable functions
ACM Reference Format:
Maryna Kluban,MohammadMannan, andAmr Youssef. 2022. OnMeasuring
Vulnerable JavaScript Functions in the Wild. In Proceedings of the 2022 ACM
Asia Conference on Computer and Communications Security (ASIA CCS ’22),
May 30–June 3, 2022, Nagasaki, Japan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3488932.3497769

1 INTRODUCTION
JavaScript is a programming language used in 97.5% of all web appli-
cations [72]. Such applications provide users with direct access to
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3497769

the source code, and are therefore a very common target for attack-
ers. According to GitHub [4] and StackOverflow [67], JavaScript
has been a dominating language for software projects development
for at least the last 7 years. Moreover, JavaScript language can be
used in both client-side and server-side applications, and has a large
amount of frequently used development frameworks, such as React
(reactjs.org), Angular (angular.io), Vue.js (vuejs.org) (client-side)
and Express.js (expressjs.com), Koa (koajs.com), Nest.js (nestjs.com)
(server-side).

The consequences of exploiting vulnerabilities in JavaScript
source code can be information theft or forgery [48], malicious
code injection [65], redirection to attacker-controlled sources [51],
disruption of an application functionality [52] and much more.

Previous work [1, 13, 14, 17, 19, 78, 79, 82] on JavaScript vulner-
abilities mostly cover the propagation of vulnerable NPM packages
among real world projects, primarily based on the project depen-
dency information. While such work is very useful in identifying
projects with vulnerable dependencies, they do not provide fine-
grained information on the use of actual vulnerable functions from
the vulnerable packages. This leads to flagging of projects as vul-
nerable due to their use of vulnerable dependencies, when in reality,
many such projects (73.3% according to Zapata et al. [78]) are not
vulnerable as they do not actually use the vulnerable functions
from their dependencies.

On the other hand, only a few studies rely on code-based ap-
proaches for JavaScript vulnerability detection. Ferenc et al. [23]
use static code metrics, generated for each function by static analy-
sis tools (OpenStaticAnalyzer [47] and escomplex [20]), as features
for machine learning (ML) algorithms that predict the probability of
the function being vulnerable. Mosolygó et al. [41] use generalized
representations of code lines, and calculate vulnerability likelihood
based on cosisne distance between vulnerable and analyzed code
lines. However, results from both approaches are not very encour-
aging (F1-measure of 0.7 for [23], and 97.3% false positives for [41]).

The issue of insufficient vulnerable code datasets also hinders re-
search in this area. Ferenc et al. [23] compiled the first publicly acces-
sible dataset of JavaScript functions which includes 1,496 functions
marked as vulnerable. In a following study, Mosolygó et al. [41]
reduced the dataset from [23] to 443 vulnerable functions by man-
ually filtering out false positives. After examining the remaining
functions, we discovered that some non-vulnerable functions still
exist in the filtered dataset.

The objective of our study is to assess active JavaScript projects in
the real-world, in order to find vulnerable functions in their source
code. We gather JavaScript code from three different environments:
NPM packages, Chrome web extensions, and top popular websites.
To detect vulnerabilities in the collected code, we develop a vul-
nerability detection framework based on the following approaches:

https://doi.org/10.1145/3488932.3497769
https://doi.org/10.1145/3488932.3497769
reactjs.org
angular.io
vuejs.org
expressjs.com
koajs.com
nestjs.com

(i) vulnerable pattern recognition, which uses our manually devel-
oped patterns to perform a semantics-based search in code; and (ii)
search based on textual similarity, which uses content-sensitive and
cryptographic hash comparison. For the first approach, we utilize a
static analysis tool Semgrep [53], which allows us to develop ad-
vanced patterns based on JavaScript semantics. For the second one,
we tokenize each function from both vulnerable and real-world
datasets, and generate a content-sensitive hash value using the
Simhash [58] algorithm along with a SHA-1 cryptographic hash
value. For each hash value from real-world dataset, we then search
for matches in the vulnerable function dataset.

We address the lack of the source of vulnerable code by com-
posing our own dataset of vulnerable JavaScript functions. We use
the Snyk vulnerability database [59] and VulnCode-DB project [26]
to extract meta information (e.g. vulnerability description, CVE
number, affected project’s name and version), and the code/func-
tions for each vulnerability entry. We then perform semi-automated
function vulnerability verification. Our final vulnerable JavaScript
dataset contains 1,360 verified vulnerable JavaScript functions.
Contributions. Our contributions can be summarized as follows:

(1) We automatically crawl for vulnerable JavaScript functions
from Snyk [59] and VulnCode-DB [26], allowing us to add the
newly reported vulnerable functions and keep our dataset
up-to-date. Then, we create vulnerability patterns, and a
web-based tool for efficient manual verification of vulnerable
functions. In the end, we compose a relatively comprehen-
sive, semi-automatically verified, dataset of 1,360 JavaScript
vulnerable functions.

(2) We develop an experimental vulnerability detection frame-
work that consists of the combination of pattern and textual-
similarity based approaches. The framework includes our
manually developed rule sets for vulnerable pattern detec-
tion of two common vulnerability types: JavaScript prototype
pollution and regular expression denial of service (ReDoS).

(3) We gather a large dataset of 9,205,654 JavaScript functions
from active real-world projects from three different appli-
cation types (NPM packages, Chrome extensions and top
websites). This collection process is also fully automated,
allowing us to increase the dataset as more projects become
available. We then utilize our vulnerability detection frame-
work to identify vulnerable functions in this dataset.

(4) We detect 11,148 vulnerable functions with an estimated
average precision of 94.5% (based on manual verification of
a small subset). We perform a case study on 10 popular/criti-
cal projects that contain 15 vulnerable functions; all these
functions flagged by our framework are found to be, indeed,
exploitable. We are currently in the process of contacting the
affected parties. We also plan to coordinate with Snyk and
Chrome teams for effective dissemination of our findings to
the affected NPM and Chrome extension developers.

2 RELATEDWORK
2.1 JavaScript vulnerability detection
Most past work on JavaScript uses package-level vulnerability
detection approaches that mostly target metadata on NPM pack-
ages [1, 13, 14, 17, 19, 79, 82]. There are several limitations to the

metadata analysis approach. First, projects other than NPM pack-
ages are not covered by these studies. Second, the metadata for
many packages is unreliable or even missing. Other studies have
also shown that the metadata approach introduces a lot of false
positives, because package-level vulnerability detection is too gen-
eral, and most of the projects that use vulnerable packages are not
exposed to the threat after all [78].

There are a few studies that leverage code-based vulnerability
detection methods for JavaScript. Ferenc et al. [23] use machine
learning algorithms to recognize vulnerable functions by process-
ing their static code metrics, calculated by static analyzers (number
of code lines, code complexity, nesting level, etc.) The best perfor-
mance result showed an F1-measure of 0.7. The authors concluded
that static source code metrics need to be combined with other
metrics to improve the results.

Mosolygó et al. [41] use code lines as targets, and develop a
methodology to calculate probability of the function being vul-
nerable based on a vector representation of tokenized code lines.
This approach, in the best case scenario when it detects all true
vulnerable functions, produces a lot of false positives (out of 228
flagged lines, only 6 were true positives). Apart from NPM pack-
ages, some studies also analyze JavaScript security in Chrome web
extensions [49] and scripts from websites [8, 11]. NPM packages are
generally well-maintained (e.g., in terms of updates and timely se-
curity fixes), which is perhaps not true for other JavaScript projects
(e.g., due to the lack of centralized package management systems).
We target NPM packages, Chrome web extensions and JavaScript
code from top websites, and instead of package/project level analy-
sis we focus on actual vulnerable functions alone.

2.2 Vulnerable code detection methods
Vulnerability detection in source code is an active research area,
and most existing work can be divided into two main categories:
textual vs. semantic similarity-based methods.
Textual similarity methods. These methods search for matches
between code instances in the vulnerability dataset and real-world
code. To be able to detect slightly modified code (different layout,
renamed variables), certain transformations are applied to each
instance. For example, some studies use code tokenization, and af-
terwards compare bags-of-tokens to find similarities [33, 35, 55]. To
make the searchmore efficient, some studies use cryptographic hash
or vectorization (e.g., with Word2Vec) on the tokens [30, 34, 66].
Apart from tokenization, several other representations are also used
in textual similarity approaches, such as Abstract Syntax Trees
(AST) [3, 12, 31], Control Flow Graphs (CFG) [80], Program Depen-
dency Graphs (PDG) [36], code binaries [29], or a combination of
these representations [5]. In order to detect code that is more sig-
nificantly modified (e.g., added/deleted/changed statements), some
algorithms use locality-sensitive hashing [12, 31] on tokens, but
unfortunately such approaches introduce false positives (compared
to the methods described above) and cannot distinguish a vulnera-
ble function from a patched one. This limitation is also applicable
to ML-based approaches [21, 54, 69, 74], which create signatures
for functions based on their syntactic features, and then compare
the signatures between vulnerable and targeted functions.

There are several textual similarity tools that aim to detect vul-
nerable code regardless of the language. To be able to do that, they

require any language to be brought into an abstracted represen-
tation, such as a high-level tree-based representation [71], PDG
and CFG [5, 34, 69, 74]. However, cross-language tools are only
implemented for textual similarity search, so they can only detect
nearly identical copies of the code. For significantly modified code,
semantic-based methods are used. Since every programming lan-
guage has its own semantics, there is no way of generalizing an
approach for vulnerability detection in code for multiple languages.
Semantic similarity methods. These methods detect semantic
(functional) similarities by searching for vulnerability patterns, and
can be divided into two categories: manual and automated pattern
development. Compared to textual similarity approaches, these
methods are generally better suited to functions with significant
implementation differences. Manually created vulnerable patterns
are developed by researchers based on their expertise. As an exam-
ple, Yamaguchi et al. [75] model templates for several vulnerability
types in C/C++ programming languages, such as buffer overflow
and memory disclosure, by combining multiple function represen-
tations into a Code Property Graph (CPG) and extracting properties
that form a vulnerable pattern. Another work of the same authors
uses AST to extrapolate vulnerabilities [76]. These methods are pre-
cise and produce few false positives. However, they only capture
specific vulnerability types, for which the patterns were created.

As part of our work, we manually develop vulnerable patterns as
well. Since the algorithm for creating all function representations
that are required to form a Code Property Graph (as in [75]) is
non-trivial, we apply another simpler, yet effective, approach. More
precisely, we utilize Semgrep – a static analysis tool which allows
to develop patterns with regard to the language semantics.

Automatically extracted vulnerable patterns are usually the re-
sult of machine learning algorithms. Certain features, which are
supposed to make a function vulnerable, are extracted by analyzing
a large set of known vulnerable functions [21, 22, 38, 54, 57, 81].
While these tools aim to spare researchers time and effort, we did
not choose to proceed with machine learning approaches: ML/DL
algorithms have to rely on a large dataset of vulnerable and patched
functions with clear ground truth which, to the extent of our knowl-
edge, does not exist for JavaScript.

2.3 Vulnerability datasets
To create vulnerability datasets, several past studies collect meta-
information, packages, and functions/code-snippets from known/re-
ported vulnerabilities. For example, VulData7 [32] uses the National
Vulnerability Database (NVD) to extract information on vulnerabil-
ities. However, it does not extract the code from files.

Ferenc et al. [23] use the GitHub repositories of the Snyk vul-
nerability database [60] and the Node Security Platform (NSP [46])
as vulnerability sources, and create the first publicly available
JavaScript dataset consisting of 12,125 functions, 1,496 of which are
flagged as vulnerable. However, the Snyk database on GitHub that
they used has not been maintained since 2018, and NSP has been
made private by NPM and thus no longer publicly available.

Mosolygó et al. [41] worked with vulnerable functions from
dataset in [23]. Theymanually filtered all 1,496 vulnerable functions
and extracted only 443 functions, which they deemed to be actually
vulnerable. However, when examining the resulting filtered set of

functions, we noticed that it still contained some false positives.
This lack of reliable vulnerability dataset is the primary motivation
for our work. We use up-to-date and well-maintained vulnerability
sources (Snyk [59] and VulnCode-DB project [26]), and design a
comprehensive methodology to avoid flagging unrelated or bug-
free functions as vulnerable.

Another popular approach for dataset compilation is to perform a
search through GitHub projects, find commits, that include specific
key words in the commit message, such as “bug”, “fix”, “CVE” etc.
and extract functions from commits [5, 34, 34, 35, 70]. This method
relies on developers’ use of proper conventions when they give a
name to their commits;1 as such, only vulnerabilities with correctly
formulated commit messages can be detected.

3 APPROACH OVERVIEW
There are different granularity levels for vulnerability detection:
line-level, function-level, file-level and package-level. We choose to
work with function-level as this code block has sufficient informa-
tion on functionality, unlike separate lines of code, and ismore likely
to be correctly identified in other projects compared to an entire
file (with many functions) containing a single vulnerability inside.

To detect vulnerable Javascript functions in the wild, we first
need a dataset of such functions. Since we are unable to find a suit-
able dataset, we develop one, relying on the existing approaches for
function collection, and developing our own methodology to verify
the dataset. We also collect a large number of JavaScript functions
from active real-world projects for measuring the prevalence of
vulnerable functions in those projects.

We group our work in three major steps: collection of JavaScript
functions for creating the vulnerable function dataset, refinement
and verification of the dataset, and vulnerable function detection in
real-world projects. Figure 1 shows an overview of our approach.

First, we collect all details and functions from each vulnerability
entry from selected sources and perform preliminary filtering to
exclude irrelevant data. Second, we analyze the collected possi-
bly vulnerable functions, and design a semi-automated function
verification procedure. Finally, we develop a framework that uses
several approaches and our verified vulnerable function dataset to
search for vulnerabilities in the functions that we collected from
real-world projects. Our primary approach for detection is vulnera-
ble pattern search. While this procedure is able to detect most of
the vulnerable function variations, as long as the vulnerable pattern
is present, it is limited to detect only the patterns of the vulnerable
types that we cover. To extend our detection range to the remaining
vulnerabilities from our dataset, we also utilize textual similarity de-
tectionmethods: content-sensitive fuzzy hashing and cryptographic
hashing. Note that these hash-based mechanisms only target near-
duplicate functions from vulnerable dataset, and we use them for
completeness. Finally, we manually verify exploitability of a small
subset of our findings in high-profile projects.

4 VULNERABLE FUNCTION DATASET
PREPARATION

In this section, we describe the process of creating our vulnerable
functions dataset. First, we collect possibly vulnerable functions
1https://www.conventionalcommits.org/en/v1.0.0/

Figure 1: Overview of our approach

from major vulnerability sources. We then analyze the collected
functions and develop an approach to assist us in vulnerability
verification. Finally, we perform a semi-automated filtering step to
distinguish the truly vulnerable functions.

4.1 Collecting Possibly Vulnerable Functions
4.1.1 Vulnerability sources. We use two sources for vulnerable
functions collection: Snyk vulnerability database [59] and Google
VulnCode-DB project [26].

Snyk database gathers information from other vulnerability
databases (e.g., NVD, CVE), from threat intelligence systems, re-
search and developer communities, and from scanning multiple
platforms by the Snyk security team. Then each entry is manu-
ally verified and enriched by Snyk, and published on their web-
site [59]. Snyk collects data for various programming languages. For
JavaScript, they store vulnerabilities from NPM packages only, even
though their sources for vulnerability collecting include other types
of projects [44]. While having a massive code base (350,000 pack-
ages), the NPM repository is only one part of a massive JavaScript
ecosystem, hence we reach out to an additional JavaScript vulnera-
bility source that collects vulnerabilities from other environments.
Like Snyk, VulnCode-DB also gathers data from CVE and NVD,
but also includes projects beyond NPM packages. VulnCode-DB
also relies on the community to add relevant information for each
vulnerability [26], as well as actual vulnerable code examples.

An entry from either of the vulnerability sources contains the fol-
lowing: vulnerability scores in several categories (difficulty, impact,
scope); CVE (common vulnerabilities and exposures [39]) identi-
fier; CWE (common weakness enumeration [40]) identifier; affected
project name, version and a short description; remediation actions;
references; and other relevant information, e.g., detailed description
of the vulnerability, and proof of concept attacks.

We develop a JavaScript program to automatically collect avail-
able JavaScript vulnerability entries from Snyk and VulnCode-DB

Category No. (percentage)
GitHub commits 1291 (44.43%)
Advisories 474 (16.31%)
GitHub issue 244 (8.40%)
Pull requests 201 (6.92%)
Vulnerable code 170 (5.85%)
Bug report 123 (4.23%)
Other links 403 (13.87%)
Total 2906

Table 1: Categories of collected links

websites. We only collect entries that have at least one link under
the “References” section, because later we extract source code from
the provided links.

As of April 2021 Snyk database has 2,975 entries under the cate-
gory “NPM”, 2,810 of which have at least one reference link. In the
VulnCode-DB project, there are 3,680 entries, where 201 of them
are for JavaScript projects with at least one reference link.

4.1.2 Function extraction and preliminary filtering. To extract func-
tions for our dataset, we first collect all the links that are provided
for each entry of our vulnerability sources, and isolate the links that
lead to the source code. We also collect detailed metadata on each
vulnerability. Out of the 3,011 collected entries with links, only four
entries overlapped between Snyk and VulnCode-DB.

We then sort the reference links for each vulnerable entry into
multiple categories. If an entry has multiple references, we rank
them by priority, based on our assumption that some categories are
more useful and convenient for our purposes than the others (links
directly leading to the vulnerable source code), and save the link
with the highest rank. Other links in the same entry are discarded.
The distribution of the links by category is presented in Table 1.

For function extraction we took two categories of links into
consideration: GitHub commits and GitHub vulnerable code (50.3%
of all links). Links of the first category point to the GitHub “diff”

page, where all code changes in the given commit are displayed
with the vulnerable files on the left and patched files on the right.
Links of the second category point to a specific vulnerable file and
include a range of lines that contain vulnerable code. The function
extraction process from GitHub commits and GitHub vulnerable
code is straightforward, while other categories of the links either
do not contain the source code or have too many unrelated code
parts that cannot be automatically filtered (e.g., pull requests links).
We extract functions from GitHub commits as follows. First, for
each commit link we use GitHub REST API to get vulnerable and
patched versions of the committed files, along with positions of
code lines that were modified (added, deleted or changed). Secondly,
we parse both versions of files with espree [24], and receive the
range of each function (first and last symbol positions in string).
Lastly, we extract all functions with modified lines within their
range. We also collect nested functions that include modified lines.

Links of GitHub “vulnerable code” type contain modified line
range at the end, in a format “#Li-j”, where i is the fist affected line,
and j – the last. We save the modified line range, and retrieve code
from the same link using a GitHub REST API. We then repeat the
procedure of function extraction as for commit links.

The structure of each entry in our dataset is presented in List-
ing 1. For each vulnerability entry we place the affected files in
the “files” property (see Listing 1). If the link category is “GitHub
commit”, we include references to both vulnerable and fixed files
(“link” and “fixedLink” properties) and a list of extracted functions in
“vulnerable-fixed” pairs (“affectedFunctions” property). For “vulner-
able code” links, we just add vulnerable link to the “files” property,
and vulnerable functions in the “affectedFunctions” property.

{
"link": "GitHub link with source code",
"name": "category of the link (Commit, Pull Request etc.)",
"page": "vulnerability entry in Snyk / VulnCode-DB",
"CVE": "CVE identifier",
"CWE": "CWE identifier",
"packageName": "affected package / project",
"versions": "affected versions of packages / projects",
"files": [

{
"link": "link to a file with vulnerable code",
"fixedLink": "link to a file with fixed code",
"affectedFunctions": [

"a list of functions in pairs vulnerable-fixed"
]

}, "..."
],
"errors": "files, that could not be processed",
"details": "paragraph of detailed description of vulnerability",
"vulnType": "category of a vulnerability"

}

Listing 1: Structure of an entry in our vulnerable function
dataset

After collecting these possible vulnerability entries, we perform
preliminary filtering to remove the following: (1) test files (links to
such files contained “spec.js” or “test” keywords); (2) files that do not
contain JavaScript functions; (3) empty functions (with no body);
and (4) cases where the code snippets for both the vulnerable and

fixed functions were identical.2 After filtering, the number of func-
tions from Snyk and VulnCode-DB "GitHub commit" links reduced
to 4,288 (from 9,552) and 184 (from 538), respectively; "vulnerable
code" functions remained unaffected (169). At this point, our dataset
contains 4,870 functions (from 895 entries). We also group entries
by the vulnerability type. Note that we clustered 116 vulnerability
types into 25 generalized groups (e.g. Code injection group includes
SQL, template, tash, content injection etc.; Procedure bypass group
includes sandbox, signature, authentication bypass etc.). The most
frequently reported vulnerabilities are cross-site scripting (228 en-
tries), command injection (167 entries), regular expression denial of
service (ReDoS, 121 entries) and prototype pollution (101 entries);
see Table 5 in the Appendix.

Following a similar approach, Ferenc et al. [23] produced a
dataset of 1,456 vulnerable functions; however, at least 1,013 of
these functions are in fact not vulnerable [41]. We identify twomain
reasons for this: (i) not considering cases with identical vulnerable
and fixed functions (item (4) above); and (ii) not excluding the non-
vulnerable functions from commits, where a given commit includes
patched functions along with several unrelated/new functions. The
second case is difficult to resolve automatically as it requires a clear
distinction of vulnerable functions from the rest, which we address
using a semi-automated verification step (Sec. 4.3).

4.2 Manual verification of vulnerable functions
To perform further verification, we develop a web application that
makes manual verification faster and easier. We upload our col-
lected data to the web interface, which allows us to easily navigate
between entries, files and functions (see Figure 5 in the Appendix).
For each function the objective is to make a decision, whether the
function is vulnerable or not. For that we examine the vulnerabil-
ity description and the differences between vulnerable and fixed
functions. If necessary, we also check Snyk and GitHub for addi-
tional information (sometimes other technical sources), to make a
concrete decision for each entry.

With help of our tool, we manually analyzed 150 vulnerability
entries (∼17% of the collected data) and found that, while some
vulnerability types do not have any regularities and each case is
very specific to each project, others are often implemented in the
same way. Based on this observation, we implement a pattern-based
detection approach for the functions that follow specific patterns.
For these functions, the manual versification process involves less
scrutiny than for other functions. .

4.3 Semi-automated function verification
To improve the efficiency of the verification of vulnerabilities in our
collected functions we develop an approach that uses vulnerable
pattern search to detect functions of certain vulnerability types. For
that we utilize a static analysis tool Semgrep [53], which performs
an advanced semantic search in code based on provided patterns.
The advantage of Semgrep is that it can understand variables and
structures unlike a simple grep search. Thus Semgrep can also
detect patterns in minified code.

2This happened when, even though the range of the function was overlapped with
the range of affected lines, modified parts belonged to a different function – such as
where one function ends and another one begins on the same line.

4.3.1 Semgrep rule development for selected vulnerability types.
Semgrep search is performed with rule sets, provided in .yaml
format. Each rule defines which patterns the tool should look for,
which to dismiss, and whether the target is inside of a specific
structure or not. There are multiple open-source rule sets for many
programming languages developed by Semgrep authors, as well
as by the community. Most of them are written to find common
bugs and inconsistencies in the code, but some rule sets also target
vulnerabilities.

We performed Semgrep search with the available community
rules for JavaScript on our dataset, but unfortunately it produced no
matches. To understand the reason, we examined several patterns
from those rule sets and reached several conclusions. Some rules,
while covering a certain vulnerability type, come with patterns that
are too specific. For example, a pattern requiring two code lines to
be placed together would not be triggered if other code separates
them. In other situations our functions are simply not covered by
the rules.

Therefore, we decided to develop our own rules for Semgrep
pattern search. To write a Semgrep rule, we need to create a pat-
tern for a line (or lines) of code that we want to match. Semgrep
also allows to add conditions like: pattern-not, pattern-inside,
pattern-not-inside etc. to make rules more targeted and avoid
false positives. At the end we add meta-information to each rule to
describe the pattern. To develop rules for pattern recognition, we
need to clearly understand each targeted vulnerability type, and
the protection measures against the vulnerability. The inclusion
of patterns for preventive measures helps us avoid flagging fixed
functions as vulnerable.

We create rule sets for several common vulnerability types, cov-
ering as many functions from each vulnerability type as possible.
However, to rely on a pattern as an indicator of a vulnerability, we
need to consider the context where it appears. This proved challeng-
ing for certain vulnerability types, such as cross-site scripting and
command injection, where these vulnerabilities can be mitigated
by the surrounding context in numerous ways. As such, creating
patterns for these vulnerability types is bound to generate many
false positives, which we want to avoid. Therefore, we choose to
create pattern rules only if the vulnerability has a very specific set
of mitigating patterns. Prototype pollution (11.3% of all types) and
ReDoS (13.5% of all types) vulnerability types primarily meet our
selection patterns.

4.3.2 Prototype pollution. This vulnerability occurs when the “re-
served” object keys are reassigned. In JavaScript, all data types
are essentially objects (including functions and primitives). All
objects have common “root” properties, which are __proto__,
constructor (for objects created using the “new” operator, e.g.
new Date()), and prototype for function objects. The attacker
manipulates these properties by tampering with their values. Once
one of the root properties is changed for one object, it is changed
for all JavaScript objects in a running application, including those
created after property tampering. The prototype pollution attack
occurs when the objects receive properties and/or values that they
are not designed to have. For example, a common way to represent
a user on the server side of the web application is in an object with
a following structure:

Figure 2: Example of a Semgrep rule for prototype pollution

{"name": "Jane Doe", "age": 30,
"education": {"primary": true, "secondary": false}}

To change their education information, a user sends a request with
the following information:

{"education": {"secondary": true}}

This data then gets recursively merged into the user’s record. If the
functionality that performs the merging operation does not check
for the validity of the received data, the attacker can send a forged
request, for example:

{"__proto__": {"isAdmin": true}}

When merging properties, the program performs the following
operation: userID.__proto__.isAdmin = true. As a result, all
users in the system will inherit the isAdmin property by default,
which grants them full access to the system. Depending on the
implementation, prototype pollution vulnerability can cause several
attacks types, including cross-site scripting, remote code execution,
denial of service, and SQL injections [18].

To avoid prototype pollution attacks, modification of an object’s
root keys should be prohibited. This can be done while creating
the object: by “freezing” it so that it becomes immutable, by using
Object.create(null) which replaces the object’s prototype with
null etc. In addition, the developers can include explicit checks of
the object properties and performed operations, where the property
names equal to __proto__, constructor and prototype.

By understanding the vulnerability and its preventive measures,
we can now develop Semgrep rules for prototype pollution. The
pattern for this vulnerability is the object key assignment statement,
e.g., object[key] = value. The key, and possibly the value and
the object have to come to the function from the outside (through
arguments, global variables or in another way). Considering that,
we addmore rule properties to account for the context of the pattern,
includingmitigating factors. As a result, we created seven rules with
different prototype pollution scenarios. A rule example is presented
in the Figure 2, along with an example of two vulnerable functions,
targeted by the rule.

Figure 3: Example of a Semgrep rule for ReDoS

4.3.3 Regular Expression Denial of Service. The second vulnera-
bility type that we develop patterns for is ReDoS. It is a specific
case of Denial of Service (DoS) attack that happens when a pro-
gram runs a user’s input through an evil regular expression [73],
that takes exponential time to process specially-crafted complex
strings. This usually happens when operators in regular expres-
sion are used in a particular combination. For example, due to the
irresponsible use of the repetition operator ’+’ a regular expres-
sion ˆ(([a-z])+.)+[A-Z]([a-z])+$ will result in a long execu-
tion loop, which may cause denial of service, if ran on the input
’aaaaaaaaaaaaaaaaaaaaaaaa!’ [73]. The protection measures for
ReDoS are either sanitizing the input (i.e., limit the length or dis-
card repetition patterns), or rewriting regular expressions without
using “dangerous”combinations of operators (such as ‘+’ and ‘*’,
‘?’ and ‘>’, ‘?’ and ‘=’). There are several tools [16, 28, 45, 68] that
can analyze regular expressions and flag the dangerous ones in a
given code base. For our purpose, we choose to use the NPMmodule
safe-regex [28]. To extract regular expressions from the functions,
we utilize the Abstract Syntax Tree (AST) function representation,
and collect nodes representing regular expressions, such as “new
RegExp("...")” and “/regex/”. Then we execute safe-regex check on
each regular expression, and save the functions that are flagged.

The presence of the evil regular expression in the code is already
potentially dangerous, but we also execute a pattern search to
check whether the evil regular expression is applied to a user-
supplied string. As a result, we created two rules that account for
four different ReDoS scenarios. Figure 3 shows an example of a
ReDoS rule and two different targeted functions.

4.4 Our final vulnerable functions dataset
With two rule sets, developed for prototype pollution and ReDoS
vulnerability types, we executed Semgrep pattern search on the re-
maining unverified functions from our vulnerable function dataset.
We repeated the search several times, each time modifying the rule
sets to match as many true positives as possible, while reducing
the rate of false positives. We summarize the results in Table 2; for
each vulnerability type, the table includes the number of vulnera-
bility entries, the number of all functions in this type, how many
of them were flagged by our pattern search, and how many from

Proto. Pollution ReDoS
No. vulnerability entries 101 121
No. functions 356 582
No. functions flagged 141 68
No. functions manually verified 166 164

Table 2: Summary on the vulnerable pattern findings in our
vulnerable function dataset

all functions were then manually verified. Iteratively we adjusted
our rule sets to not match any false positives in our dataset.

Althoughwe cannot rely on the pattern search completely and all
flagged functions still need to be manually confirmed, it does speed
up the process of verification. Instead of performing an in-depth
analysis of all the available information about a given vulnerability,
we simply ensure that the flagged code is not an exception from
the patterns.

During the manual verification we observed that in some cases,
the “fixed” file version that is supposed to eliminate the vulnera-
bility contains only partial fixes. For example, for the prototype
pollution vulnerability the function performs a check for the value
__proto__, but not for constructor or prototype that can still be
used in a malicious way. An example for the ReDoS partial fix sce-
nario is when one evil regular expression is removed, but the others
remain present, or new evil regular expressions are introduced.

We had another unexpected but positive outcome from our man-
ual validation. Since we ran pattern search on the whole vulnerable
function dataset, and not only on the targeted vulnerability types,
the other functions were checked too, andmatches were found. This
means that a function that was reported to Snyk or VulnCode-DB
under one vulnerability type also has another potential vulnerabil-
ity present. In general, Semgrep search with our rule sets matched
195 prototype pollution patterns and 121 evil regular expressions
(106 of them have ReDoS patterns) in other entries. This is an
important finding, because while developers might fix a specific
vulnerability after it is reported, other vulnerable code snippets
may still remain unchanged.

As a result, from the semi-automated verification step we con-
firm 1,360 unique vulnerable functions of 43 different vulnerability
type groups. This makes our dataset three times bigger than the
dataset created in [41], and the biggest dataset of verified vulnerable
JavaScript functions.

5 VULNERABLE FUNCTION DETECTION:
EXPERIMENT AND RESULTS

In this section, we discuss the collection and preparation of the
target dataset of real world functions, as well as the implementation
of our detection framework, designed to find vulnerable functions.
We also present the summary of our findings.

5.1 Dataset of real world functions
To collect functions from real world projects we choose three
sources: NPM packages, Chrome web extensions, and popular
websites (as per the Cisco Umbrella Popularity List [15]). In the
NPM open source package registry, packages are mostly written

Dataset No. entries No. functions
NPM packages 3000 413,774
Chrome extensions 557 2,659,649
Top websites 1893 5,739,271
Total 5450 9,205,624

Table 3: Summary of the datasets of real world functions

in JavaScript. We extract JavaScript files from GitHub reposito-
ries of 3000 most popular NPM packages.3 The majority of scripts
in Chrome web extensions is also written in JavaScript. To col-
lect JavaScript files from extensions we download and unpack the
source code for 600 first most popular extensions from Chrome
Web Store. In 43 cases, our script was not able to retrieve the source
code from Chrome Web Store API, hence only 557 extensions are
processed further for our dataset.

From the Cisco Umbrella Popularity List we choose 20,000 most
popular websites. After sending an HTTP request to each website
we receive a response with an HTML page. Then we either extract
the JavaScript code from the <script> tag, or save JavaScript files
by following the links, defined in the same tag. In 18,107 cases
the websites instead returned either a static HTML page with no
JavaScript, a response in a different format or an HTTP error. As a
result, we collected JavaScript files for 1,893 websites.

From the crawled JavaScript files we extract all functions. The
datasets contain a list of functions, mapped with the file link of the
source URL. Finally, we filter all collected data to exclude test files
(by searching for “spec.js”, “test” keywords in file links) and those
functions, that either had an empty body, or only one statement
such as printout to a command line or return. The resulting dataset
may contain duplicate functions that belong to unique sources. A
summary of the dataset is provided in Table 3.

5.2 Implementation of search algorithms
5.2.1 Vulnerable pattern search. For implementing vulnerable pat-
tern search, we use the Semgrep static analysis tool with the rule
sets we developed for prototype pollution and ReDoS vulnerability
types; note that we also use these rule sets for a semi-automated
verification of our vulnerable function dataset (see Section 4.3).
Our search logic is implemented using JavaScript, which iterates
over the real-world functions, and for each of them executes the
following steps:
(1) Run Semgrep search with rule set for prototype pollution, and

flag the function if a match is found.
(2) Find and extract regular expressions from the function. If suc-

cessful, run the safe-regex module and flag the function if
safe-regex fings any evil regular expressions.

(3) Run Semgrep search with the rule sets for ReDoS patterns on
functions with evil regular expressions; flag the function if the
pattern is matched.
We save all flagged functions, including the projects/files where

they are found. Note that for this approach we do not need to refer
to the functions of our vulnerability dataset until we want to find
new patterns and develop additional rules.

3We used a list, which sorted packages by the frequency of their usage. https://github.
com/nice-registry/all-the-package-names

Since our Semgrep rules are biased towards entries of our vul-
nerable functions dataset, it is reasonable to expect false positive
matches among the real-world functions. In order to improve the
precision of our approach we make adjustments to the rules after
analyzing a small batch of real-world functions (i.e. adding new
conditions pattern-not and pattern-not-inside).

5.2.2 Textual similarity based approaches. We use fuzzy hash and
cryptographic hash comparison for vulnerable function detection.
Data abstraction. Before conducting the experiments with tex-
tual similarity based methods, we tokenize both vulnerable and
real-world functions in order to bring functions to the same gener-
alized format. We apply tokenization representation similar to the
approach in [41]. After taking into consideration multiple syntac-
tic parts of JavaScript code, and deciding on their importance and
influence on the functionality, we decided to apply the following
tokenization rules: (i) remove all space characters and comments;
and (ii) rename all variables and arguments to unified format (e.g.,
varName1, varName2). Note that we leave all punctuators, as as-
signments or arithmetical operators play a vital role in the meaning
of the function. We also do not generalize the primitive variable
values, such as strings, numbers, and regular expression patterns;
note that we want to account for the variable values, since the differ-
ence between numbers 0 and 1 can be crucial for the vulnerability
context (or, in the prototype pollution case, we want to check if the
values of object keys are checked in the code).

To rename function variables, we parse each function to its AST
and recursively process each node (i.e., tree leaf). In each round we
look for “Variable declaration” and “Function declaration” nodes,
save their position in the function (range), and then locate and
replace characters between stored ranges. As for the arguments,
we locate them by searching “Function declaration” nodes and
looking for identifiers between the parentheses that follow. Then
we perform the same renaming procedure as for variables. See
Figure 4 in the Appendix for an example of a function and its
tokenized version.
Content-sensitive hash comparison. Content-sensitive hashing
(also known as fuzzy hashing), creates a fixed-size string that re-
flects the content of the input. It means that, unlike cryptographic
hashing, small changes in the input result in small changes in the
hash. It allows more flexibility in the function content, so if a few
lines are added, removed or modified, the content-sensitive hash
will still be similar. It enables detecting slightly modified functions,
but may introduce false positives or false negatives. For example,
this approach cannot distinguish the difference between vulnerable
and patched functions, if the patch requires only small changes.

For fuzzy hash comparison we use the Simhash [58] Python
module. First, we create content-sensitive hashes for all functions of
real-world and vulnerable datasets using Simhash() method. Then
we utilize the get_near_dups() method, which uses the hamming
distance to compare the hashes. Simhash allows to choose the
similarity threshold, by which it decides whether to flag hashes as
near-duplicates. The value of the threshold can vary from 1 (strings
are almost identical) to 64 (strings are completely different). To
minimize false positives rate we set the threshold to 1, so that it
matches only highly similar functions. Finally, if Simhash finds a
match, we save the function from the real-world dataset.

https://github.com/nice-registry/all-the-package-names
https://github.com/nice-registry/all-the-package-names

Cryptographic hash comparison. We also create SHA-1 hashes
for all tokenized functions from both vulnerable and real-world
functions datasets. We then perform a search for matches: for each
hash of the tokenized function from real world, we search for the
same hash in the vulnerable function dataset. Finally, we save the
real-world function and its source link, if a hash match is found.

5.3 Results
We perform our textual-similarity tests, which are very efficient,
on the whole real-world dataset (9,205,654 functions). On the other
hand, we only processed a total of 795,912 real-world functions with
Semgrep vulnerable pattern search, which is more computationally-
intensive. With Semgrep, we analyzed 171,109 functions from NPM
(1,300 packages), 325,978 functions from Chrome web extensions
(31 extensions) and 298,825 functions from websites (122 websites).
Out of these functions, our Semgrep rules flagged 18,362 potential
prototype pollution and 1,720 potential ReDoS vulnerable func-
tions. The distribution of the detected functions among all tested
environments is presented in Table 4.

Note that sometimes vulnerable pattern search matched multiple
functions from the same file to one vulnerable equivalent function.
This mostly happened because of the nested functions that have the
same vulnerable code. To find out the amount of uniquely occurring
vulnerable code that was detected, we create a script, which finds all
nested functions and keeps only the child function. As a result, we
get 9,858 unique detected functions for prototype pollution pattern
and 669 functions for ReDoS.

The Simhash algorithm matched 1320 functions from the whole
real-world dataset. The vulnerability types of the detected func-
tions are distributed as follows: cross-site scripting (307), ReDoS
(306), prototype pollution (138),command injection (133), directory
traversal (72), SQL injection (68), denial of service (59) and others
(237). Similar to vulnerable pattern search, Simhash also detected
several nested functions. We apply the same filtering script on all
detected functions and as a result we get 965 unique vulnerabilities.

Finally, cryptographic hash matching algorithm produced 131
matching cases from all real-world functions. All of the matches
were already detected by the Simhash comparison. However, since
the findings of cryptographic hash matching are guaranteed to be
identical (except for variable names) copies of vulnerable functions,
there is no need to manually verify them, and we can automatically
count them as true positives. The findings belonged to the following
vulnerability types: ReDoS (29), cross-site scripting (26), command
injection (25), prototype pollution (14), timing attack (5), denial of
service (1), and others (31).

Note that all ReDoS and prototype pollution vulnerabilities de-
tected by textual similarity methods were also detected by our
Semgrep rules. This is an expected behavior, as the rules are based
on functions from our vulnerability dataset, and Simhash and cryp-
tographic hash are detecting near-duplicate versions of those func-
tions. As a result, our experiment identifies 11,148 unique functions,
detected by at least one method in our framework. 10,527 of the
findings belong to either prototype pollution or ReDoS vulnerabil-
ities, and the remaining 621 to other types of vulnerabilities that
appeared in our vulnerable functions dataset.

NPM Ext. Websites Total Unique

Vu
ln
.

Pa
tte

rn
s Proto. pollution 4,592 7,080 6,690 18,362 9,858

ReDoS 552 542 626 1,720 669
Total detected 5,144 7,622 7,316 20,082 10,527
Fuzzy hash 56 201 1,063 1,320 965
Crypto hash 30 85 16 131 131

Table 4: Results on detection of vulnerable functions in the
real-world functions (for textual similarity methods results
are presented for all detected vulnerability types)

5.4 Manual validation of the results
To evaluate the performance of vulnerable pattern search, we ran-
domly picked 100 functions for prototype pollution and 100 for
ReDoS vulnerability from all the detected functions. For each find-
ing we examine three main features. Firstly, we confim that the
flagged pattern is detected correctly. Secondly, we verify that the in-
put to the pattern comes from the outside of the function. Lastly, we
make sure that there are no sufficient protection measures, missed
by our Semgrep rules. As a result, we identified 8 false positives
for prototype pollution and 3 for ReDoS, resulting into precision of
92% and 97%, respectively.

Among the prototype pollution functions, patterns got false
matches for mainly two reasons. Firstly, in JavaScript the following
assignment syntax: obj[key] = value is valid for an object and an
array (ordered collection of elements). In case of the assignment to
the array element, the “key” is an index of the element. However, the
prototype pollution applies only to object’s properties modification.
Since JavaScript does not have explicit data types, the patterns fail
to distinct array and object assignments. The second reason for
false positives for prototype pollution was the function obfuscation
technique, which did not modify the vulnerable pattern, but heavily
obfuscated the protection measures that prevent the vulnerability.

In three false positive matches from ReDoS the function con-
tainedmultiple regular expressions. The input variable wasmatched
with some of the regular expressions, but not with the ones, marked
as dangerous in the previous steps of our experiment. Since the
dangerous regular expression was not used with the user input we
do not see a possibility of a ReDoS attack in this scenario.

Since fuzzy hashing comparison approach may introduce false
positives (as described in the previous Section), we need to manu-
ally verify the findings as well. Therefore, for 90 out of 965 matches
we checked the differences between the real-world function and
the vulnerable function with similar content. As a result, we iden-
tified two false positive matches, which gives us precision rate of
98%. There were two reasons for a false positives: one function was
patched, but the fix was only in one line, so the function remained
similar enough; the other flagged function matched ReDoS vulner-
able function, but did not have a regular expression in its body
(otherwise it was identical to the vulnerable function).

6 CASE STUDIES
After the manual verification of the 290 detected functions, we
conduct case studies on some of them in order to understand how
these vulnerabilities affect the projects containing them, and what
threat do they pose to users. We isolate 15 findings from 10 differ-
ent projects to describe their impact in detail in this section. By

vulnerability types we targeted eight prototype pollution findings,
five ReDoS findings, and one finding with both vulnerability types
(in SailsJS project). Note that after searching through multiple vul-
nerability databases (NVD, Snyk) and researching the available
information on specific projects and the functions in question we
were unable to locate any reports on these vulnerabilities in publicly
accessible sources.
Ramda. Ramda [56] is an npm package (10.3 million weekly down-
loads), that provides utility functions with a focus on functional
programming style. Our findings indicate that mapObjIndexed()
method is vulnerable to object property injection. Due to insuffi-
cient protection measures, it is possible to pollute the prototype
of the Function by supplying a crafted object, causing threats to
integrity and/or availability of the JavaScript application.4
async. Async [9] is an npm package (40.4 million weekly down-
loads) that provides functionality for working with asynchronous
JavaScript. Similar to Ramda, the method mapValues() in async
package is vulnerable to object property injection.5
Lodash. Lodash is a library for JavaScript with various utility
functions, mainly for array and object manipulations [37]. It is
used in approximately 3.6% of websites as of July 2021, and has
38.9 millions of weekly downloads [43]. Our findings indicate that
the master branch of lodash GitHub repository contains code ex-
posed to a prototype pollution attack. Vulnerabilities of this type
have been reported and subsequently fixed in multiple lodash func-
tions [61–64]. However, lodash does not apply security fixes to
the source code in their master branch. While in the distributables
that are supplied to the NPM registry, the found vulnerability is
fixed, if developers decide to clone source code from lodash and
use it locally, they can clone the master branch. Hence, the discov-
ered vulnerability still bears significant impact on some applica-
tions. More specifically, the internal function baseAssignValue()
offers no protection measures against modifying prototype or
constructor properties, which potentially exposes any project
that uses specific methods from cloned lodash source code, such
as _.set(), _.copyObject, _.keyBy, _.countBy, _.groupBy, to a
prototype pollution attack. We implemented a proof-of-concept
attack,6 which targets _.set() method and successfully injects a
custom property to Object.prototype, thus adding this property
for all objects of the running application.

Additionally, among detected vulnerable functions we discov-
ered two from projects that contain local copies of the lodash li-
brary: the Highland NPM package [10] and accompany.com web
domain; these projects use functionality, provided by lodash, but
do not automatically receive security updates for it. As a result,
both projects are exposed to the attacks, that can exploit both
newly detected and previously found vulnerabilities that were re-
ported and fixed in the original lodash. In particular, Highland
package and accompany.com website contain an older version of
the baseAssignValue() function from our findings, pre-dating
even the partial fix.
AngularJS. AngularJS [25] is a client-side JavaScript framework
for developing web applications. This version of Angular is going

4The PoC Ramda attack is available at https://jsfiddle.net/3pomzw5g/2/
5The PoC async attack is available at https://jsfiddle.net/oz5twjd9/
6The PoC lodash attack is available at https://jsfiddle.net/evmjxaq1/

to be discontinued at the end of 2021, however there are still more
than 1.2 millions live websites written with this framework [6].
We have identified three prototype pollution vulnerabilities in the
source code of AngularJS:
(1) AngularJS routing system, implemented by $routeProvider

service, contains vulnerable code that exposes certainAngularJS-
based applications to the prototype pollution attack. It is pos-
sible in the scenario, when the paths in such applications are
created dynamically based on user input. As a consequence, the
attacker can disrupt the routing of the application.

(2) A misuse of AngularJS’s Select directive can lead to prototype
pollution. If the developer of an AngularJS-based application
allows the user to dynamically add or modify options associated
with Select directive, a special select value can be crafted to
perform a prototype pollution attack.

(3) Programmatic navigation within an AngularJS-based appli-
cation can be performed via the $location service. Particu-
larly, query parameters can be added to the current URL with
the $location.search() function. This functionality can be
abused to perform a prototype pollution attack if the query
parameters in question are dependent on user input.

For the first casewe have implemented a proof-of-concept attack.7 If
the AngularJS-based application allows the user to supply a custom
payload to the $routeProvider.when() method, an attacker is
able to manipulate the prototype of the routes object by providing
"__proto__" as the route path.
Sails.js. Sails.js is a model–view–controller web application frame-
work written in JavaScript [2]. Currently there are 8,265 active
websites built on this framework [7]. At least 24 of these websites
appear on Top 1 million Tranco list [50]. Our findings indicate that
the loadActionModules() method is vulnerable to both ReDoS
and prototype pollution, due to the absence of sanitization of the
strings extracted from filenames. There is a conceivable scenario,
where filenames are controlled by the end user (e.g. dynamic cre-
ation of API endpoints). In this case, the method can be exploited
for a form of a prototype pollution attack that leads to denial of
service.8. Additionally, certain filenames may also cause availabil-
ity issues due to the usage of an “evil” regular expression in the
method.
Grunt-usemin. Grunt-usemin is an NPM package, that creates a
minified version of web files (HTML, CSS, JavaScript) in a project,
and it has 29,673 weekly downloads [77]. It can also automatically
replace links to scripts in code to the minified versions of the same
scripts. We found a potential ReDoS vulnerability in the function
that searches for the internal file references in the project and re-
places them. In terms of this functionality, getBlocks() function
aims to parse an HTML file line by line, and extracts specific in-
formation. During this process, a dangerous regular expression
is applied to match patterns in every line. A maliciously crafted
HTML file can cause ReDoS, when processed by Grunt-usemin.
JSON.parse polyfill. Four web domains were flagged due to the
use of polyfill for a built-in JavaScript method JSON.parse. A
polyfill is a piece of code used to provide modern functionality

7The PoC AngularJS attack is available at https://jsfiddle.net/mspc3f8n/
8The PoC Sails.js attack is available at https://github.com/Marynk/JavaScript-
vulnerability-detection/blob/main/sailsJS%20PoC.zip

accompany.com
accompany.com
https://jsfiddle.net/3pomzw5g/2/
https://jsfiddle.net/oz5twjd9/
https://jsfiddle.net/evmjxaq1/
https://jsfiddle.net/mspc3f8n/
https://github.com/Marynk/JavaScript-vulnerability-detection/blob/main/sailsJS%20PoC.zip
https://github.com/Marynk/JavaScript-vulnerability-detection/blob/main/sailsJS%20PoC.zip

on older browsers [42]. The flagged domains and their rank in
the Cisco Umbrella Popularity list [15] are: acdc-direct.office.com
(#259), ad.crwdcntrl.net (#5806), activedirectory.windowsazure.com
(#6050) and 360.cn (#6291). The implementation of JSON.parse
polyfill by these domains uses an unsafe regex to sanitize the input,
which can lead to ReDoS attack. Furthermore, it can be exploited to
run arbitrary code because of the use of eval() on the parsed text
as part of the functionality implementation (command injection).
This attack can be exploited using older versions of Firefox (v.2-3),
Opera (v.10.1), Safari (v.3.1-3.2) and Internet Explorer (v.6-7).
Gravatar.com. Gravatar is a global service for creating universal
avatars [27]. Gravatars (globally recognized avatars) are integrated
into more than a million websites as of July 2021. On the gravatar.
com website, there is a WordPress module called cookie-banner.
The cookies are processed with a dangerous regular expression,
and in case of the user being able to modify their cookies, such
cookie processing implementation will lead to a ReDoS attack.

7 LIMITATIONS AND FUTUREWORK
Although we verified several of our findings as part of our case
studies, we want to note that, when a function is flagged by our
framework as vulnerable, this does not always imply that the project
containing this function is vulnerable as well. Additional measures,
applied from the outside of the function (such as input sanitation),
may restrict an attack. On the other hand, it is still important to
identify such functions, as they might be reused in an unsafe place,
either in the same project or in a different one. Also, the code
outside of the function might change, possibly eliminating the
applied protection measures.

As part of future work, our vulnerable function dataset can
be extended by collecting more functions using other types of
references from the Snyk database (e.g., GitHub pull requests, and
GitHub issues). Another way to collect vulnerable functions from
NPM is to use information on package version updates; we can
look for the information on a “security patch” in the node advisory.
The other approach may be to scan GitHub open source projects; if
developers are following certain rules in maintaining their version
control, they might include useful flags in the commit messages. For
example, for vulnerability fixing commit, it is common to include a
“fix” word in the commit message, along with a CVE identifier for
the vulnerability. We can also perform a search for related keywords
through GitHub commit messages.

In terms of Semgrep rules, other vulnerability types can be con-
sidered besides prototype pollution and ReDoS. The existing rule
sets may also be improved to catch more specific patterns, since our
current pattern search method targets the most common implemen-
tations of the two vulnerability types we considered. In addition,
Semgrep rules cannot detect heavily obfuscated JavaScript code, as
its modified structure obscures the vulnerable patterns.

8 CONCLUSIONS
In summary, we propose a framework for function-level detection
of JavaScript vulnerabilities in the wild, shifting the focus from
package-level vulnerability tracking/measurements considered in
the past work. We also design a semi-automated vulnerable func-
tion collection mechanism to build a reliable dataset of known

vulnerable JavaScript functions. Our dataset contains 1,360 veri-
fied vulnerable functions. By testing a batch of 795,912 real-world
JavaScript functions from popular NPM packages, Chrome web
extensions, and websites, we detected 10,527 vulnerable functions
with a precision of 94.5% (calculated based on a small randomly
chosen dataset) by vulnerable pattern search. We then checked our
whole real-world dataset (9,205,654 functions) using fuzzy and cryp-
tographic hashes, and detected 131 and 965 vulnerable functions
with the estimated precision of 100% and 98%, respectively. In addi-
tion, we conducted an in-depth analysis on 15 detected vulnerable
functions from 10 projects, and described the attack vectors that
can be exploited for these vulnerabilities. Moreover, we performed
successful proof-of-concept attacks on two of the projects by ex-
ploiting the detected vulnerabilities. Finally, for reproducibility and
further research in JavaScript security, all the outcomes of our work
will be made publicly available, after our responsible disclosure to
possibly affected developers and site operators.9

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments and
suggestions to improve the paper’s presentation. This research is
partly supported by Mitacs (first author) and Natural Sciences and
Engineering Research Council of Canada Discovery Grants (second
and third authors).

REFERENCES
[1] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Mouafak Mkhallalati.

2021. On the Use of Dependabot Security Pull Requests. In 18th IEEE/ACM
International Conference on Mining Software Repositories. IEEE, random address,
254–265.

[2] Balderdash Design Co. 2012. Sails.js: The MVC framework for Node.js. https:
//sailsjs.com/.

[3] Ira Baxter, Andrew Yahin, Leonardo de Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone Detection Using Abstract Syntax Trees. Proc. of International
Conference on Software Maintenance 368-377 (01 1998), 368–377.

[4] Fabian Beuke. 2021. GitHub Language Statistics. https://madnight.github.io/
githut/#/pull_requests/2021/1.

[5] Benjamin Bowman and H. Howie Huang. 2020. VGRAPH: A Robust Vulnerable
Code Clone Detection System Using Code Property Triplets. In IEEE European
Symposium on Security and Privacy, EuroS&P 2020. IEEE, 53–69.

[6] BuiltWith.com. 2021. Angular JS Usage Statistics. https://trends.builtwith.com/
javascript/Angular-JS.

[7] BuiltWith.com. 2021. SailsJS Usage Statistics. https://trends.builtwith.com/
framework/SailsJS.

[8] Fabio Calefato, Filippo Lanubile, and Teresa Mallardo. 2004. Function Clone
Detection in Web Applications: A Semiautomated Approach. J. Web Eng. 3, 1
(2004), 3–21.

[9] Caolan McMahon. 2011. Async. https://caolan.github.io/async/v3/.
[10] Caolan McMahon. 2014. HIGHLAND: The high-level streams library for Node.js

and the browser. https://caolan.github.io/highland/.
[11] Wai Cheung, Sukyoung Ryu, and Sunghun Kim. 2015. Development nature

matters: An empirical study of code clones in JavaScript applications. Empirical
Software Engineering 21 (03 2015).

[12] Wai Cheung, Sukyoung Ryu, and Sunghun Kim. 2015. Development nature
matters: An empirical study of code clones in JavaScript applications. Empirical
Software Engineering 21 (03 2015).

[13] Bodin Chinthanet, Raula Kula, Shane McIntosh, Takashi Ishio, Akinori Ihara, and
Kenichi Matsumoto. 2021. Lags in the release, adoption, and propagation of npm
vulnerability fixes. Empirical Software Engineering 26 (05 2021).

[14] Bodin Chinthanet, Serena Elisa Ponta, Henrik Plate, Antonino Sabetta,
Raula Gaikovina Kula, Takashi Ishio, and Kenichi Matsumoto. 2020. Code-
based Vulnerability Detection in Node.js Applications: How far are we? CoRR
abs/2008.04568 (2020).

[15] Dan Hubbard. 2016. Cisco Umbrella 1 Million. https://umbrella.cisco.com/blog/
cisco-umbrella-1-million.

9https://github.com/Marynk/JavaScript-vulnerability-detection

acdc-direct.office.com
ad.crwdcntrl.net
activedirectory.windowsazure.com
360.cn
gravatar.com
gravatar.com
https://sailsjs.com/
https://sailsjs.com/
https://madnight.github.io/githut/#/pull_requests/2021/1
https://madnight.github.io/githut/#/pull_requests/2021/1
https://trends.builtwith.com/javascript/Angular-JS
https://trends.builtwith.com/javascript/Angular-JS
https://trends.builtwith.com/framework/SailsJS
https://trends.builtwith.com/framework/SailsJS
https://caolan.github.io/async/v3/
https://caolan.github.io/highland/
https://umbrella.cisco.com/blog/cisco-umbrella-1-million
https://umbrella.cisco.com/blog/cisco-umbrella-1-million
https://github.com/Marynk/JavaScript-vulnerability-detection

[16] Jamie Davis. 2018. vuln-regex-detector: Detect vulnerable regexes in your project.
https://github.com/davisjam/vuln-regex-detector.

[17] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Conference
on Mining Software Repositories, MSR 2018. ACM, 181–191.

[18] Ben Dickson. 2020. Prototype pollution: The dangerous and underrated
vulnerability impacting JavaScript applications. https://portswigger.net/daily-
swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-
impacting-javascript-applications.

[19] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In 28th Annual Network and Distributed
System Security Symposium, NDSS 2021. The Internet Society.

[20] escomplex 2015. Escomplex: Software complexity analysis of JavaScript abstract
syntax trees. https://github.com/escomplex/escomplex.

[21] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional code clone detection with syntax and semantics fusion learning. In
ISSTA ’20: 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 516–527.

[22] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional Code Clone Detection with Syntax and Semantics Fusion Learning.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Virtual Event, USA) (ISSTA 2020). Association for Computing
Machinery, 516–527.

[23] Rudolf Ferenc, Péter Hegedüs, Péter Gyimesi, Gábor Antal, Dénes Bán, and
Tibor Gyimóthy. 2019. Challenging machine learning algorithms in predicting
vulnerable JavaScript functions. InWorkshop on Realizing Artificial Intelligence
Synergies in Software Engineering, RAISE@ICSE 2019. IEEE / ACM, 8–14.

[24] OpenJS Foundation. 2014. Espree. https://www.npmjs.com/package/espree.
[25] Google. 2010. AngularJS. https://angularjs.org/.
[26] Google. 2019. The vulnerable code database (Vulncode-DB). https://www.

vulncode-db.com.
[27] Gravatar.com. 2007. Gravatar: One avatar for everything, everywhere. https:

//en.gravatar.com/.
[28] James Halliday. 2013. safe-regex: detect possibly catastrophic, exponential-time

regular expressions. https://github.com/substack/safe-regex.
[29] Hajin Jang, Kyeongseok Yang, Geonwoo Lee, Yoonjong Na, Jeremy D. Seideman,

Shoufu Luo, Heejo Lee, and Sven Dietrich. 2021. QuickBCC: Quick and Scalable
Binary Vulnerable Code Clone Detection. In ICT Systems Security and Privacy
Protection - 36th IFIP TC 11 International Conference, SEC 2021 (IFIP Advances in
Information and Communication Technology, Vol. 625). Springer, 66–82.

[30] Jiyong Jang, Maverick Woo, and David Brumley. 2012. ReDeBug: Finding Un-
patched Code Clones in Entire OS Distributions. login Usenix Mag. 37, 6 (2012).

[31] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. In 29th
International Conference on Software Engineering (ICSE 2007). IEEE Computer
Society, 96–105.

[32] Matthieu Jimenez, Yves Le Traon, and Mike Papadakis. 2018. [Engineering Paper]
Enabling the Continuous Analysis of Security Vulnerabilities with VulData7. In
18th IEEE International Working Conference on Source Code Analysis and Manipu-
lation, SCAM 2018. IEEE Computer Society, 56–61.

[33] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. Software Engineering, IEEE Transactions on 28 (08 2002), 654– 670.

[34] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
Scalable Approach for Vulnerable Code Clone Discovery. In 2017 IEEE Symposium
on Security and Privacy, SP 2017. IEEE Computer Society, 595–614.

[35] Hongzhe Li, Hyuckmin Kwon, Jonghoon Kwon, and Heejo Lee. 2016. CLORIFI:
software vulnerability discovery using code clone verification. Concurr. Comput.
Pract. Exp. 28, 6 (2016), 1900–1917.

[36] Jingyue Li and Michael Ernst. 2012. CBCD: Cloned buggy code detector. Proceed-
ings - International Conference on Software Engineering (06 2012), 310–320.

[37] Lodash Utilities. 2009. Lodash: A modern JavaScript utility library delivering
modularity, performance & extras. https://lodash.com/.

[38] Nikita Mehrotra, Navdha Agarwal, Piyush Gupta, Saket Anand, David Lo, and
Rahul Purandare. 2020. Modeling Functional Similarity in Source Code with
Graph-Based Siamese Networks. CoRR abs/2011.11228 (2020).

[39] MITRE. 2021. Common vulnerabilities and exposures. https://cve.mitre.org/.
[40] MITRE. 2021. Common weakness enumeration. https://cwe.mitre.org/.
[41] BalázsMosolygó, Norbert Vándor, Gábor Antal, Péter Hegedűs, and Rudolf Ferenc.

2021. Towards a Prototype Based Explainable JavaScript Vulnerability Prediction
Model. In 2021 International Conference on Code Quality (ICCQ). IEEE, 15–25.

[42] Mozilla. 2021. Polyfill. https://developer.mozilla.org/en-US/docs/Glossary/
Polyfill.

[43] npm. 2009. Lodash NPM Library. https://www.npmjs.com/package/lodash.
[44] npm. 2010. Node Package Registry. https://www.npmjs.com/.
[45] npm. 2015. ESLint rules for Node Security. https://github.com/nodesecurity/

eslint-plugin-security/blob/master/rules/detect-unsafe-regex.js.

[46] npm. 2018. The Node Security Platform service is shutting down. https://blog.
npmjs.org/post/175511531085/insert-title-here.html.

[47] OSA 2018. OpenStaticAnalyzer. https://openstaticanalyzer.github.io/.
[48] OWASP.org. 2021. Content Spoofing. https://owasp.org/www-community/

attacks/Content_Spoofing.
[49] Nikolaos Pantelaios, Nick Nikiforakis, and Alexandros Kapravelos. 2020. You’ve

Changed: Detecting Malicious Browser Extensions through their Update Deltas.
In ACM CCS’20. 477–491.

[50] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2018. Tranco - A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. https://tranco-list.eu/.

[51] PortSwigger.net. 2021. DOM-based open redirection. https://portswigger.net/
web-security/dom-based/open-redirection.

[52] Niels Provos. 2015. A Javascript-based DDoS Attack as seen by Safe Brows-
ing. https://security.googleblog.com/2015/04/a-javascript-based-ddos-attack-as-
seen.html.

[53] r2c. 2020. Semgrep. Static analysis at ludicrous speed. Find bugs and enforce
code standards. https://semgrep.dev/docs/.

[54] Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton, Tomo Lazovich, Jacob A. Harer,
Onur Ozdemir, Paul M. Ellingwood, and Marc W. McConley. 2018. Automated
Vulnerability Detection in Source Code Using Deep Representation Learning.
CoRR abs/1807.04320 (2018).

[55] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2015. SourcererCC: Scaling Code Clone Detection to Big Code. CoRR
abs/1512.06448 (2015).

[56] Scott Sauyet, Buzz de Cafe. 2020. Ramda. https://ramdajs.com/.
[57] Abdullah Sheneamer and Jugal Kalita. 2016. Semantic Clone Detection Using

Machine Learning. In 15th IEEE International Conference on Machine Learning
and Applications, ICMLA 2016. IEEE Computer Society, 1024–1028.

[58] SIM 2020. SimHash. https://github.com/1e0ng/simhash.
[59] Snyk.io. [n.d.]. Snyk Vulnerability DB. https://snyk.io/product/vulnerability-

database/.
[60] Snyk.io. 2018. GitHub Snyk Vulnerability Database. https://github.com/snyk/

vulnerabilitydb.
[61] Snyk.io. 2019. Prototype Pollution in defaultsDeep, Lodash. https://snyk.io/vuln/

SNYK-DOTNET-LODASH-540457.
[62] Snyk.io. 2019. Prototype Pollution in merge, mergeWith, and defaultsDeep,

Lodash. https://snyk.io/vuln/SNYK-DOTNET-LODASH-540455.
[63] Snyk.io. 2020. Prototype Pollution in set/setWith, Lodash. https://snyk.io/vuln/

SNYK-JS-LODASH-608086.
[64] Snyk.io. 2020. Prototype Pollution in zipObjectDeep, Lodash. https://snyk.io/

vuln/SNYK-JS-LODASH-590103.
[65] Softwaretestinghelp.com. 2021. JavaScript Injection Tutorial: Test and Prevent JS

Injection Attacks On Website. https://www.softwaretestinghelp.com/javascript-
injection-tutorial/.

[66] Xiaonan Song, Aimin Yu, Haibo Yu, Shirun Liu, Xin Bai, Lijun Cai, and Dan
Meng. 2020. Program Slice based Vulnerable Code Clone Detection. In 19th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, TrustCom 2020. IEEE, 293–300.

[67] Stackoverflow.com. 2020. 2020 Developer Survey. https://insights.stackoverflow.
com/survey/2020#most-popular-technologies.

[68] Superhuman Labs. 2016. RXXR2 regular expression static analyzer. https://github.
com/superhuman/rxxr2.

[69] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. Deep learning similarities from different
representations of source code. In Conference on Mining Software Repositories
(MSR’18). 542–553.

[70] Fabien Patrick Viertel, Wasja Brunotte, Daniel Strüber, and Kurt Schneider. 2019.
Detecting Security Vulnerabilities using Clone Detection and Community Knowl-
edge. In The 31st International Conference on Software Engineering and Knowledge
Engineering, SEKE 2019. KSI Research Inc. and Knowledge Systems Institute
Graduate School, 245–324.

[71] Tijana Vislavski, Gordana Rakic, Nicolás Cardozo, and Zoran Budimac. 2018.
LICCA: A tool for cross-language clone detection. In 25th International Conference
on Software Analysis, Evolution and Reengineering. IEEE Computer Society, 512–
516.

[72] W3Techs.com. 2021. Usage statistics of JavaScript as client-side programming
language on websites. https://w3techs.com/technologies/details/cp-javascript.

[73] Adar Weidman. 2019. ReDoS. https://owasp.org/www-community/attacks/
Regular_expression_Denial_of_Service_-_ReDoS.

[74] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In IEEE/ACM
International Conference on Automated Software Engineering (ASE’16). 87–98.

[75] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
Discovering Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium
on Security and Privacy, SP 2014. 590–604.

[76] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. 2012. Generalized
vulnerability extrapolation using abstract syntax trees. In ACSAC’12. 359–368.

https://github.com/davisjam/vuln-regex-detector
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://github.com/escomplex/escomplex
https://www.npmjs.com/package/espree
https://angularjs.org/
https://www.vulncode-db.com
https://www.vulncode-db.com
https://en.gravatar.com/
https://en.gravatar.com/
https://github.com/substack/safe-regex
https://lodash.com/
https://cve.mitre.org/
https://cwe.mitre.org/
https://developer.mozilla.org/en-US/docs/Glossary/Polyfill
https://developer.mozilla.org/en-US/docs/Glossary/Polyfill
https://www.npmjs.com/package/lodash
https://www.npmjs.com/
https://github.com/nodesecurity/eslint-plugin-security/blob/master/rules/detect-unsafe-regex.js
https://github.com/nodesecurity/eslint-plugin-security/blob/master/rules/detect-unsafe-regex.js
https://blog.npmjs.org/post/175511531085/insert-title-here.html
https://blog.npmjs.org/post/175511531085/insert-title-here.html
https://openstaticanalyzer.github.io/
https://owasp.org/www-community/attacks/Content_Spoofing
https://owasp.org/www-community/attacks/Content_Spoofing
https://tranco-list.eu/
https://portswigger.net/web-security/dom-based/open-redirection
https://portswigger.net/web-security/dom-based/open-redirection
https://security.googleblog.com/2015/04/a-javascript-based-ddos-attack-as-seen.html
https://security.googleblog.com/2015/04/a-javascript-based-ddos-attack-as-seen.html
https://semgrep.dev/docs/
https://ramdajs.com/
https://github.com/1e0ng/simhash
https://github.com/snyk/vulnerabilitydb
https://github.com/snyk/vulnerabilitydb
https://snyk.io/vuln/SNYK-DOTNET-LODASH-540457
https://snyk.io/vuln/SNYK-DOTNET-LODASH-540457
https://snyk.io/vuln/SNYK-DOTNET-LODASH-540455
https://snyk.io/vuln/SNYK-JS-LODASH-608086
https://snyk.io/vuln/SNYK-JS-LODASH-608086
https://snyk.io/vuln/SNYK-JS-LODASH-590103
https://snyk.io/vuln/SNYK-JS-LODASH-590103
https://www.softwaretestinghelp.com/javascript-injection-tutorial/
https://www.softwaretestinghelp.com/javascript-injection-tutorial/
https://insights.stackoverflow.com/survey/2020#most-popular-technologies
https://insights.stackoverflow.com/survey/2020#most-popular-technologies
https://github.com/superhuman/rxxr2
https://github.com/superhuman/rxxr2
https://w3techs.com/technologies/details/cp-javascript
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS

[77] Yeoman team. 2012. grunt-usemin. https://www.npmjs.com/package/grunt-
usemin/.

[78] Rodrigo Elizalde Zapata, Raula Gaikovina Kula, Bodin Chinthanet, Takashi Ishio,
Kenichi Matsumoto, and Akinori Ihara. 2018. Towards Smoother Library Migra-
tions: A Look at Vulnerable Dependency Migrations at Function Level for npm
JavaScript Packages. In 2018 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2018. IEEE Computer Society, 559–563.

[79] Ahmed Zerouali, Valerio Cosentino, Tom Mens, Gregorio Robles, and Jesús M.
González-Barahona. 2019. On the Impact of Outdated and Vulnerable Javascript
Packages in Docker Images. In IEEE Conference on Software Analysis, Evolution
and Reengineering. 619–623.

[80] Minmin Zhou, Jinfu Chen, Yisong Liu, Hilary Ackah-Arthur, Shujie Chen,
Qingchen Zhang, and Zhifeng Zeng. 2019. A Method for Software Vulnera-
bility Detection Based on Improved Control Flow Graph. Wuhan University
Journal of Natural Sciences 24 (04 2019), 149–160.

[81] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019. De-
vign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. CoRR abs/1909.03496 (2019).

[82] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael
Pradel. 2019. Small World with High Risks: A Study of Security Threats in
the npm Ecosystem. CoRR abs/1902.09217 (2019).

APPENDIX

Vulnerability type No. of entries No. of functions
Cross-Site Scripting 228 1183
Code Injection 167 983
ReDoS 121 582
Prototype Pollution 101 356
Denial of Service 45 245
Directory Traversal 42 300
Information Exposure 23 201
Insecure Download Protocol 19 35
Improper Input Validation 18 50
Request Forgery 17 100
Memory Exposure 13 54
Insecure File Access 13 121
Procedure Bypass 12 316
Improper Auth 8 79
Insecure Defaults 7 26
Improper Cred. Protection 7 11
Timing Attack 6 19
Open Redirect 6 10
Insecure Randomness 6 15
Improper Access Control 6 18
Man In The Middle 4 7
Token Disclosure 3 8
Curve Attack 2 33
Buffer Overflow 2 23
Other 19 95
Total 895 4870

Table 5: Distribution of vulnerability types among all col-
lected entries

https://www.npmjs.com/package/grunt-usemin/
https://www.npmjs.com/package/grunt-usemin/

Figure 4: Example of a function and its tokenized version

Figure 5: GUI of the framework for manual vulnerable functions verification

	Abstract
	1 Introduction
	2 Related Work
	2.1 JavaScript vulnerability detection
	2.2 Vulnerable code detection methods
	2.3 Vulnerability datasets

	3 Approach Overview
	4 Vulnerable function dataset preparation
	4.1 Collecting Possibly Vulnerable Functions
	4.2 Manual verification of vulnerable functions
	4.3 Semi-automated function verification
	4.4 Our final vulnerable functions dataset

	5 Vulnerable function detection: experiment and results
	5.1 Dataset of real world functions
	5.2 Implementation of search algorithms
	5.3 Results
	5.4 Manual validation of the results

	6 Case Studies
	7 Limitations and future work
	8 Conclusions
	Acknowledgments
	References

