SafeKeeper: Protecting Web Passwords
using Trusted Execution Environments

Klaudia Krawiecka
Aalto University, Finland
kkrawiecka@acm.org

Mohammad Mannan
Concordia University, Canada
m.mannan@concordia.ca

ABSTRACT

Passwords are by far the most widely-used mechanism for authen-
ticating users on the web, out-performing all competing solutions
in terms of deployability (e.g. cost and compatibility). However,
two critical security concerns are phishing and theft of password
databases. These are exacerbated by users’ tendency to reuse pass-
words across different services. Current solutions typically address
only one of the two concerns, and do not protect passwords against
rogue servers. Furthermore, they do not provide any verifiable
evidence of their (server-side) adoption to users, and they face de-
ployability challenges in terms of ease-of-use for end users, and/or
costs for service providers.

We present SafeKeeper, a novel and comprehensive solution to
ensure secrecy of passwords in web authentication systems. Un-
like previous approaches, SafeKeeper protects users’ passwords
against very strong adversaries, including external phishers as well
as corrupted (rogue) servers. It is relatively inexpensive to deploy
as it (i) uses widely available hardware-based trusted execution
environments like Intel SGX, (ii) requires only minimal changes
for integration into popular web platforms like WordPress, and
(iii) imposes negligible performance overhead. We discuss several
challenges in designing and implementing such a system, and how
we overcome them. Via an 86-participant user study, systematic
analysis and experiments, we show the usability, security and de-
ployability of SafeKeeper, which is available as open-source.

KEYWORDS

Passwords, Phishing, Intel SGX, Trusted Execution Environment

ACM Reference Format:

Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd, Mohammad Mannan,
and N. Asokan. 2018. SafeKeeper: Protecting Web Passwords using Trusted
Execution Environments. In WWW 2018: The 2018 Web Conference, April
23-27, 2018, Lyon, France. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3178876.3186101

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23-27, 2018, Lyon, France

© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.

ACM ISBN 978-1-4503-5639-8/18/04.

https://doi.org/10.1145/3178876.3186101

Arseny Kurnikov
Aalto University, Finland
arseny.kurnikov@aalto.fi

Andrew Paverd
Aalto University, Finland
andrew.paverd@ieee.org

N. Asokan
Aalto University, Finland
asokan@acm.org

1 INTRODUCTION

Passwords are by far the most widely used primary authentication
mechanism on the web. Although many alternative schemes have
been proposed, none has yet challenged the dominance of pass-
words. In the evaluation framework of authentication mechanisms
by Bonneau et al. [8], passwords have the best overall usability,
since they are easy to understand, efficient to use, and don’t require
the user to carry additional devices/tokens. They also excel in terms
of deployability, since they are compatible with virtually all servers
and web browsers, incur minimal cost per user, and are accessi-
ble, mature, and non-proprietary. However, in terms of security,
passwords are currently a comparatively poor choice. Two critical
security concerns, leading to the compromise of a large number
of passwords, are: (i) phishing of passwords from users, and (ii)
password database breaches from servers.

Phishing attacks are prevalent in the wild (cf. APWG [2], Phish-
Tank [33]), and increasingly use TLS certificates from browser-
trusted CAs (see e.g. [30]). While advanced anti-phishing solutions
exist [11, 29], and will improve over time, they alone cannot ad-
equately address the password confidentiality problem, because
users may unknowingly or inadvertently disclose passwords to
malicious servers. Note that an estimated 43-51% of users reuse
passwords across different services [13, 17, 22, 39].

Password database breaches are increasingly frequent: hundreds
of millions of passwords have been leaked in recent years (e.g. [14,
34]). Users are completely powerless against such breaches. Pass-
word breaches are commonly dealt with by asking users to quickly
reset their passwords, which is not very effective [19]. Widespread
password reuse makes these breaches problematic beyond the
sites where the actual leak occurred [22]. Several recent solutions
(e.g. [4, 9, 15, 26]) have been proposed to address password database
breaches. Some of them (e.g. [4, 9, 26]) make use of hardware-based
trusted execution environments (TEEs) on the server side, but none
can protect password confidentiality against rogue servers (i.e. com-
promised servers, or malicious server operators).

Designing effective solutions to protect passwords against rogue
servers poses multiple technical challenges in terms of security
(How to hide passwords from the authenticating server itself? How
to rate-limit password testing by the server?); usability (How to
minimize the burden on users? How to support login from diverse
user devices?); user-verifiability (How to notify users when the
solution is active?); performance (How to realize this at scale?);
and deployability (How to allow easy/inexpensive integration with
popular website frameworks?).

https://doi.org/10.1145/3178876.3186101
https://doi.org/10.1145/3178876.3186101
https://doi.org/10.1145/3178876.3186101

We present SafeKeeper, a comprehensive system for protecting
the confidentiality of web passwords. Unlike all previous proposals,
SafeKeeper defends against both phishing and password database
theft, even in the case of rogue servers. SafeKeeper consists of a
server-side password protection service that computes a cipher-based
message authentication code (CMAC) on passwords before they
are stored in the database, as mandated by NIST’s digital identity
guidelines (SP800-63B) [32]. To protect the CMAC key, this compu-
tation is performed within a server-side TEE, isolating it from all
other software on the server. SafeKeeper uses a novel rate-limiting
mechanism to throttle online guessing attacks by rogue servers.

SafeKeeper’s client-side functionality, in the form of a web browser
addon, enables end users to detect whether a web server is running
the SafeKeeper password protection service within a server-side
TEE, and to establish a secure channel from their browsers directly
to it. This assures users that it is safe to enter their passwords as
they will be accessible only to the SafeKeeper password protection
service on the server. Unlike other client-side assurance approaches,
SafeKeeper does not require users to correctly identify the server (e.g.
checking URLs or TLS certificates). As long as users correctly recog-
nize SafeKeeper’s client-side signaling from the browser addon, and
enter their passwords only to SafeKeeper-enabled web servers, con-
fidentiality of their passwords is guaranteed, even if users misjudge
the identity of the server (phishing), or the server is malicious/compro-
mised (rogue server). As such, SafeKeeper may present a significant
shift in phishing avoidance and password protection.

Our design considers deployability as a primary objective. We
demonstrate this by developing a fully-functional implementation
of SafeKeeper using Intel’s recent Software Guard Extensions (SGX),
and integrating this with minimal software changes into PHPass,
the password hashing framework used in popular platforms like
WordPress, Joomla, and Drupal, which account for over 34% of the
Alexa top 10-million websites [37]. SafeKeeper’s client-end function-
ality does not depend on any additional device/hardware features,
and can thus be implemented in most user devices/OSes, includ-
ing smartphones. Our implementation is available as open-source
software [25]. Our contribution is SafeKeeper, including its:

e Design: As a password-protection scheme featuring

— a server-side password protection service using off-the-
shelf trusted hardware to protect users’ passwords, even against
rogue servers (Sections 4.1-4.3), and

— anovel client-side assurance mechanism allowing users to
easily determine if it is safe to enter passwords on a web page
(Section 4.4). Our mechanism relies only on verifying whether
the server runs SafeKeeper without having to verify the server’s
identity or correct behavior.

e Implementation and integration: A full open-source imple-
mentation of (i) server-side functionality using Intel SGX, and in-
tegration into PHPass to support several popular web platforms,
and (ii) client-side functionality realized as a Google Chrome
browser addon (Section 5).

e Analysis and evaluation: A comprehensive analysis of secu-
rity guarantees (Section 6.1), an experimental evaluation of per-
formance (Section 6.3), deployability in real-world platforms
(Section 6.4), and validation of effectiveness of the client-side as-
surance mechanism via an 86-participant user study (Section 6.2).

2 PRELIMINARIES

2.1 Storing Passwords

A widely-used approach for storing passwords is for the server
to compute a one-way function (e.g. cryptographic hash) on the
password, and store only the result in the database. When the user
logs in, the same function is applied to the supplied password, and
the result is compared to the value in the database. An adversary
who obtains the database cannot reverse the one-way function,
but can guess candidate passwords and apply the same one-way
function to test his guesses. Since passwords are weak secrets (e.g.
compared to cryptographic keys), a brute force guessing attack is
often feasible. The adversary can speed up this attack using rainbow
tables — pre-computed tables of hashed passwords. If multiple users
choose the same password, the results of the one-way function will
be the same. To defend against rainbow tables and avoid revealing
duplicate passwords, it is customary to use a salt — a random number
unique to each user that is concatenated with the password before
being hashed. However, since salt values are stored in the database,
an adversary who obtains this database can still mount brute-force
guessing attacks against specific users. Recently (June 2017), NIST
updated its digital identity guidelines in Special Publication 800-
63B [32]. One of the changes is to mandate the use of keyed one-way
functions, such as CMAC, for protecting stored passwords.

2.2 Intel Software Guard Extensions

Intel’s Software Guard Extensions (SGX) is a recent technology
available in desktop and server CPUs [21]. The new SGX CPU
instructions allow a userspace application to establish a hardware-
enforced TEE, called an enclave. The enclave runs in the applica-
tion’s virtual address space, but after it has been initialized, only the
code inside the enclave is allowed to access enclave data. The appli-
cation can call enclave functions (called ecalls) via well-defined
entry points. Enclave data is stored in a special region of memory,
called the Enclave Page Cache (EPC), which can only be accessed
by the CPU. When any enclave data leaves the CPU (e.g. is writ-
ten to DRAM), it is encrypted and integrity-protected, using a key
accessible only to the CPU [16]. The enclave’s data is therefore pro-
tected against privileged software (including the OS/hypervisor),
and hardware attacks (e.g. snooping on the memory bus). Dur-
ing enclave initialization, the CPU measures the enclave’s code
and configuration, which constitute the enclave’s identity (i.e. its
MRENCLAVE value). The enclave can seal data by encrypting it with
a CPU-protected key that can only be accessed from enclaves run-
ning on the same CPU with precisely the same MRENCLAVE value.
Remote attestation is the process through which one party, the
verifier, can ascertain the precise hardware and software configura-
tion of a remote party, the prover. The objective is to provide the
verifier with sufficient information to make a trust decision about
the prover. SGX supports remote attestation by providing verifiers
with a signed quote from the enclave, which includes the enclave’s
precise identity (MRENCLAVE value) and the enclave’s public key [1].
The verifier can validate this quote using the Intel Attestation Ser-
vice (IAS), and can then establish an end-to-end encrypted channel
directly to the enclave. SGX remote attestation is explained in detail
in our technical report [24].

3 SYSTEM MODEL AND REQUIREMENTS
3.1 Overview

We use the term password to refer to any user-memorized authen-
tication secret. Passwords are generally weak secrets [7], which
are often re-used across multiple services. Figure 1 is a general-
ized model of a password-based authentication system. With the
assistance of client-side software (e.g. a web browser), a user sends
her user ID and password to a server over a secure channel (TLS),
and based on this, the server makes an authentication decision.
Although real systems are undoubtedly more complicated, they can
all be logically represented as the model in Figure 1. Therefore, we
use this model and terminology throughout this paper.

Web server

,,,,,,,,,,,,,,,,,,,,,,,,,,,, Authentication
. . Request_credentials decision
password Client-side
software (e.g. ‘<
user ID, password Password
Database

web browser)

User Secure channel

Figure 1: Generalized model of a password-based authenti-
cation system.

Confidentiality of user passwords may be compromised in mul-
tiple ways, including:

o Users disclose a password directly to the adversary under the mis-
taken impression that the password is being sent to the intended
service (e.g. phishing attacks).

o Information about the password, or the password itself, is leaked
from the server (e.g. stolen password database).

e Server compromise (e.g. web server memory snooping).

Any comprehensive solution for protecting passwords must de-
fend against all these different attack avenues.

3.2 Adversary Model

The goal of our adversary (Adv) is to learn users’ plaintext pass-
words. Our adversary model is stronger than that of previous solu-
tions — we allow for the possibility that Adv may have the capabil-
ities of the operator (owner/administrator) of the web server itself.
This covers both compromised web servers, as well as malicious
server operators (for clarity, we use the term rogue server to refer
to both of these). The widespread practice of reusing the same or
similar passwords across services provides the incentive for Adv
to learn plaintext passwords, which they can then abuse in different
ways, including (i) masquerading as the user on a different service,
where the user may have used the same or similar password; (ii)
accessing user data encrypted by a password-derived key (e.g. for
encrypted cloud storage services, especially, if forced legally or
illegally); and (iii) selling/leaking user passwords to other mali-
cious entities. Concretely, we allow Adv the following capabilities,
covering rogue servers and weaker external adversaries:

Access password database: Adv has unrestricted access to the
password database. This models both rogue servers and weaker
external adversaries who may steal the password database.

Modify web content: Adv can arbitrarily modify the content
sent to the user (including active content such as client-side scripts).

This also models weaker external adversaries who can modify con-
tent using attacks such as cross-site scripting (XSS).

Access to server-client communication: Adv can read all
content sent to the web server, including content encrypted by a
TLS session key. For a rogue server, such access is easily obtained.

Execute server-side code: Adv has full knowledge of all soft-
ware running on the server, and is able to execute arbitrary software
on the server. This captures a powerful attacker who gains access
and escalates privileges on the server, or a malicious server operator.

Launch phishing attacks: Adv can launch state-of-the-art
phishing attacks, including targeted attacks.

We assume that Adv cannot compromise the client-side soft-
ware, including the user’s OS and browser, but can send any content
to the client. Although client-side security is important, it is an or-
thogonal problem and is addressed by other means (e.g. client-side
platform security). We focus on how password-based authentication
can be made resilient against strong server-side adversaries.

We assume Adv is computationally bounded, and thus cannot
feasibly subvert correctly-implemented cryptographic primitives.
We also assume Adv does not have sufficient resources to subvert
the security guarantees of hardware-based TEEs through direct
physical attacks. Denial of service (DoS) attacks are out of scope
because a rogue server can always mount a DoS attack by simply
refusing to respond to requests.

3.3 Requirements and Objectives

Given our strong adversary model, a full server compromise could
undoubtedly cause significant damage (e.g. theft, loss, or modifica-
tion of user information). Our aim is to guarantee that even such a
compromise will not leak users’ passwords. This is a valuable secu-
rity guarantee because passwords are often re-used across multiple
services, or used to derive cloud storage encryption keys.
However, guaranteeing the confidentiality of stored passwords
is not sufficient to defend against rogue servers or phishing attacks.
Thus we also need to provide users with the means to easily and
effectively determine when it is safe to enter their passwords. There-
fore, we define the following two requirements for a comprehensive
solution for protecting a password-based authentication system:

R1 Password protection: The server must protect users’ pass-
words by fulfilling all the following criteria:

(i) The strong adversary defined above cannot obtain users’
passwords through any means other than guessing (e.g. he
cannot observe passwords in transit or while they are being
processed on the server).

(if) Offline password guessing must be computationally infeasi-
ble, irrespective of the strength of the password.

(iii) Online password guessing must be throttled, irrespective of
the adversary’s computational capabilities.

R2 User awareness: End users must be able to easily and accu-
rately determine whether it is safe to enter their passwords
when prompted by a given server (i.e. indirectly determine
whether the server fulfils Requirement R1).

Note that Requirement R2 does not mandate users to understand
the precise technical security guarantees of Requirement R1, but
rather that the solution should enable users to determine which
servers meet this requirement, and will thus protect passwords.

In order to be effective, any solution for protecting passwords
must be deployable in real-world systems. Therefore, in addition to
the above two security requirements, we also define the following
deployability goals:

Minimal performance overhead: The solution should not no-
ticeably degrade the performance of password-based authentication
systems, either in terms of latency (the time required to complete
a single authentication attempt), or scalability (the overall rate at
which authentication attempts can be evaluated).

Minimal software changes: It should be possible to integrate
the solution into a wide range of existing software systems without
requiring significant effort.

Ease of upgrade: It should be possible to transparently upgrade
existing password-based authentication systems (e.g. without re-
quiring users to reset their passwords). Existing mechanisms for
changing/resetting passwords should also remain unaffected.

4 DESIGN

As shown in Figure 2, SafeKeeper consists of a server-side password
protection service, which computes a cipher-based message authen-
tication code (CMAC) on passwords before they are stored in the
database. An adversary must obtain the CMAC key in order to per-
form offline guessing attacks against a stolen password database.
In SafeKeeper, this key is randomly generated and protected within
a server-side Trusted Application (TA), executing within the TEE;
see Section 4.1.

With direct access to the password protection service, a rogue
server (i.e. a compromised server or malicious server operator) can
also perform online password guessing attacks. In this case, the ad-
versary supplies a guessed password, and the password protection
service returns the processed result, which the adversary compares
against the stored value. To defend against this attack, the pass-
word protection service must limit the rate at which it processes
passwords. SafeKeeper achieves this by enforcing rate limiting in
the TEE; see Section 4.2.

Furthermore, the rogue server may attempt to observe passwords
before they are sent to the password protection service. A secure
channel between the web browser addon and the server (e.g. a TLS
connection) is insufficient as the server-end of such a connection
is controlled by the server operator. Instead, SafeKeeper establishes
an end-to-end secure channel between the browser and the TEE-
protected password protection service; see Section 4.3.

Finally, the browser needs some way to determine which input
data should be sent via this secure channel to the password protec-
tion service (e.g. passwords but not user IDs). To improve usability,
the server operator defines which input fields will be protected, and
then the SafeKeeper browser addon displays this information to the
user. The user is thus only required to validate that the password
field is protected; see Section 4.4.

4.1 Server-side Password Protection

The SafeKeeper password protection service (SafeKeeper TA) is de-
signed to be a drop-in replacement for existing password hash algo-
rithms. As such, it takes as input the concatenation of the password
and the corresponding salt value and outputs a CMAC, which the
server stores in its database. To protect the CMAC key, SafeKeeper

Web server

Web browser

X @
SafeKeeper
Browser

Addon) =" Seiire channel T

@Request_credentials, attestation

TEE Authentication
decision

@user ID, Enc(password)

User

V ap
{Salt, Attempts}

SafeKey
© Salt

Password
D

Figure 2: Overview of the SafeKeeper design.

computes the CMAC inside a server-side TEE. The TEE provides
strong isolation (e.g. hardware-enforced) from all other software
on the server (including the OS/hypervisor), and thus ensures that
the CMAC key is available only to the TA code. Even if an adver-
sary obtains the password database, he cannot perform an offline
password guessing attack because he would need the CMAC key
to test his guesses against the database. Since offline attacks are no
longer possible, SafeKeeper can use any cryptographically secure
one-way function, i.e. specifically-designed password hash func-
tions (e.g. [5, 6]) are not essential (but can be used). The adversary
is thus forced to try online guessing attacks, which are mitigated
by SafeKeeper’s rate-limiting mechanism.

4.2 Rate Limiting

Ideally, the password protection service should perform rate limit-
ing on a per-account basis to: (i) protect each account password, and
(ii) avoid rate-limiting a user due to the actions of other users. Note
that, in order to serve as a drop-in replacement in existing authen-
tication frameworks, the SafeKeeper TA only computes the CMAC,
but does not make or learn the authentication decision. In other
words, it cannot distinguish between the two scenarios: (i) when
the user account is under guessing attack, and (ii) when a legitimate
user is attempting to login multiple times within a short period of
time (with or without a valid password). Also, as the CMAC does
not take the user ID as input, we cannot implement user ID based
rate limiting. Changing the function to include user IDs as input
would require non-trivial changes to the server software, limiting
SafeKeeper’s use as a drop-in replacement. As a work-around, we
rate limit each account using the unique per-account salt values,
which are provided to the CMAC as part of regular operation. It
is general security best-practice to use unique salt values for each
account, but if a server operator chooses the same salt for multi-
ple (or all) accounts, he only restricts his own guessing capability.
Furthermore, since the salt is a fixed pre-determined length, the
adversary cannot perform a type-substitution attack by providing a
salt of a different length, e.g. concatenating the first few characters
of a guessed password with the salt value.

SafeKeeper limits password processing for each account (salt)
based on a quantized maximum rate. Simply enforcing a maximum
rate (e.g. waiting W minutes between password attempts) would
negatively impact usability in cases where the user mistyped a
password. Instead, the quantized maximum rate allows a fixed
number of attempts within a pre-defined time interval, but doesn’t
mandate a delay between these attempts. For example, each user

could be allowed N attempts that could be used at any time within
each 24-hour period. After exhausting these attempts, the user has
to wait until the following time period, when the count is reset.
By calibrating N = %, this achieves the same overall rate as
waiting W minutes between attempts, but significantly improves
usability when multiple attempts are required in quick succession.

4.3 Remote Attestation

To securely transmit a user password, the SafeKeeper browser addon
must correctly authenticate the SafeKeeper password protection ser-
vice (SafeKeeper TA) running inside a TEE, via remote attestation.
In addition, the addon must establish a secure channel directly with
the TA. SafeKeeper uses remote attestation to assure the addon of the
precise TA running inside the server-side TEE. To verify that it is
communicating with a genuine SafeKeeper TA, the addon verifies the
quote, and then checks the binary measurement against a whitelist
of known SafeKeeper TAs. Since the same TA can be used by many
websites, and the functionality of the TA is unlikely to change, the
whitelist of genuine SafeKeeper TAs will be short, and can be built
into the SafeKeeper addon. The attestation protocol includes a key
agreement step through which the browser and the TA establish
a shared session key. Note that the attestation protocol provides
only unilateral authentication of the SafeKeeper TA towards the
client; i.e. the client software or the user is not authenticated during
attestation. Thus, anyone, including an adversary can establish a
connection and interact with the TA. However, since the key agree-
ment step is cryptographically bound to the TA’s remote attestation,
the adversary cannot perform a man-in-the-middle attack when le-
gitimate clients communicate with the TA. Using the shared session
key, the addon encrypts the password before the page is submitted.
The encrypted password is sent to the server in place of the original
password, and may be wrapped in additional layers of encryption
(e.g. TLS). On the server, the encrypted password is input to the TA,
which decrypts it using the shared key and performs the CMAC.

4.4 Client-side Assurance Mechanism

SafeKeeper’s client-side assurance mechanism can be added to exist-
ing web browsers e.g. by installing a browser addon. This addon
executes the remote attestation protocol and establishes a secure
channel with the TA. If the attestation succeeds, the addon changes
its appearance (e.g. its icon) to signal this to the user.

The server specifies in the web page which input fields should be
encrypted and sent to the SafeKeeper password protection TA. The
addon parses this information and encrypts any text entered into
these fields. However, a rogue server may specify that some non-
password fields should be protected, while the actual password field
is left unprotected. To prevent this, the SafeKeeper addon signals to
the user which input fields are protected by greying out the whole
page, highlighting only the text input fields it will encrypt, and
displaying an information tooltip.

The adversary could attempt to spoof the highlighting performed
by SafeKeeper (e.g. by highlighting fields that are not actually pro-
tected). To mitigate this, we use a similar principle to a secure
attention sequence by requiring the user to click on the browser ad-
don icon to activate the highlighting. This click cannot be detected
or prevented by the adversary (as it is outside of the browser DOM).

After the user has clicked, the SafeKeeper icon is again changed to
indicate that it is in the highlighting mode. This provides a spoofing-
resistant mechanism for signaling to the user which input fields will
be protected. The user is thus assured that a password entered into
such an input field will always be protected by SafeKeeper, regardless
of the identity of the website or the behavior of the server.

Unlike many other client-side approaches (e.g. password man-
agers), the SafeKeeper browser addon is stateless and user-agnostic.
This makes our client-side assurance mechanism a good candi-
date to be integrated directly into web browsers. We discuss other
possible mechanisms in our accompanying technical report [24].

5 IMPLEMENTATION

We have implemented a fully-functional open-source prototype of
SafeKeeper [25]. In this section, we describe the specific implemen-
tation challenges and our solutions.

5.1 Server-side Password Protection

Our implementation of the password protection service uses Intel’s
recent Software Guard Extensions (SGX). However, SafeKeeper can
use any equivalent TEE that provides isolated execution, sealed
storage, and remote attestation. We use SGX for its performance
and increasing prevalence on server platforms (e.g. Intel Xeon [20]).

The design of our SGX enclave is kept minimalistic, consisting of
only four ecalls. When the enclave is started for the first time, the
init() function uses Intel’s hardware random number generator
(RDRAND instruction) to generate a new strong CMAC key. When the
enclave is later restarted, this function is used to pass previously-
sealed data to the enclave. The process() function calculates the
CMAC on a password and returns the result. We use the Rijndael-
128 CMAC function, as this meets our security requirements and
can be computed using AES-NI hardware extensions.

We integrated SafeKeeper’s password protection service into the
PHPass library [31], which is widely used for password hashing in
popular web platforms including WordPress, Joomla, and Drupal.
By default, PHPass uses a software implementation of MD5 with
256 iterations. We replaced this with a single call to our enclave,
using the PHP-CPP framework [28].

5.1.1 Rate limiting. In addition to the web server’s rate limiting
(e.g. Captchas after failed attempts), we implement a rate-limiting
mechanism within the TEE-protected password service (Section 4.2).
The SafeKeeper TA keeps an in-memory map associating each salt
(i) with a number of remaining attempts (attempts;). To maximize
flexibility, our implementation uses a 64-bit salt and a 32-bit integer
for attempts;, although this can be decreased to reduce memory
consumption if needed. When process() is called for salt i, this
function first checks the value of attempts;; if the value is zero, it
returns only an error; otherwise attempts; is decremented by one
and the CMAC result is returned. The enclave stores tyeses, the
time at which all attempts values are reset to a predefined value,
attemptsmax. The reset_attempts() function first obtains the
current time; then, if t,¢50; has passed, sets all attempts values to
attemptsmax and increases treser by a predefined value. Although
the effective rate is set by the enclave developer, it is verified by
the user via the browser addon, so a malicious developer cannot
set an arbitrarily high rate.

To allow the enclave to be restarted (e.g. if the server is rebooted),
the shutdown () function securely stores the state information out-
side the enclave. Specifically, the enclave seals the CMAC key, the
map of salts and attempts values, and t,¢se;. This sealed data can
be restored to the enclave via the init () function. The enclave uses
hardware-backed monotonic counters to prevent rollback attacks
in which the adversary attempts to restore old sealed data.

A rogue server may attempt to reset the attempts values by
abruptly killing the enclave without first sealing its state. How-
ever, the enclave will detect this because the counter value in the
sealed data will not match the current value of the hardware mono-
tonic counter. In this case, the enclave has no way of restoring
the previous attempts values — the data has been irreversibly lost.
Therefore, the only secure course of action is to set t,¢se; to some
predetermined time in the future, and set all attempts to zero (i.e.
to impose the maximum penalty). This captures the worst-case sce-
nario in which the adversary had exhausted all guessing attempts
against all accounts. Note that, during normal operations, enclave
crashes should be rare, and with proper load balancing the effects
of abnormal enclave crashes can be amortized.

5.1.2 Remote attestation. Remote attestation is used to assure
the browser that it is communicating with a genuine SafeKeeper
password protection service running inside an SGX enclave. It is
achieved by obtaining a quote from the enclave and verifying it
using the Intel Attestation Service (IAS). The quote includes an
unforgeable representation of the code executing inside the enclave.
As described in Section 2, the remote attestation protocol provided
with the SGX SDK involves four messages and two round-trips in
order to achieve mutual authentication between the verifier and the
enclave. In SafeKeeper there is no requirement for the browser addon
to authenticate itself to the enclave. Any entity can request a quote
from the enclave and then decide whether to establish a secure
channel. We designed and implemented an optimized attestation
protocol for SafeKeeper. Due to space limitations, we refer readers
our technical report [24] for full details of this protocol.

5.2 Client-side Assurance Mechanism

We implement SafeKeeper’s client-side assurance mechanism as an
addon for the Google Chrome browser (similar implementations
can also be developed for the other browsers). We assume that users
can download and install this addon securely (e.g. using the Chrome
Web Store), and receive software updates when available. Note that
browser vendors are actively working to ensure the security of
browser addons [27].

Our browser addon is written in JavaScript and consists of two
parts: (i) a background script implementing the main functional-
ity; and (ii) a content script injected into each web page in order
to interact with the page content. The addon therefore requires
permission to access tabs data, use the browser storage, and capture
and modify certain web requests.

5.2.1 Detecting the password protection service. Web servers us-
ing SafeKeeper send an SGX quote in the HTTP response header of
web pages with protected fields (e.g. the login form). This quote
is processed by the addon’s background script, which verifies the
integrity of the service and the validity of the quote. Specifically,

the addon extracts from the quote the unique hash representing
the enclave’s loaded code (i.e. the MRENCLAVE value), and checks
if this is included in its list of trusted values. This list can be up-
dated in a similar manner to updating the browser. If the enclave’s
identity is trusted, the addon validates the quote using the Intel
Attestation Service (IAS); see Section 5.1.2. If the attestation process
is successful, the background script generates a new DH key pair
for the website, and establishes the shared key using the enclave’s
public key. Finally, the background script changes the addon’s icon
to indicate the website supports SafeKeeper; see Figure 3.

Figure 3: SafeKeeper browser addon icons: (1) SafeKeeper
is unavailable on the website, or the attestation protocol
has failed; (2) SafeKeeper is supported and a secure chan-
nel has been established; (3) SafeKeeper is highlighting the
protected input fields (see Section 5.2.2).

5.2.2 Highlighting protected input fields. When a page is loaded,
the injected content script checks for the SafeKeeper metatag. If
present, this tag specifies which input fields must be encrypted by
SafeKeeper. When the user clicks the browser addon icon, a popup
window appears to provide information about the current web
page. Clicking the addon icon also serves as the secure attention
sequence described in Section 4.4, as this cannot be manipulated
by the adversary-controlled web page script. This action sends a
message to the content script, which modifies the website’s DOM
elements to highlight the protected input fields and attach an in-
formation tooltip to inform the user why each field is highlighted.
When the user clicks on the icon again, the content script restores
the page’s original appearance. When the web page is submitted,
the content script encrypts all values from the protected input fields
using the shared key agreed with the SafeKeeper password service.

5.2.3 Defending against malicious client-side scripts. As defined
in our adversary model (Section 3), a malicious server operator has
the capability to modify the content of the web page, including
adding client-side scripts. This poses several threats. First, a ma-
licious script may attempt to read the password as it is typed by
the user. Client-side scripts that exhibit this behaviour for other
types of personal information have already been observed in the
wild [18]. With the exception of disabling the malicious script, there
is no way to avoid this using current browser addon technologies
since the script is executing in the same domain as the text input
field. Second, malicious client-side scripts can attempt to spoof the
highlighting of input fields performed by the SafeKeeper browser
addon. Third, although the adversary cannot detect when the Safe-
Keeper highlighting has been activated, he can add a time delay to
his malicious script in order to spoof the SafeKeeper UI after the
user has clicked the SafeKeeper icon.

Currently Google Chrome does not provide a direct option to
disable client-side scripts for particular websites, so for SafeKeeper

we have developed an alternative approach to achieve this using
a Content Security Policy (CSP). Using the toggle switch on the
SafeKeeper popup window, users can disable scripts for individual
websites. SafeKeeper then reloads the page and injects our custom
CSP metatag into the header, which still allows our injected content
script to run, but blocks all other scripts on the page. A limitation
of this approach is that there is a race condition between the time
our CSP is injected, and the loading of other scripts. However, our
experimental evaluation showed that only pages loaded directly
from localhost were fast enough to evade our CSP. When scripts
are disabled for a particular website, the addon stores this informa-
tion in Chrome’s local storage and continues to disable scripts on
future visits to this website, until re-enabled by the user.

However, disabling client-side scripts often negatively affects the
usability of the web page. Therefore, by default SafeKeeper allows
client-side scripts. Careful users can still turn-off all client-side
scripts manually when needed. In the accompanying technical
report [24], we present alternative approaches that ensure the same
level of security without disabling client-side scripts.

6 EVALUATION
6.1 Security Analysis

As defined in Requirement R1, a comprehensive solution for pro-
tecting passwords must (i) prevent even the strongest adversary (i.e.
rogue server) from observing passwords in transit or during pro-
cessing on the server; (ii) prevent offline password guessing attacks;
and (iii) throttle online password guessing, irrespective of Adv’s
computational capabilities. In this section we analyse SafeKeeper’s
security guarantees against each of these classes of attacks. In our
accompanying technical report [24], we further discuss SafeKeeper’s
resilience against other types of attacks, including roll-back attacks,
run-time attacks, and SGX side-channel attacks.

6.1.1 Passwords in transit and on the server. The secure channel,
based on the DH key agreement between the browser addon and
the enclave, ensures the confidentiality of passwords while in tran-
sit over the network, and while they are being processed on the
server, before they are input to the enclave. Since this channel is
cryptographically bound to the enclave’s remote attestation quote,
the client-side software is assured that it is communicating with the
correct enclave. Note that, this channel’s security is independent of
any other layer, such as TLS, established between the browser and
web server. As such, password confidentiality remains unaffected
even if there are flaws in TLS/HTTPS protocols (e.g. [3, 36]).

6.1.2 Offline guessing. In an offline attack, the adversary (Adv)
would attempt to guess the password and test his guess directly
against the leaked password database, bypassing any online guess-
ing prevention by the web server. Adv is therefore not subject to
rate-limiting, and can perform guesses at the maximum rate sup-
ported by his available hardware. However, to test his guesses, Adv
must also guess the CMAC key, and thus making offline attacks
infeasible even against very weak passwords.

6.1.3 Online guessing. To avoid having to guess the CMAC key,
a malicious server operator could perform an online attack by sub-
mitting password guesses to the SafeKeeper password protection

service, running in the SGX enclave. However, Adv’s rate of guess-
ing is then constrained by SafeKeeper’s rate-limiting mechanism
described in Section 5.1.1. This increases the difficulty of guess-
ing the password by increasing the time required. For example, if
an average strength password provides approximately 20 bits of
entropy [7] and SafeKeeper’s effective maximum rate were set to
N = 144 authentication attempts per day, the average time required
to guess this password (i.e. 2!° guesses) would be nearly 10 years.
Note that this still cannot protect very weak passwords (e.g. short
passwords or those appearing in lists of frequently used passwords).
This is a fundamental limitation of password-based authentication.

Even though our rate limiting is based on the salt, which is under
Adv’s control, Adv cannot increase his guessing rate by manip-
ulating the choice of salts. For example, if Adv chooses the same
salt for all accounts, he can test his guesses against all passwords
in the database (e.g. N guesses per day, tested against all accounts).
However, if he chooses unique salts he can test the same number of
guesses against each individual account, and possibly vary guesses
between accounts (e.g. N guesses per day against each account).
Additionally, he may try to add fake accounts with guessed pass-
words to leverage the fact that the same passwords will result in the
same CMAC values, if a global salt is used. However, as passwords
of new accounts must also be processed by the SafeKeeper pass-
word protection service, the number of guessing attempts per day
remains unaffected. An external adversary (i.e. without compromis-
ing the web server) will also be restricted by any online guessing
prevention mechanisms (e.g. Captcha) implemented by an honest
server operator.

6.2 Usability Evaluation

To evaluate SafeKeeper against Requirement R2, we conducted a
user study for the client-side browser addon. The objectives of this
study were to: (i) quantify the ability of participants to use the addon
correctly; (ii) assess the memorability of the addon usage after a
period of disuse; and (iii) analyse the difficulty of using the addon.
This user study was carried out in accordance with the standard
practices of our institution. No data protection issues arose because
participants were not asked to use/disclose any personal data.

6.2.1 Participants and methodology. We recruited 86 partici-
pants using institutional mailing lists and social media. The partici-
pants were randomly split into two groups: main study group (64
participants), and control group (22 participants). We collected basic
demographic information for the main study group: 70% of partici-
pants were male and 30% were female; ages between 18 to 39 years;
participants’ educational qualification: 2% Ph.D., 34% Master’s, 41%
Bachelor’s, 9% High school diploma (14% unspecified).

Main Group: Each participant in this group was initially shown
the SafeKeeper information page, which contains the same informa-
tion a normal user would see when installing our browser addon.
Participants were then given a set of 25 websites. These websites
were clones of popular websites, created using HT Track [10] and
hosted on an internal institutional server. We slightly modified
these sites for our experiment; see Table 1. We did not warn the
participants about spoofing. The websites were listed in the same
order for all participants, but participants could access these in any
sequence and had the option to return to previous websites.

Table 1: Test websites

SafeKeeper | Password Spoofing types # websites
lock icon protected

v v None 4

v v Other fields highlighted 5

X X None 6

X X Password field highlighted 3

v X Password field highlighted 4

X X Password field highlighted 3

after delay

For each website, participants were asked: “Does this website
protect your password using SafeKeeper?” Participants were instructed
not to enter any password or other information on the website,
but simply to record their answer on the provided paper form.
The available options were: Yes, No, and the level of certainty of
the answer. To assess the statistical significance of our results, we
assumed a null hypothesis in which participants guess either Yes or
No in a uniformly random manner. Under this null hypothesis, the
effectiveness would therefore be 50%. We assumed the standard 5%
threshold value for statistical significance (¢ = 0.05).

Follow-up Study: After two months, we invited 20 participants
from the main group to participate in a follow-up study, with the
objective of measuring how well they remembered how to use
SafeKeeper after a relatively long period of disuse. The procedure
was the same as for the initial study, except that participants were
not shown the SafeKeeper information page, and were not reminded
of the instructions for using SafeKeeper. They were shown the same
set of websites in a different order and asked the same question.

Control Group: To obtain a baseline against which to assess the
results of the follow-up study, we invited approximately the same
number of participants (22) to use the tool without any instructions.
This was the same procedure as the follow-up study, except that this
control group had never previously used the addon. This control
group is therefore the best approximation of the scenario in which
users have completely forgotten how to use SafeKeeper.

6.2.2 Results. In the main group, participants correctly identi-
fied 86.81% of websites. Calculating the p-value for each participant
(across all websites) showed that for 80% of participants, p < 0.001.
The p-value for each website (across all participants) does not ex-
ceed 0.001 for 88% of websites.

In the follow-up study, the 20 recalled participants correctly
identified 91% of websites on average (the average for these par-
ticipants was 93% in the initial study). Calculating the p-value for
each participant using McNemar’s test shows that for 95% of par-
ticipants, the p-value exceeds 0.2. This means that there was no
statistically significant decrease in the effectiveness of SafeKeeper
after two months of disuse. The p-value of only one participant
shows a statistically significant decrease in effectiveness.

Even with no instructions, the control group participants cor-
rectly identified 74% of websites on average. Using Fisher’s exact
test to compare the follow-up group to the control group resulted
in p = 6.4 x 10714 (far smaller than the threshold of 0.05), showing
that the difference is statistically significant.

6.2.3 Discussion. Achieving almost 87% effectiveness, we have
exceeded the percentage indicated in the null hypothesis, providing
evidence of the addon’s utility. Out of 64 participants in the main
group, only for 5 was p > 0.05. Among the 25 websites, only for
one website was p > 0.05 (the first phishing website participants
encountered). The follow-up study indicates that SafeKeeper’s effec-
tiveness does not diminish, even after long periods of disuse (only
one out of 20 participants showed a statistically significant drop in
effectiveness). Surprisingly, the control group managed to use the
browser addon without any instructions to correctly identify a rela-
tively high number of websites. We suspect that these participants
may have inferred the instructions to a certain extent based on the
addon’s behaviour and the text displayed in the popup window.
Based on the background questionnaires, nearly 58% of participants
do not usually check for a secure connection while browsing the
web. 75% of participants were aware of phishing. When asked to as-
sess the level of difficulty of using SafeKeeper, participants answers
were: “very easy to use” (39%), “easy to use” (55%), “difficult to use”
(6%), “very difficulty to use” (0%). Overall, 76% of participants said
they would like to use SafeKeeper in their own browsers.

6.3 Performance Evaluation

Using the implementation described in Section 5, we evaluated the
memory consumption and scalability of our server-side password
protection service, as well as the latency of verifying a quote. All
reported performance measurements are the average of 10 trials,
using a simulated password database of 1 million active unique
users (i.e. 1 million unique salt values), performed on an Intel Core
15-6500 3.20 GHz CPU with 8GB of RAM.

Memory consumption: Our enclave required at most 110 MB
of heap memory to store an in-memory rate-limiting map contain-
ing all 1 million salt values. As discussed in Section 5.1.1, memory
consumption could be reduced by using more compact representa-
tions of the salt or counter values. Note that the enclave does not
have to store the salts of every user in the database at the same time
— it only stores salts it has processed in the current time window
(e.g. users who authenticated in the past 24 hours). The memory
consumption can thus be further decreased by reducing this time
window (e.g. setting the rate to 36 attempts per 6 hours would only
require storing salts for the past 6 hours).

Scalability: To measure the performance of the server when
multiple users attempt to authenticate concurrently, we instru-
mented PHPass to measure the maximum password processing
rate. With the default hash function (software MD5, 256 iterations),
the maximum rate is 446 (+10) passwords/second. With the Safe-
Keeper password protection service, the rate increases to 1653 (+70)
passwords/second, since we do not require multiple iterations. We
also measured the raw performance of the enclave without PHP
(e.g. for websites running optimized software): the maximum rate is
101,337 (+4186) passwords/second. Therefore, even for high-volume
websites, this is unlikely to be a performance bottleneck.

Latency: The average latency of verifying a quote is 866 ms
(£25 ms). However, since this is done asynchronously while the
web page loads, and since the time is comparable with the typical
loading time of the web page, this should not have any noticeable
impact on the user’s browsing experience.

6.4 Deployability Evaluation

Minimal software changes: SafeKeeper’s server-side password
protection service is designed to be a drop-in replacement for the
one-way functions used in current password hashing frameworks
(e.g. the PHPass library). Integrating SafeKeeper into PHPass re-
quired adding one line of code to initialize the enclave, and changing
three lines of code in the password processing function.

Existing servers can be migrated to SafeKeeper. Password hashes
in an existing database can be input to a SafeKeeper enclave, which
performs the CMAC as usual. This results in a so-called onion hash.
When users log in, their passwords are sent directly to a special
SafeKeeper enclave, which first performs the original hash, and then
the CMAC. This allows the security of existing password databases
to be upgraded without requiring users to provide their passwords.

Due to space constraints, we discuss other deployability aspects
in our technical report [24], including backup of the CMAC key,
and scaling SafeKeeper to multiple servers for load-balancing.

7 RELATED WORK

Password research has a rich history. Here we focus on proposals
that improve password security against password database compro-
mises, emphasizing solutions that leverage hardware-based security
enhancements. However, no previous work has considered pass-
word confidentiality against rogue servers.

To mitigate offline guessing attacks against hashed passwords,
e.g. due to password database breaches, several proposals take
advantage of SGX enclaves [4, 9, 26]. These proposals either encrypt
or calculate an HMAC of the password inside an enclave. However,
they all assume a significantly weaker adversary model in which
the server operator is trusted. Specifically, they do not consider the
confidentiality of passwords on the server before they are input to
the enclave, nor the possibility for a malicious server operator to
perform a brute-force guessing attack using the enclave, nor the
risk of phishing. SafeKeeper goes beyond these solutions by resisting
rogue servers and phishing attacks.

Various non-SGX server-side approaches have been proposed.
Facebook uses a remote password service [15] that computes a keyed
one-way function on the password and returns the result. The secret
key used in this function never leaves their service. Even if an
adversary obtains the (keyed) password repository, he must guess
the secret key, or connect to the Facebook remote password service
(easy to detect and rate-limit). However, running such a service and
protecting the key sever against attacks may be infeasible, especially
with a limited budget. Also, the key service must be trusted (e.g.
not to collude with an attacker), but the trustworthiness of the key
server cannot be validated by users.

Another server-side approach is to use specialized hardware to
establish an isolated execution environment. Cvrcek et al. [12] use
a custom-built USB device to store a secret key and use this to calcu-
late HMAC:s of passwords. Without the USB device, calculating the
HMAG:s is not possible, and thus cracking passwords from leaked
tags is also infeasible. Their prototype was capable of computing
only 330 HMAC tags per minute, although scalability could be im-
proved using multiple USB devices. However, plaintext passwords
remain available to the server operator, and the trustworthiness of
the USB device cannot be validated by users.

As an alternative software-only server-side approach, PolyPass-
wordHasher [38] uses a special set of protector account passwords
to prevent offline dictionary attacks against the rest of the shielded
account passwords. For protected accounts, it applies an XOR func-
tion to a share and the hash of a salted password. The share values
are derived using a threshold cryptosystem, and stored only in
memory (in plaintext). The result of the XOR operation is stored
in a database on the web server. To guess shielded passwords, the
adversary must crack a threshold of protector passwords (e.g. 3-5),
and collect the corresponding shares. The shielded passwords are
encrypted using a secret, not the shares, and then stored in the
database. Therefore, the shielded accounts that use weaker pass-
words will not leak the information about the shares. The security
of this solution relies on the passwords chosen by the protectors
(e.g. admin accounts).

Users often remain logged into multiple services at the same time.
SAuth [23] leverages this to detect password database compromise.
A login attempt to a target site must be validated by a separate
vouching site (e.g. to log into Gmail, the user must be logged into
Facebook). Thus, an attacker who compromises passwords from
one site will be unable to use them unless he can also compromise
passwords from the vouching site (assumed to be unlikely).

Several client-side techniques have also been proposed. For ex-
ample, the PwdHash [35] browser addon applies a pseudorandom
function to the concatenation of a password and a salt, on the client
side. The salt is generated based on a website domain, which binds
the password to the specific website. However, an adversary who
compromises the web server knows the domain name, and can
therefore perform an offline brute-force guessing attack.

Compared to existing work, SafeKeeper provides additional secu-
rity features, including: protecting password confidentiality against
amalicious server operator, strict password guess rate-limiting from
within our enclave, enabling users to validate SGX protections of
their passwords via browser Ul, and relatively easy deployment
options for server operators.

8 CONCLUSION AND FUTURE WORK

Passwords are likely to remain the de facto approach for authenti-
cating users on the web, despite their inherent security weaknesses.
Therefore, it is critical to improve the security of such systems with-
out decreasing performance, usability, or deployability. A compre-
hensive solution must address the dual threats of phishing and theft
of password databases, even in the case of rogue servers. We have
demonstrated that SafeKeeper is a significant step towards meeting
these objectives. As future work, we plan to implement selected
extensions and variations, such as using SafeKeeper to protect email
addresses from misuse, and integrating SafeKeeper into client-side
password managers, as described in our technical report [24].

ACKNOWLEDGMENTS

This work was supported in part by the Intel Collaborative Research
Institute for Secure Computing at Aalto University, and the Cloud
Security Serivces (CloSer) project (3881/31/2016), funded by Tekes.
M. Mannan is supported in part by an NSERC Discovery Grant and
a NordSecMob Scholarship.

REFERENCES

[1] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

[7

8

[10
[11

[12

[13

[14
[15

[16

[17

(18

[19

=

]

=

]

]

]

]

]

Technology for CPU Based Attestation and Sealing. In International Workshop on
Hardware and Architectural Support for Security and Privacy.
https://doi.org/10.1.1.405.8266

APWG.org. 2016. Phishing Activity Trends Report (4th Quarter). (2016).
http://docs.apwg.org/reports/apwg_trends_report_q4_2016.pdf.

Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Késper, Shaanan Cohney, Susanne Engels, Christof Paar, and
Yuval Shavitt. 2016. DROWN: Breaking TLS Using SSLv2. In USENIX Security
Symposium. https://drownattack.com/drown-attack-paper.pdf

Joseph Birr-Pixton. 2016. Using SGX to harden password hashing. (2016).
https://jbp.io/2016/01/17/using- sgx-to-hash-passwords.

A. Biryukov, D. Dinu, and D. Khovratovich. 2016. Argon2: New Generation of
Memory-Hard Functions for Password Hashing and Other Applications. In IEEE
European Symposium on Security and Privacy.
https://doi.org/10.1109/EuroSP.2016.31

J. Blocki and A. Datta. 2016. CASH: A Cost Asymmetric Secure Hash Algorithm
for Optimal Password Protection. In IEEE Computer Security Foundations
Symposium. https://doi.org/10.1109/CSF.2016.33

Joseph Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized
Corpus of 70 million Passwords. In IEEE Symposium on Security and Privacy.
https://doi.org/10.1109/SP.2012.49

Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.

The Quest to Replace Passwords: A Framework for Comparative Evaluation of
Web Authentication Schemes. In IEEE Symposium on Security and Privacy.
https://doi.org/10.1109/SP.2012.44

Helena Brekalo, Raoul Strackx, and Frank Piessens. 2016. Mitigating Password
Database Breaches with Intel SGX. In Workshop on System Software for Trusted
Execution. https://doi.org/10.1145/3007788.3007789

HTTrack Website Copier. 2017. (2017). https://www.httrack.com/.

Qian Cui, Guy-Vincent Jourdan, Gregor V. Bochmann, Russell Couturier, and
Tosif-Viorel Onut. 2017. Tracking Phishing Attacks Over Time. In Conference on
World Wide Web. https://doi.org/10.1145/3038912.3052654

Dan Cvrcek. 2014. Hardware Scrambling - No More Password Leaks. (2014).
https://www.lightbluetouchpaper.org/2014/03/07/

hardware- scrambling-no-more-password-leaks.

Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng
Wang. 2014. The Tangled Web of Password Reuse. In Network and Distributed
Systems Symposium. https://doi.org/10.14722/ndss.2014.23357

The Breached Database Directory. 2017. (2017). https://vigilante.pw.

Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas
Ristenpart. 2015. The Pythia PRF Service. In USENIX Security Symposium.
https://www.usenix.org/node/190917

Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose
Processors. (2016). https://eprint.iacr.org/2016/204.

Weili Han, Zhigong Li, Minyue Ni, Guofei Gu, and Wenyuan Xu. 2016. Shadow
Attacks based on Password Reuses: A Quantitative Empirical View. IEEE
Transactions on Dependable and Secure Computing (2016).
https://doi.org/10.1109/TDSC.2016.2568187

Kashmir Hill and Surya Mattu. 2017. Before You Hit *Submit, This Company
Has Already Logged Your Personal Data (Gizmodo). (2017). https://gizmodo.
com/before-you-hit-submit-this-company- has-already-logge-1795906081.
Jun Ho Huh, Hyoungshick Kim, Swathi S.V.P. Rayala, Rakesh B. Bobba, and
Konstantin Beznosov. 2017. I'm too Busy to Reset my LinkedIn Password: On
the Effectiveness of Password Reset Emails. In ACM SIGCHI Conference on

[20

[21

[22

)
&

[24

[25

[26

[27

[28

[29

&
=

[37

[38

(39]

Human Factors in Computing Systems. https://doi.org/10.1145/3025453.3025788
Intel Corporation. 2017. 1U System Delivering Cryptographic Isolation
Technology. (2017). https://www.intel.com/content/www/us/en/
data-center-blocks/business/secure-enclaves-blocks.html.

Intel Corporation. 2017. Software Guard Extensions (Intel SGX). (2017).
https://software.intel.com/en-us/sgx.

David Jaeger, Chris Pelchen, Hendrik Graupner, Feng Cheng, and Christoph
Meinel. 2016. Analysis of Publicly Leaked Credentials and the Long Story of
Password (Re-)use. In Conference on Passwords.
http://www.passwordresearch.com/papers/paper686.html

Georgios Kontaxis, Elias Athanasopoulos, Georgios Portokalidis, and Angelos D.
Keromytis. 2013. SAuth: Protecting User Accounts from Password Database
Leaks. In ACM Conference on Computer and Communications Security.
https://doi.org/10.1145/2508859.2516746

Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd, Mohammad Mannan, and
N. Asokan. 2017. Protecting Web Passwords from Rogue Servers using Trusted
Execution Environments. (2017). https://arxiv.org/abs/1709.01261.

Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd, Mohammad Mannan, and

N. Asokan. 2018. SafeKeeper Project. (2018). https://github.com/safekeeper.
Klaudia Krawiecka, Andrew Paverd, and N. Asokan. 2016. Protecting Password

Databases Using Trusted Hardware. In Workshop on System Software for Trusted
Execution. https://doi.org/10.1145/3007788.3007798

Jake Leichtling. 2015. Continuing to protect Chrome users from malicious
extensions. (2015). https:

//blog.chromium.org/2015/05/continuing- to-protect-chrome-users-from.html.
PHP-CPP: A C++ library for developing PHP extensions. 2017. (2017).
http://www.php-cpp.com/.

Samuel Marchal, Kalle Saari, Nidhi Singh, and N. Asokan. 2016. Know Your
Phish: Novel Techniques for Detecting Phishing Sites and Their Targets. In IEEE
International Conference on Distributed Computing Systems.
https://doi.org/10.1109/ICDCS.2016.10

Netcraft.com. 2017. Let’s Encrypt and Comodo issue thousands of certificates for
phishing. (2017). https://news.netcraft.com/archives/2017/04/12/
lets-encrypt-and-comodo-issue-thousands-of-certificates-for-phishing. html.
PHPass: Portable PHP password hashing framework. 2017. (2017).
http://www.openwall.com/phpass/.

Paul Grassi and others. 2017. NIST Special Publication 800-63B, Digital Identity
Guidelines, Authentication and Lifecycle Management. (2017).
https://doi.org/10.6028/NIST.SP.800-63b.

PhishTank.com. 2017. Statistics about phishing activity and PhishTank usage.
(2017). https://www.phishtank.com/stats.php.

Have I Been Pwned. 2017. (2017). https://haveibeenpwned.com/pwnedwebsites.
Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C. Mitchell. 2005.
Stronger Password Authentication Using Browser Extensions. In USENIX
Security Symposium. http://usenix.org/publications/library/proceedings/sec05/
tech/full_papers/ross/ross.pdf

Y. Sheffer, R. Holz, and P. Saint-Andre. 2015. RFC7457: Summarizing Known
Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS). (2015).
https://tools.ietf.org/html/rfc7457.

W3Techs World Wide Web Technology Surveys. 2017. (2017).
https://w3techs.com/.

Santiago Torres and Justin Cappos. 2014. PolyPasswordHasher: Improving
Password Storage Security. ;login: The USENIX Magazine 39, 6 (Dec. 2014), 18-21.
https://password-hashing.net/submissions/specs/PolyPassHash-v1.pdf.

Chun Wang, Steve TXK. Jan, Hang Hu, and Gang Wang. 2017. Empirical Analysis
of Password Reuse and Modification across Online Service. (2017).
https://arxiv.org/abs/1706.01939v2.

https://doi.org/10.1.1.405.8266
http://docs.apwg.org/reports/apwg_trends_report_q4_2016.pdf
https://drownattack.com/drown-attack-paper.pdf
https://jbp.io/2016/01/17/using-sgx-to-hash-passwords
https://doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1109/CSF.2016.33
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2012.44
https://doi.org/10.1145/3007788.3007789
https://www.httrack.com/
https://doi.org/10.1145/3038912.3052654
https://www.lightbluetouchpaper.org/2014/03/07/hardware-scrambling-no-more-password-leaks
https://www.lightbluetouchpaper.org/2014/03/07/hardware-scrambling-no-more-password-leaks
https://doi.org/10.14722/ndss.2014.23357
https://vigilante.pw
https://www.usenix.org/node/190917
https://eprint.iacr.org/2016/204
https://doi.org/10.1109/TDSC.2016.2568187
https://gizmodo.com/before-you-hit-submit-this-company-has-already-logge-1795906081
https://gizmodo.com/before-you-hit-submit-this-company-has-already-logge-1795906081
https://doi.org/10.1145/3025453.3025788
https://www.intel.com/content/www/us/en/data-center-blocks/business/secure-enclaves-blocks.html
https://www.intel.com/content/www/us/en/data-center-blocks/business/secure-enclaves-blocks.html
https://software.intel.com/en-us/sgx
http://www.passwordresearch.com/papers/paper686.html
https://doi.org/10.1145/2508859.2516746
https://arxiv.org/abs/1709.01261
https://github.com/safekeeper
https://doi.org/10.1145/3007788.3007798
https://blog.chromium.org/2015/05/continuing-to-protect-chrome-users-from.html
https://blog.chromium.org/2015/05/continuing-to-protect-chrome-users-from.html
http://www.php-cpp.com/
https://doi.org/10.1109/ICDCS.2016.10
https://news.netcraft.com/archives/2017/04/12/lets-encrypt-and-comodo-issue-thousands-of-certificates-for-phishing.html
https://news.netcraft.com/archives/2017/04/12/lets-encrypt-and-comodo-issue-thousands-of-certificates-for-phishing.html
http://www.openwall.com/phpass/
https://doi.org/10.6028/NIST.SP.800-63b
https://www.phishtank.com/stats.php
https://haveibeenpwned.com/pwnedwebsites
http://usenix.org/publications/library/proceedings/sec05/tech/full_papers/ross/ross.pdf
http://usenix.org/publications/library/proceedings/sec05/tech/full_papers/ross/ross.pdf
https://tools.ietf.org/html/rfc7457
https://w3techs.com/
https://password-hashing.net/submissions/specs/PolyPassHash-v1.pdf
https://arxiv.org/abs/1706.01939v2

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Storing Passwords
	2.2 Intel Software Guard Extensions

	3 System Model and Requirements
	3.1 Overview
	3.2 Adversary Model
	3.3 Requirements and Objectives

	4 Design
	4.1 Server-side Password Protection
	4.2 Rate Limiting
	4.3 Remote Attestation
	4.4 Client-side Assurance Mechanism

	5 Implementation
	5.1 Server-side Password Protection
	5.2 Client-side Assurance Mechanism

	6 Evaluation
	6.1 Security Analysis
	6.2 Usability Evaluation
	6.3 Performance Evaluation
	6.4 Deployability Evaluation

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

