
Using SafeKeeper to Protect Web Passwords
Arseny Kurnikov

Aalto University, Finland
arseny.kurnikov@aalto.fi

Klaudia Krawiecka
Aalto University, Finland
kkrawiecka@acm.org

Andrew Paverd
Aalto University, Finland
andrew.paverd@ieee.org

Mohammad Mannan
Concordia University, Canada
m.mannan@concordia.ca

N. Asokan
Aalto University, Finland

asokan@acm.org

ABSTRACT
Although passwords are by far the most widely-used user authen-
tication mechanism on the web, their security is threatened by
password phishing and password database breaches. SafeKeeper is
a system for protecting web passwords against very strong adver-
saries, including sophisticated phishers and compromised servers.
Compared to other approaches, one of the key differentiating as-
pects of SafeKeeper is that it provides web users with verifiable
assurance that their passwords are being protected.

In this paper, we demonstrate precisely how SafeKeeper can be
used to protect web passwords in real-world systems. We first ex-
plain two important deployability aspects: i) how SafeKeeper can be
integrated into the popular WordPress platform, and ii) how ordi-
nary web users can use Intel SGX remote attestation to verify that
SafeKeeper is running on a particular server. We then describe three
demonstrations to illustrate the use of SafeKeeper: i) showing the
user experience when visiting a legitimate website; ii) showing the
encryption of the password in transit via live packet-capture; and
iii) showing how SafeKeeper performs in the presence of phishing.
ACM Reference Format:
Arseny Kurnikov, Klaudia Krawiecka, Andrew Paverd, Mohammad Man-
nan, and N. Asokan. 2018. Using SafeKeeper to Protect Web Passwords. In
WWW ’18 Companion: The 2018 Web Conference Companion, April 23–27,
2018, Lyon, France. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3184558.3186968

1 INTRODUCTION
Passwords are the most widely-used mechanism for user authen-
tication on the web. Password-based authentication outperforms
competing solutions in terms of usability and deployability: it is
easy to learn, easy to use, simple and cheap to deploy, and compati-
ble with virtually all servers and browsers.

However, phishing and password database breaches are two
major security concerns [12, 14, 15]. Although password databases
usually store only password hashes, theft of a password database
often obliges users to change their passwords, since offline brute
force attacks can be efficient [4]. Since users often re-use the same
password across multiple services, a password leaked from one site
could likely be used to compromise other accounts [7].

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3186968

We previously described SafeKeeper [9], a system that protects
web passwords against phishing and password database breaches.
It consists of two components: a server-side password protection
service and a client-side web browser addon. The password protec-
tion service replaces the server’s existing password hash function
with a keyed Cipher-based Message Authentication Code (CMAC)
performed inside a Trusted Execution Environment (TEE), imple-
mented as an Intel SGX enclave [8]. Thus even if the password data-
base is breached, the adversary cannot perform an offline guessing
attack without knowing the CMAC key. The web browser addon
uses remote attestation to verify that the server is running the Safe-
Keeper password protection service in an SGX enclave. Through this
protocol, the browser addon also establishes a shared key with the
enclave and uses this to encrypt the password (even within a TLS
connection). This ensures that the password can only be read by the
SafeKeeper enclave, even if the web server is compromised. To defend
against spoofing by malicious websites, the browser addon shows
the user which input fields on the web page will be encrypted.

In this demonstration, we show how SafeKeeper can be used to
protect web password in real-world systems. In addition to describ-
ing the demonstrations, this paper also explains two important
deployability considerations that arise from integrating SafeKeeper
into real-world systems.

Firstly, integrating SafeKeeper into existing server-side systems,
like WordPress, requires interaction between a low-level hardware-
based security technology (Intel SGX) and a high-level web runtime
(e.g. PHP). This raises subtleties that may be overlooked in a naive
integration. For example, although it is possible to implement Safe-
Keeper’s server-side password protection service as a simple PHP
extension, this will not work in all deployment models because
in some cases, the PHP process can be forked to achieve load bal-
ancing, but an SGX enclave cannot be forked. We explain how our
implementation overcomes this challenge in a deployment-agnostic
manner (Section 3.1).

The second deployability consideration arises from SafeKeeper’s
use of Intel SGX remote attestation. To verify an SGX remote at-
testation message (i.e. a quote), the verifier must send the quote
to the Intel Attestation Service (IAS). Intel requires all verifiers to
register a certificate in order to establish a mutually-authenticated
TLS connection with the IAS. In SafeKeeper, every ordinary web
user must be able to verify the password protection service running
on the server, but it is unrealistic to require every user generate and
register a certificate for this purpose. To overcome this challenge,
we implemented an SGX attestation proxy that allows ordinary
web users to use remote attestation securely (Section 3.2).

https://doi.org/10.1145/3184558.3186968
https://doi.org/10.1145/3184558.3186968
https://doi.org/10.1145/3184558.3186968

WWW ’18 Companion, April 23–27, 2018, Lyon, France A. Kurnikov et al.

2 BACKGROUND
The key enabling technology for SafeKeeper’s server-side password
protection service is Intel Software Guard Extensions (SGX) [8].
SGX is an implementation of a TEE that allows applications to
isolate security-critical regions, called enclaves, such that they are
not accessible by any other software running on the machine. The
enclave memory is encrypted and access control is enforced by
the hardware. When an enclave is created, SGX allocates protected
memory pages and loads the enclave into the allocated region. After
the enclave is initialized, it is not possible for any code outside
enclave to access the protected memory pages. To perform a call to
the enclave, a special ECALL CPU instruction is used. An enclave
defines a set of ecalls that it exposes.

An important feature of TEEs is remote attestation – a process
through which a remote party can verify the integrity and authen-
ticity of the code running in the TEE. In SGX, remote attestation
is performed by retrieving a so-called quote from a special enclave
on the machine that holds CPU-specific signing keys. The quote
contains a measurement of the enclave that uniquely identifies the
code inside the enclave. To verify the quote, a remote party sends
it to the Intel Attestation Service (IAS). The IAS responds with the
status of the quote, and signs the response message with the IAS
signing key. The response signature can then be verified by the
requesting party and if the response states that the quote is valid,
the remote attestation is successful, meaning that the enclave is
running on a genuine Intel CPU and the enclave is running the
code it claims.

Additionally, during the attestation process, a Diffie-Hellman
(DH) key exchange protocol is executed. When generating a quote,
the enclave includes its public DH key in the quote. Successful
quote verification assures that by following the DH protocol (i.e.
generating a key pair and obtaining the shared secret key), data
encrypted with the agreed key will only be accessible by the enclave.
Remote attestation and secure channel establishment are two main
features that allow SafeKeeper to securely transfer users passwords
directly from the browser to the SafeKeeper password protection
service running on the server.

3 SYSTEM OVERVIEW
In this section, we provide a brief overview of SafeKeeper from the
perspective of a web user, and we explain two important deploya-
bility aspects: i) how SafeKeeper can be integrated into the popular
WordPress platform, and ii) how ordinary web users can use Intel
SGX remote attestation to verify that SafeKeeper is running on a
particular server.

SafeKeeper consists of two parts: the browser addon and the
server-side password protection service. The addon serves the role
of verifying that the server actually supports SafeKeeper, and noti-
fying the user that it is safe to enter the password in a particular
input field. The user downloads the addon from a trusted browser
addon repository such as Chrome Web Store or Firefox Add-ons. It
is open-source and it can be inspected by the users to make sure
that its functionality is as expected.

When a browser loads a web page, the addon checks for the
header field that contains a quote from the server SGX enclave. If
this field is present, the quote is sent to the IAS for verification. If

$hash = md5($salt . $password , TRUE);
do {

$hash = md5($hash . $password , TRUE);
} while (--$count);

Listing 1: Original WordPress hashing

the quote verification passes, the addon changes its icon to show
that the web page supports SafeKeeper (see Figure 1). The addon
checks that the enclave’s public key matches the value included in
the quote, and if so, proceeds to agree on a Diffie-Hellman (DH)
session key.

Before entering the password, the user should click on the Safe-
Keeper icon to turn the page into “highlighting” mode. In this mode,
the browser addon decreases the opacity of the page elements that
are not protected, and highlights the protected element so that it
stands out on the page. Additionally, a tooltip points the user to the
element that is protected by the service. A popup window (shown
in Figure 2) tells the user that SafeKeeper is now highlighting the
protected input fields. Clicking on the icon again turns off highlight-
ing mode and restores the page to its original appearance. Turning
highlighting mode on and off can prevent certain types of delayed
spoofing attacks, as described in Section 5.3. Figure 3 shows the
same page with highlighting mode on and off. The user can be sure
that the input entered in the highlighted field will be encrypted
before sending to the server.

Figure 1: SafeKeeper browser addon icons: the first one indi-
cates that SafeKeeper is unavailable on the website, or that
the attestation protocol has failed; the second icon shows
that SafeKeeper is supported and that a secure channel
has been established; and the third icon is used when Safe-
Keeper is highlighting the protected input fields (see Sec-
tion 3).

3.1 Integrating SafeKeeper with WordPress
We integrated SafeKeeper into WordPress by replacing its original
password hashing algorithm with a call to the SafeKeeper enclave.
We implemented a PHP extension using the PHP-CPP library [10].
WordPress comes with a PHP class PasswordHash [11] that pro-
vides the functionality for generating salts, hashing passwords
and checking that the provided password matches the hash value.
Listing 1 shows the MD5-based hash algorithm in PasswordHash.

In the SafeKeeper version of WordPress, we substituted the MD5
hash with a call to sgx_cmac function. The function parameter is
the same as the input to the MD5 hash function: the concatenation
of the password and the salt. The function performs a call to the
SafeKeeper service, and obtains the password CMAC. The service

Using SafeKeeper to Protect Web Passwords WWW ’18 Companion, April 23–27, 2018, Lyon, France

Figure 2: SafeKeeper popup windows: (1) the page supports
SafeKeeper, but the protected input fields are not currently
highlighted; (2) SafeKeeper is highlighting the protected
fields in the page.

Figure 3: Top: The original webpage; Bottom: SafeKeeper
highlighting the password input field.

only outputs a CMAC of the password, which is stored in the pass-
word database. Thus even in case of a compromised or a malicious
web server the user password is protected by the key that is not
available to an adversary. Additionally, the service exposes an API
call to get the quote from the enclave.

When an HTTP server gets a request that needs to be processed
by PHP interpreter, typically the communication between the server
and the PHP process occurs over Common Gateway Interface (CGI).
In some configurations there is one PHP process running constantly
and serving all the requests. For scalability reasons though often
there are multiple children that are pre-forked and the requests
are scheduled (distributed) to them by the parent process. In SGX,
if a process is forked after starting an enclave, the child process

cannot invoke calls to the enclave. To overcome this, our implemen-
tation of SafeKeeper on the server side consists of two parts: a PHP
extension exposing the necessary API to PHP, and a standalone
service containing the enclave to serve the requests from the PHP
extension. The communication between the PHP extension and
SafeKeeper service is via TCP/IP sockets. This allows for better scal-
ability where multiple HTTP frontend servers communicate with a
single Trusted Application instance. These frontend servers do not
need to be SGX-enabled.

3.2 Intel SGX Attestation
Verification of the remote server is achieved using remote attesta-
tion, as explained in Section 2. The Intel SGX remote attestation
process involves contacting the Intel Attestation Service (IAS) to
verify the quote obtained from the enclave. Before this commu-
nication is possible, the party that wishes to verify quotes must
enroll with Intel IAS and obtain a certificate from Intel to be used
in the TLS session with the IAS. In a user-centric setting like Safe-
Keeper, where the verifier is the browser addon running on end user
devices, the logistics of arranging every end user device to enroll
with the IAS is simply unrealistic. Presumably, Intel’s IAS design is
not intended to be used in such user-centric settings. To solve this
problem we have developed a proxy to communicate with the IAS.
This proxy receives verification requests from SafeKeeper addon to
forward them to the IAS, performing the necessary encryption for
the IAS using our registered TLS certificate.

The proxy does not need to be trusted because its sole purpose is
to send the quote to the IAS, retrieve the response, and send it back
to the verifier. Since the response is signed by the IAS, the verifier
can check that the response is valid and that it originates from the
IAS by verifying the signature. We implemented the proxy using
an Nginx server, installing our TLS certificate, and configuring the
IAS to be an upstream for the HTTP proxy. SafeKeeper enclave uses
the same public DH ephemeral key for every communication with
SafeKeeper addons, hence the quote is also the same. Utilizing this,
the proxy can cache the IAS response and serve following requests
from the cache, reducing the load on the IAS and decreasing the
quote verification latency.

An alternative solution would be for the SafeKeeper server itself to
act as a “proxy”, contact the IAS and obtain the attestation response
from the IAS. The SafeKeeper enclave can be provisioned with the
certificate to contact the IAS to perform the attestation.

4 RELATEDWORK
Security threats against passwords have led to much research on
server-side password protectionmechanisms. For example, purpose-
built hash algorithms have been designed to slow down brute-force
attacks [1, 2]. In contrast, since SafeKeeper protects the password
using a CMAC, there is no need to slow down the hash operation.

On the client side the research focuses on storing user passwords
so that only one master password needs to be remembered. Prevent-
ing adversaries from mounting offline attacks on password vaults
is an important research area [3, 5]. However phishing protection
and notifying users about potentially malicious websites is usually
performed by checking the TLS certificate. PwdHash [13] proposes
to hash every password transparently on the client side along with

WWW ’18 Companion, April 23–27, 2018, Lyon, France A. Kurnikov et al.

the URL. This results in passwords that are different for each web-
site even if the original password is the same and prevents phishing.
SafeKeeper visually shows the user if the website is trustworthy and
what fields are protected.

5 DEMONSTRATIONS
We will demonstrate how SafeKeeper protects web passwords by
showing three aspects of the system. Firstly, we will show the
normal user experience when visiting a WordPress website that
uses SafeKeeper. Secondly, we will show via live packet-capture
that the user’s password is encrypted before it leaves the browser.
Thirdly, we will show a selection of websites that attempt to spoof
the SafeKeeper UI, and the audience will be able to see first-hand
if they can detect this forgery using SafeKeeper. There are several
spoofing possibilities that were used in the SafeKeeper user study [9]
to empirically evaluate whether users understand the signaling
employed by SafeKeeper and use it to correctly identify spoofed
websites. We describe each of these aspects in detail below.

5.1 WordPress using SafeKeeper
We will demonstrate two WordPress websites, one on which uses
SafeKeeper. We will show the processes of creating an account and
logging into the website in both cases. When using the SafeKeeper-
enabled website, the browser addon verifies the SGX quote and
displays a lock icon if the verification succeeds. The user can then
click on the icon to highlight the protected input fields, as explained
in Section 3. This demonstration will also show that there is no
noticeable performance overhead when using SafeKeeper.

5.2 Password Encryption
While the audience interacts with the websites, we will show a live
packet capture between the browser and the web server. This will
show the initial quote being sent from the server to the browser,
and the SafeKeeper browser addon verifying this quote using our IAS
proxy as explained in Section 3.2. After the user enters password and
submits the form, the POST request will have the password value
encrypted with the generated DH key. We will perform this packet
capture using Wireshark and the connection between the browser
and server will not be by TLS. This will illustrate how SafeKeeper
protects passwords even over insecure HTTP connections.

5.3 Attempted Spoofing
There are several ways an adversary may attempt to spoof the
SafeKeeper UI to trick the user into entering the password into an
unprotected input field. First, the adversary may serve a page where
the password field is not protected, even though the quote is valid.
In this case, the SafeKeeper addon will change its icon to the lock but
if the user does not click on the icon and simply enters the password
into the form field, it will be sent to the server un-encrypted and
can be obtained by an adversary who has compromised the sever.
To avoid this spoofing, users should always click on the addon icon
and only enter their passwords into protected fields.

Secondly, the adversary may attempt to spoof the SafeKeeper
highlighting for a field that is not protected. The quote verification
may succeed or fail, depending on whether the adversary runs
the SafeKeeper enclave. Again, before entering the password into

a “highlighted” field, the icon should be checked and clicked. The
adversary’s spoofed highlighting will fade when the real SafeKeeper
addon performs its own highlighting.

Additionally, the adversary can highlight the field after a delay,
trying to trick the user into believing that the highlighting is a result
of the icon click. Since all highlighting is performed by JavaScript,
this could in theory allow the adversary to change the highlighting
even when the SafeKeeper addon is in highlighting mode. However,
since the adversary does not have the information about when the
user clicks the icon, it is possible to detect this delayed highlighting
spoofing by clicking the icon several times, or in the worst case,
using the SafeKeeper browser addon to disable all other JavaScript.

To demonstrate how SafeKeeper would look on real websites, and
to demonstrate possible spoofing attempts, we used the HTTrack
tool to clone the login pages of 25 popular websites [6]. We then
modified some of these pages to use SafeKeeper and others to attempt
to spoof the SafeKeeper UI. Our interactive demonstration will give
the audience the chance to use SafeKeeper and attempt to detect the
different types of spoofing described above.

ACKNOWLEDGMENTS
This work was supported in part by the Intel Collaborative Research
Institute for Secure Computing at Aalto University, and the Cloud
Security Serivces (CloSer) project (3881/31/2016), funded by Tekes.
M. Mannan is supported in part by an NSERC Discovery Grant and
a NordSecMob Scholarship.

REFERENCES
[1] A. Biryukov, D. Dinu, and D. Khovratovich. 2016. Argon2: New Generation of

Memory-Hard Functions for Password Hashing and Other Applications. In IEEE
European Symposium on Security and Privacy.
https://doi.org/10.1109/EuroSP.2016.31

[2] J. Blocki and A. Datta. 2016. CASH: A Cost Asymmetric Secure Hash Algorithm
for Optimal Password Protection. In IEEE Computer Security Foundations
Symposium. https://doi.org/10.1109/CSF.2016.33

[3] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh. 2010. Kamouflage:
Loss-Resistant Password Management. In European Symposium on Research in
Computer Security. https://doi.org/10.1007/978-3-642-15497-3_18

[4] Joseph Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized
Corpus of 70 million Passwords. In IEEE Symposium on Security and Privacy.
https://doi.org/10.1109/SP.2012.49

[5] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and Thomas Ristenpart. 2015.
Cracking-Resistant Password Vaults using Natural Language Encoders. In IEEE
Symposium on Security and Privacy. https://doi.org/10.1109/SP.2015.36

[6] HTTrack Website Copier. 2017. (2017). https://www.httrack.com/.
[7] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng

Wang. 2014. The Tangled Web of Password Reuse. In Network and Distributed
Systems Symposium. https://doi.org/10.14722/ndss.2014.23357

[8] Intel Corporation. 2017. Software Guard Extensions (Intel SGX). (2017).
https://software.intel.com/en-us/sgx.

[9] Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd, Mohammad Mannan, and
N. Asokan. 2018. SafeKeeper: Protecting Web Passwords using Trusted
Execution Environments. In The Web Conference (WWW).
https://doi.org/10.1145/3178876.3186101

[10] PHP-CPP: A C++ library for developing PHP extensions. 2017. (2017).
http://www.php-cpp.com/.

[11] PHPass: Portable PHP password hashing framework. 2017. (2017).
http://www.openwall.com/phpass/.

[12] PhishTank.com. 2017. Statistics about phishing activity and PhishTank usage.
(2017). https://www.phishtank.com/stats.php.

[13] Stanford PwdHash. 2017. (2017). https://pwdhash.github.io/website.
[14] Have I Been Pwned. 2017. (2017). https://haveibeenpwned.com/pwnedwebsites.
[15] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi, Y. Markov, O.

Comanescu, V. Eranti, A. Moscicki, D. Margolis, V. Paxson, and E. Bursztein.
2017. Data Breaches, Phishing, or Malware?: Understanding the Risks of Stolen
Credentials. In ACM SIGSAC Conference on Computer and Communications
Security. https://doi.org/10.1145/3133956.3134067

https://doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1109/CSF.2016.33
https://doi.org/10.1007/978-3-642-15497-3_18
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2015.36
https://www.httrack.com/
https://doi.org/10.14722/ndss.2014.23357
https://software.intel.com/en-us/sgx
https://doi.org/10.1145/3178876.3186101
http://www.php-cpp.com/
http://www.openwall.com/phpass/
https://www.phishtank.com/stats.php
https://pwdhash.github.io/website
https://haveibeenpwned.com/pwnedwebsites
https://doi.org/10.1145/3133956.3134067

	Abstract
	1 Introduction
	2 Background
	3 System Overview
	3.1 Integrating SafeKeeper with WordPress
	3.2 Intel SGX Attestation

	4 Related Work
	5 Demonstrations
	5.1 WordPress using SafeKeeper
	5.2 Password Encryption
	5.3 Attempted Spoofing

	Acknowledgments
	References

