
Measuring the Leakage and Exploitability of Authentication
Secrets in Super-apps: The WeChat Case

Supraja Baskaran
Concordia University
Montreal, Canada

su_baska@ciise.concordia.ca

Lianying Zhao
Carlton University
Ottawa, Canada

lianying.zhao@carleton.ca

Mohammad Mannan
Concordia University
Montreal, Canada

mmannan@ciise.concordia.ca

Amr Youssef
Concordia University
Montreal, Canada

youssef@ciise.concordia.ca

ABSTRACT
Super-apps such as WeChat and Baidu host millions of mini-apps,
which are very popular among users and developers because of
the mini-apps’ convenience, lightweight, ease of sharing, and not
requiring explicit installation. Such ecosystems involve several en-
tities, such as the super-app and mini-app clients, the super-app
backend server, the mini-app developer server, and other hosting
platforms and services used by the mini-app developer. To support
various user-level functionalities, these components must authenti-
cate each other, which differs from regular user authentication to
the super-app platform. In this paper, we explore the mini-app to
super-app authentication problem caused by insecure development
practices. This type of authentication allows the mini-app code to
access super-app services on the developer’s behalf.

We conduct a large-scale measurement of developers’ insecure
practices leading to mini-app to super-app authentication bypass,
among which hard-coding developer secrets for such authentica-
tion is a major contributor. We also analyze the exploitability and
security consequences of developer secret leakage in mini-apps by
examining individual super-app server-side APIs. We develop an
analysis framework for measuring such secret leakage, and primar-
ily analyze 110,993 WeChat mini-apps, and 10,000 Baidu mini-apps
(two of the most prominent super-app platforms), along with a
few more datasets to test the evolution of developer practices and
platform security enforcement over time. We found a large number
of WeChat mini-apps (36,425, 32.8%) and a few Baidu mini-apps
(112) leak their developer secrets, which can cause severe security
and privacy problems for the users and developers of mini-apps.
A network attacker who does not even have an account on the
super-app platform, can effectively take down a mini-app, send ma-
licious and phishing links to users, and access sensitive information
of the mini-app developer and its users. We responsibly disclosed
our findings and also put forward potential directions that could

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10. . . $15.00
https://doi.org/10.1145/3607199.3607236

be considered to alleviate/eliminate the root causes of developers
hard-coding the app secrets in the mini-app’s front-end code.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Authentication.

KEYWORDS
Authentication, Mini-app Security, WeChat, Hard-coded Secrets
ACM Reference Format:
Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef.
2023. Measuring the Leakage and Exploitability of Authentication Secrets
in Super-apps: The WeChat Case. In The 26th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID ’23), October 16–18,
2023, Hong Kong, Hong Kong. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3607199.3607236

1 INTRODUCTION
Full-featured apps such as WeChat [62] and Baidu [64], with a
monthly user base of over one billion [1, 35], have created an ecosys-
tem to accommodate payments, media, online stores, developers,
etc [19, 22, 72]. Such popularity and self-contained ecosystem have
enabled them to become “super-apps”, serving as the hosting plat-
form of millions of mini-apps (also known as mini-programs). Mini-
apps, together with their super-apps, are seeing increasing demands
in different countries because of their convenience, light weight,
ease of sharing and no need to install [70]. In addition, mini-apps
do not need a custom backend server from developers, but use a
well-constructed set of APIs provided by their super-app to allow
straightforward access to backend data and system resources that
are provided by the super-app platforms.

Unsurprisingly, security and privacy issues also start to surface
in these super-app platforms, e.g., users’ PII (name, national ID, date
of birth, and facial data) collection by WeChat mini-apps [41]. More
extensive security-focused work in this domain includes (details in
Sec. 9): analysis of mini-app permission models [68], identity confu-
sion attacks [69], and cross mini-app request forgery attacks [67].

In contrast to existing work, we focus on the mini-app’s authenti-
cation secret (developer secret or app secret) leakage, i.e., the secrets
used to authenticate any part of the mini-app code to the super-app
server that it is the mini-app it claims to be. This is complicated by
several factors, including: lack of a human user presenting secrets at

https://doi.org/10.1145/3607199.3607236
https://doi.org/10.1145/3607199.3607236
https://doi.org/10.1145/3607199.3607236

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef

the time of authentication (hence the need for somewhere to store
the mini-app to super-app authentication secret), mini-app devel-
opers not following security guidelines from super-app platforms,
failure of super-app platforms to enforce necessary security restric-
tions, multiple entities being involved in a super-app ecosystem
(e.g., mini-app client, cloud functions, server-side APIs, and data
storage provided by a super-app server, mini-app developer server),
which also authenticate each other–either explicitly or implicitly.

A common way for the super-app to authenticate a mini-app is
to use app secrets. According to the WeChat documentation [58],
an app secret is specific to a developer account, and it is used to
authenticate any part of the mini-app (representing the developer)
to the super-app’s server. Therefore, the app secret should be treated
as a sensitive piece of data and should not be exposed (e.g., in the
mini-app source code). Due to the absence of a human user in such
authentication scenarios, app secrets have to be stored instead of
being entered by a user. WeChat expects mini-apps to offload such
a burden to the developer’s server which stores app secrets and
performs necessary communication with the super-app server, i.e.,
not to hard-code in the mini-app code. For example, in the case of
WeChat mini-apps, the mini-app packages can be extracted from
a rooted/jail-broken device, or using the PC client, with common
reverse-engineering techniques without any special privilege [11]
and the app secrets, if hard-coded, can be easily obtained by anyone.
If the developers still use such hard-coding, since the super-app
server has complete control over the super-app ecosystem, it can
easily spot such hard-coding and prevent it either before releasing a
mini-app or at run-time. Our work is motivated by the observation
that it is not the case in reality.

When such mini-app to super-app authentication is compro-
mised due to hard-coded app secrets, one can intuitively imagine
how things may go wrong afterwards, e.g., the attacker will be
able to impersonate the legitimate mini-app (developer) and ma-
nipulate/abuse its resources (e.g., images or order info). To better
understand this problem, we examine how app secrets are used to
achieve the authentication: it is the super-app server that authen-
ticates a remote party claiming to be the mini-app and provides
subsequent services all through a set of exposed APIs over the net-
work [59]. Therefore, these APIs eventually become the target of
the authentication compromise, i.e., whether they can be invoked
in an unauthorized manner. The super-app platforms often have
certain security guidelines to ensure proper mini-app to super-app
authentication. For instance, WeChat discourages having app se-
crets in the mini-app, recommends the use of IP address whitelisting
for such APIs (not allowing calls from non-listed addresses, config-
ured at the developer portal), and disallows directly calling such
APIs from within the mini-app (as opposed to doing it from the de-
veloper’s server) [58]. Still, enforcement of these guidelines remains
a question, leading to insecure development practices.

The mini-app to super-app authentication mechanisms vary
across super-app platforms, and thus the ways of managing au-
thentication secrets vary. For example, Douyin [8] (the Chinese
version of Tiktok [9]), uses a similar authentication technique like
WeChat and Baidu. The mini-app to super-app authentication sys-
tem, which relies on "client_credential" grant type to generate
access tokens, is significantly affected by the mini-app developers’
mishandling of the secret. In contrast, Alipay employs a dynamic

authorization token for the generation of access token which in-
volves no static secrets ("authorization_code" grant type), thus
providing a better authentication with the super-app. Our anal-
ysis targets major popular super-app ecosystems that have such
authentication secret leakage problems, although primarily focuses
on WeChat as it is the largest among these platforms in terms of
mini-app count [35].

Our objective is to measure the extent to which the aforemen-
tioned insecure mini-app development practices are found along
the timeline of recent years (assuming the awareness is improving),
and how such practices could have led to potential unauthorized
calls to the super-app server APIs. We also explore the security
consequences of such calls in the super-app ecosystem, e.g., busi-
ness/personal resources in various application scenarios. To do so,
we develop an analysis framework that automatically detects app
secrets in the mini-app’s code through static analysis and verifies
if authentication bypass is possible to call unauthorized super-app
server APIs, confirming the validity of the identified secrets and
the lack of IP whitelisting. For ethical reasons, we do not make calls
to all the super-app server-side APIs, but instead, divide them into
Get (can only read data) and Modify (can update/delete data) APIs.
The framework automatically makes calls to only the necessary Get
APIs, which provides the required parameters to perform a “calla-
bility” analysis of Modify APIs. Also, we analyze and categorize the
security consequences of the unauthorized super-app server-side
API access and shed light on the ways forward for improvement.

Summary of contributions and notable findings.
(1) We examine the mishandling of authentication secrets in

WeChat and Baidu mini-apps, two leading super-app providers.
The identified issue eventually leads to unauthorized super-app
server-side API calls by any network attacker, allowing access to
various mini-app-owned resources. Our methodology is designed to
facilitate automated analysis of mini-apps from super-app platforms
that have a similar mini-app directory structure (like WeChat [56]
and Baidu [6]), and use secret-based mini-app authentication.
(2) We conduct a large-scale automated measurement to assess

the extent of these insecure practices in WeChat and Baidu. Out of
110,993 WeChat mini-apps that we could successfully decrypt and
unpack (from a total of 115,392, crawled in 2021) and 10,000 Baidu
mini-apps, we found a large number of WeChat mini-apps (36,425,
32.8%) and a few Baidu mini-apps (112) leak their developer secrets,
which can cause authentication bypass. The use of IP whitelisting,
a WeChat security feature, which could restrict exploitation of
such secret exposures, is also very limited–only 33 out of 110,993
mini-apps have enabled it (7 mini-apps with app secret). We also
automatically check data leakage through the available Get APIs,
and callability of Modify APIs that can directly interfere with a
mini-app functionality. We test the effects of dangerous Modify
APIs only on our own mini-app.
(3) From our responsible disclosure, we learned that WeChat is

aware of app secret hard-coding (independent of our reporting),
and has enforced a new requirement that publishing such mini-
apps are disallowed (which we also confirmed by submitting a
new mini-app with hard-coded app secret–it was rejected). To
check the effectiveness of this new requirement, and to see how
developer behaviours have evolved over the years, we performed

Measuring the Leakage and Exploitability of Authentication Secrets in Super-apps RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

a few additional measurements. From 9,824 mini-apps crawled in
Feb. 2023, 2,572 (26.2%) have valid app secrets, and from the 36,425
mini-apps (crawled in 2021, with valid app secrets), 36,293 (99.6%)
still have valid app secrets—making recent enforcement by WeChat
largely ineffective against existing vulnerable mini-apps (which
were made public before Mar. 2023).
(4) We conduct an in-depth attack feasibility analysis for individ-

ual APIs and mini-apps, and categorize the security consequences
of such attacks. The consequences vary a lot with the semantics
of the involved APIs, the configuration and functions of individual
mini-apps, and several types of consequences are high-impact and
affect a large number of mini-apps.
(5) We discuss the root causes of the hard-coding app secrets,

and suggest several recommendations for design and enforcement
considerations. We will make our tool available to any super-app
platforms, who can identify and measure security consequences
for different apps and take appropriate mitigating actions.

2 BACKGROUND
We first briefly explain the various terms/entities involved in mini-
app ecosystems, specifically in WeChat and Baidu.
Super-app. A super-app client is the host mobile app that features a
selection of independent services, all contained within a single app.
The super-app server is the key authority of the super-app platform,
managing identity and operations of the mini-apps, and providing
necessary services. The super-app server exposes a standard set of
APIs to all mini-apps, which we refer to as server-side APIs hereafter.
Mini-app. The mini-app client is the client-side code that runs
on top of the super-app client (also called mini-program, smart-
program, micro-app). It is created with the corresponding super-
app’s devtools and shipped as a package (JavaScript, XML, JSON,
and CSS). Every mini-app has an app ID, which is a unique identifier
(in a given super-app) with random alphanumeric characters, often
used for the mini-app’s requests to the super-app server. Everymini-
app developer has a random secret (in WeChat and Baidu, called
app secret, 32-character long), assigned to their account, which
is used to authenticate the developer of mini-app for calling the
super-app server-side APIs. The app secret is regarded as a sensitive
piece of information. The developer server is the backend server of a
specific mini-app, set up and maintained by the mini-app developer
(not controlled by the super-app platform). In the case of WeChat,
the developer server must have a valid Internet Content Provider
(ICP [65]) licensed domain name. Without specifically mentioning
the server or client/package, hereafter by mini-app we refer to the
entire mini-app, any code representing the corresponding developer
or business.
Access token. To use a super-app’s server-side APIs, and access
resources associated with a mini-app, an access token is required.
This is an ephemeral secret (valid for 2 hours for WeChat and 30
days for Baidu, renewable anytime), issued by the super-app server
through an API call, e.g., getAccessToken [54] in WeChat, which
requires an app ID and app secret as request parameters.
OpenID. In WeChat and Baidu mini-apps, the OpenID is a user
identifier that is unique for each mini-app. When a user logs into a
mini-app, the mini-app sends a request to the super-app server to
obtain the user’s openID, which is based on the user’s super-app

account. In WeChat, it is an encrypted value of the user’s WeChat
ID and the app ID of the mini-app, and remains the same for the
same user-mini-app combination.
WeChat cloud base functionalities.Mini-apps can take advan-
tage of the cloud base [49], an option in WeChat that enables the
mini-apps to utilize some basic cloud functionalities without set-
ting up a dedicated server. The cloud base has a range of features,
e.g., cloud functions, databases, storage and cloud call. A cloud
function allows developers to execute their server-side (JavaScript)
code. These functions can be typically triggered by specific events,
such as a user action or any change in data. Within the mini-app,
cloud functions can be triggered with the mini-app’s regular API
(termed as JSAPI) wx.cloud.callFunction. The cloud base also
offers the cloud call capability to call the server-side APIs from
cloud functions. This is recommended by WeChat apart from call-
ing the server-side APIs using developer server or Tencent cloud
hosting [61]. Cloud calls are implicitly authenticated (no need to
supply the app secret or access token). The JSON cloud base data-
base can be queried by the mini-app to retrieve or update data using
cloud functions. This database can be called using either JSAPIs, or
the server-side APIs from the developer server (with an access to-
ken). The cloud base storage provides a storage space for mini-apps
to store their files, accessible by dedicated APIs, cloud functions,
or the developer server.
WeChat IP whitelisting. The calls to server-side APIs can be
restricted to originate from only a list of IP addresses (no domain
names), configured at the WeChat mini-app developer portal. If en-
abled by the developer (disabled by default), only these IP addresses
can call the server-side APIs, i.e., no other hosts can obtain access
tokens even if they have valid app secrets. Note that IP whitelisting
applies to all the server-side APIs (i.e., not for specific APIs).
WeChat plug-in. A WeChat mini-app plug-in is a package of pre-
built custom components or libraries that can be integrated into a
mini-app. Developers can request to integrate a plug-in (developed
by WeChat and third-parties) from the developer portal.

3 OBJECTIVES AND THREAT MODEL
In this section, we formulate the secret leakage problemwe consider,
state our objectives, and define the threat model.
Authentication Secret leakage problem. Mini-apps are quite
different from regular mobile apps, in terms of their reliance on
the super-app platform as a runtime authority for authentication,
access control and other services through the server-side APIs.
There are mainly three types of authentication involved in the
super-app environment: mini-app user to super-app, when the user
initially logs into the super-app (usually persistent across reboots
as in WeChat); mini-app user to mini-app, each time (or some cases
the first time) the user uses the mini-app and clicks to consent to
identity sharing; andmini-app to super-app, which is often neglected
as it happens behind the scene. Our work deals with this last case
(as the other two involve the human mini-app user which is an
orthogonal authentication problem). There exists also mini-app to
mini-app authentication [67] via the super-app, which can also be
considered as mini-app to super-app.

As explained in Sec. 2, a mini-app uses its app secret (and the
app ID) to obtain an access token from the super-app server which

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef

Figure 1: Example scenario of an attacker making use of
the hard-coded app secrets, by reverse-engineering the mini-
app binary, and using them to successfully access WeChat’s
server-side APIs.

can be used for all subsequent server-side API calls. This means any
improper practices enabling unauthorized calls to the server-side
APIs will compromise the mini-app to super-app authentication,
leading to various security issues or outright attacks.

The mini-app authentication secret leakage problems we con-
sider are usually reflected in the following aspects (1) insecure but
common practices of the mini-app developers; and (2) inherent
design flaws and failure to enforce their own security guidelines
by super-app platforms. Taking WeChat as an example, 1) the app
secret should not be included directly within the mini-app package;
2) any API involving the app secret as its request parameter should
be called by the developer server only, not from within the mini-
app; 3) IP whitelisting should be configured. Mini-apps developed
by not following one or multiple of such recommendations can be
insecure, leading to unauthorized server-side API calls; see Figure 1.
Objectives. We center our study around the issues of mini-app
secret leakage and its exploitation as presented above, i.e., unautho-
rized calls to the server-side APIs, caused by insecure development
practices. We aim to 1) find out the extent to which the insecure
development practices are identified from a large number of mini-
apps, despite the warnings in documentations over time; 2) analyze
the feasibility of the attacker being able to actually make unau-
thorized calls to individual server-side APIs, for mini-apps with
the identified insecure practices; 3) understand the security con-
sequences of such unauthorized server-side API calls, in a given
super-app platform.
Threat model. We assume that the mini-apps are benign. The
(source) code of the mini-app is integrity-protected by the super-
app. Also, the developer servers as well as the super-app server
used by the mini-apps are trusted and the communication between
the mini-app (via the super-app) and its developer server is through
HTTPS, and is thus assumed to be secure. These assumptions are

in line with the day-to-day uses of mini-apps and what has been
assumed by the mini-app service providers.
Attacker requirements and capabilities. An attacker with a
regular super-app account can obtain (sometimes on a large-scale)
the binary package of any mini-app that is publicly visible. This
can be achieved by several means, e.g., installing the super-app
on a rooted device or its PC client with the help of some reverse-
engineering tools (e.g., Frida [48]). Then, certain open-source scripts
(e.g., [17, 18] for WeChat) can be used to extract/unpack the content
(JS and resource files). The attacker can read and change the code
of the reverse engineered mini-app locally, but will not be able
to re-publish it for the same app ID (enforced by the super-app).
The attacker can view the code of the mini-app, but will not have
access to the mini-app’s cloud base. They can thus read the mini-
app’s code for hard-coded secrets, and other information such as
business logic, and use the obtained information to attack the mini-
app in different ways. To access the developer server-side APIs and
super-app server-side APIs, the attacker does not need to possess
any special privileges, or even a regular super-app account (e.g.,
WeChat or Baidu). They just need access to an OS terminal capable
of dealing with web requests or a REST client such as Postman [34],
if the IP whitelisting for the mini-app is disabled.
Scope. Our study is primarily focused on WeChat mini-apps, with
certain analysis extended to Baidu mini-apps. WeChat’s other open
platform features such as official accounts, WeChat’s SSO, mobile
and web development are out-of-scope. Other types of authenti-
cation which do not involve the explicit usage of app secrets, e.g.,
mini-app user to super-app (e.g., the attacker being able to log
into someone’s WeChat account), mini-app user to mini-app, and
mini-app to mini-app (e.g., one mini-app impersonating another,
see [67]), are excluded. We only examine the (reverse-engineered)
mini-app packages, and the response to server-side API calls from
the super-app/developer server. We do not perform traffic anal-
ysis and do not consider JSAPIs, and other APIs, e.g., Tencent’s
cloud hosting APIs, third-party APIs, WeChat’s payment APIs, and
Baidu’s cloud APIs.

4 METHODOLOGY
In this section, we discuss our methodology for conducting a step-
wise analysis of WeChat mini-apps for potential unauthorized
server-side API calls. The same steps apply to Baidu mini-apps
as well, except for decrypting and unpacking, and IP whitelisting
validation. Our methodology is designed to facilitate the analysis
of mini-apps from other platforms that have a similar mini-app
directory structure (like WeChat and Baidu) and rely directly on
secret-based mini-app authentication. A large-scale measurement
study on WeChat and Baidu using this methodology is presented in
Sec. 5. We build our tool following this methodology, which is fully
automated, except for separating the Get vs. Modify APIs from the
super-app documentations; we manually label these APIs to avoid
calling the Modify APIs, which may interfere with the mini-apps’
functionality.
Overview. The analysis is composed of the following steps: prepa-
ration of mini-app files, detection of insecure development prac-
tices, reviewing the list of server-side APIs, and testing of potential
unauthorized server-side API calls; see Figure 2. We consider the

Measuring the Leakage and Exploitability of Authentication Secrets in Super-apps RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Figure 2: Overview of our analysis methodology for WeChat and Baidu mini-apps.

following insecure development practices: hard-coded app secrets
in the mini-app package, absence of IP whitelisting, and direct
invocation of server-side APIs. First, we decrypt and unpack the
WeChat mini-apps (using [18] and [17], respectively). This step is
not needed for Baidu mini-apps. Then, with static code analysis
of the unpacked mini-apps, we detect hard-coded app secrets and
direct invocation of server-side APIs. Next, we use the identified
app secrets to obtain the access tokens from the super-app server in
preparation for next steps. Meanwhile, we review (once per super-
app) the list of server-side APIs, categorize them and analyze the
requirements for invoking them. When it comes to testing potential
unauthorized server-side API calls, we make use of the access to-
kens from the previous step to evaluate the callability of these APIs
by an attacker, which at the same time also checks if IP whitelisting
is enabled or not.
Detection of hard-coded secrets.We first manually analyzed 100
WeChat mini-apps, and observed that although such app secrets are
eventually used as request parameters to standard API calls (e.g.,
code2session API, see Appendix A.1 and Figure 4), they are also
used to make calls to custom APIs of a mini-app developer server
(see Figure 5 in Appendix), or even a few obfuscated functions,
which will invoke the standard APIs on the server side. To find and
capture the app secret patterns, we designed regular expressions
for WeChat and Baidu to identify such secrets in the unpacked
mini-app code (following similar approaches based on pattern, key-
words, and entropy [26, 27, 40]). Some parts of the source code of
the reverse-engineered mini-app are highly obfuscated, making it
difficult to analyze. However, the variable names used for identi-
fying the app ID and app secret are not obfuscated as observed

in our initial manual analysis. Any JSON data, including API re-
quest parameters, will not be obfuscated as the server interprets
the received data depending on the variable names. Similarly, static
string matching is also used against a set of 84 server-side APIs
in total to detect calling of these APIs directly from the mini-app.
Note that we do not distinguish between the case where a mini-app
discloses its own secret and the case where it discloses the secret of
another mini-app (which may happen due to code cloning). All our
identified app secrets are validated by calling the getAccessToken
API [54] (see the discussion below about obtaining the access to-
ken), ensuring that all the identified secrets are valid and there are
no false positives.
Preparing the list of server-side APIs.We study WeChat and
Baidu mini-app’s server-side API documentation [4, 59, 60] and
divide these APIs into two categories: Get APIs that only read infor-
mation, andModify APIs that can cause updates (Table 5 and Table 6
in Appendix). The category (Get/Modify) is determined based on
the API’s intended operation and its request parameters. To further
determine their callability without actually invoking them, we man-
ually analyze the request parameters of each API and confirm if all
the required request parameters can be obtained. Only when an
API is confirmed to be callable, we include it in our analysis. In our
measurement study, finding these request parameters and verifying
the callability of Modify APIs are carried out using our automated
framework. It can be inferred from Table 5 that most of the Modify
APIs can be called with the help of the response returned from
the corresponding Get API, which refers to the special subset we
need to call. To evaluate this predetermined list of server-side APIs
in both WeChat and Baidu, we use the classification specified by

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef

the respective super-apps. In most cases, all APIs that belong to
one category are used for the same mini-app feature. Thus, we can
easily assess a Modify API using the response of a Get API from
that same category, and identify features susceptible to attacks.
Obtaining the access token and the presence of IP whitelist-
ing. To prepare for testing the server-side APIs, as well as to verify
the validity of the detected hard-coded secret from a given mini-
app, we need to call the access token generation API. If the API
returns a valid access token, it can be inferred that the mini-app
is still actively present in the respective super-app platform. We
use the app ID and app secret parameters from the static analysis
along with the authorization grant type parameter set to a constant
value "client_credential". The corresponding super-app server
verifies the app ID and app secret and returns a valid access token.
If the app ID or app secret is incorrect, the API will return an error
message which confirms the invalidity of the credentials. Note that
an app secret confirmed to be invalid presently does not mean it was
invalid at the time of being hard-coded in the mini-app package.

Being able to obtain an access token in the previous step can also
confirm the absence of IP whitelisting for a mini-app (applicable
only forWeChat mini-apps). If the app secret is invalid, the response
from the server indicates that the app ID or app secret is invalid; if
IP whitelisting is enabled, the response mentions that the IP address
of the request origin is not in the whitelist. We use such explicit
error messages to check the adoption of whitelisting among all the
WeChat mini-apps, even when we do not have the corresponding
app secret (in which case, we use a random 32-character value).
Testing the server-side APIs. Using the valid access tokens ob-
tained from the previous step, we attempt to call a subset of the Get
server-side APIs that do not involve any form of modification of
the mini-app data or operations (listed in Tables 5 and 6). Calling
this subset is necessary to enable analysis for the Modify APIs, and
we only retrieve metadata to check if the required request parame-
ters for calling other APIs are available without storing any data
returned in the response. Note that this does not require possess-
ing a WeChat or Baidu account. All the available server-side API
requests have a calling quota and hence, we avoid making arbitrary
API calls. If a Get API is successful for a particular category, then,
we determine if the Modify API from the same category can be
successfully called or not. If a Get API call returns a success re-
sponse, our framework can automatically determine the callability
of a corresponding Modify API. This is done by making use of a
combination of: the response returned by the Get API, inserting
attacker-controlled dummy inputs (based on the API documenta-
tion), searching the mini-app source code for pertinent values. We
confirm the callability of a Modify API if all the required parameters
are available. Whenever we need any verification of the behaviour
of Modify APIs, or resource-exhaustive calls to the Get APIs, we
test them only with our own mini-app.

5 MEASUREMENT
To achieve the three objectives put forward in Sec. 3, we quan-
tify what can be observed from a large number of mini-apps, and
for individual APIs in their respective contexts. Also, we consider
the historical aspect of such insecure development practices since
the extent (prevalence) we measure can also be temporal, e.g., as

the warnings or recommendations in the documentation [58] can
be dated back to the early days of mini-apps, what has been the
prevalence over time?

5.1 Datasets
An early collection of WeChat mini-apps we were able to obtain is
a dataset of 115,392 WeChat mini-apps ("wxapkg" files), crawled
between July 2021 and Dec. 2021 (DATASET1). We also used a dataset
of 10,000 Baidu mini-apps crawled in Jan. 2023 (DATASET2), 10,000
additional WeChat mini-apps, collected on Jan. 25, 2023 (DATASET3).
These datasets were crawled using MiniCrawler [70]. Note that this
choice of datasets can naturally cover an important case where
older versions of a mini-app hard-coded the app secret which got
leaked but the app secret still remains valid now, enabling attacks.
Then, it is possible that by examining the current version of the
same mini-app package, no hard-coded app secret can be detected,
hence not drawing attention and misleading both the developers
and WeChat into a false sense of security. For this same-mini-app
temporal comparison, we also randomly picked 100 mini-apps from
DATASET1, and analyzed them twice – in Jan. 2023 and in Mar. 2023,
before and after our report toWeChat respectively (more in Sec. 5.3).
We analyzed DATASET1 in Dec. 2022 and DATASET2 in Feb. 2023.

After decrypting the WeChat mini-apps files from DATASET1, we
ended up with 115,244 successfully decrypted mini-apps, consum-
ing 265 GB disk space. From these mini-apps, we could successfully
unpack 110,993 in total (434 GB in size), which we used for further
analysis. For Baidu mini-apps in DATASET2, we extracted the zip
files and used them as is (59 GB in size, no decryption or unpacking
needed). Among the recent 10,000 WeChat mini-apps (DATASET3),
we managed to decrypt and unpack 9,994 mini-apps and 9,824
mini-app respectively. For an overview of our datasets and the
corresponding app secrets and generated access tokens, see Table 1.

Mini-apps DATASET1 DATASET3 DATASET2
total 115,392 10,000 10,000
decrypted 115,244 9,994 -
unpacked 110,993 9,824 -
hard-coded secrets 43,377 2,894 112
access tokens 36,425 2,572 112

Table 1: WeChat (DATASET 1 and DATASET 3) and Baidu
(DATASET 2) mini-app datasets used in our measurement.
“# hard-coded secrets”: the number of unique mini-apps with
hard-coded app secrets; “# access tokens”: mini-apps where
access tokens were generated successfully.

5.2 Measurement Results
5.2.1 Insecure Development Practices.
Hard-coded app secret and IP whitelisting. Our regular ex-
pressions to match the app secrets resulted in hits in 43,337 out of
the 110,993 (successfully decrypted and unpacked from DATASET1)
WeChat mini-apps (about 39%), and 112 out of the 10,000 Baidu
mini-apps (about 1%).Whenwe attempted to generate access tokens
from these app secrets, we found a total of 36,425 (approximately
33%) WeChat mini-apps with valid hard-coded secrets (i.e., success-
fully generated access tokens), violating the security guidelines by

Measuring the Leakage and Exploitability of Authentication Secrets in Super-apps RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Server-side APIs Required parameters # miniapps [A] [B] [C] [D] [E] Impact
clearQuotaByAppSecret appID, appSecret 36,425 ✓ ✓ High
clearQuota AT, appID 36,425 ✓ ✓ High
managePlugin AT, pluginAppID 7,242 ✓ ✓ ✓ High
deleteNearbyPoi AT, poiID 2,927 ✓ ✓ High
setShowStatus AT, poiID 2,927 ✓ ✓ High
managePluginApplication AT, appID 772 ✓ ✓ ✓ High
invokeCloudFunctions AT, cloudFunctionName 202 ✓ ✓ ✓ ✓ High
databaseCollectionGet AT, cloudEnv 24 ✓ ✓ High
databaseCollectionAdd AT, cloudEnv, CollectionName 24 ✓ ✓ High
databaseCollectionDelete AT, cloudEnv, CollectionName 24 ✓ ✓ High
databaseAdd AT, cloudEnv 24 ✓ ✓ High
databaseDelete AT, cloudEnv 24 ✓ ✓ High
databaseUpdate AT, cloudEnv 24 ✓ ✓ High
databaseQuery AT, cloudEnv 24 ✓ ✓ ✓ High
setUpdatableMsg AT 17 ✓ ✓ ✓ ✓ High
uploadTempMedia AT 36,425 ✓ ✓ Medium
getApiQuota AT, cgi_path 36,425 ✓ ✓ Medium
getDomainInfo AT 33,795 ✓ ✓ Medium
getFeedback AT 18,475 ✓ ✓ Medium
customerServiceMessage.send AT, openID 18,224 ✓ ✓ ✓ Medium
getQcloudToken AT 11,786 ✓ ✓ Medium
getAllDelivery AT 8,622 ✓ ✓ Medium
getPrinter AT 312 ✓ ✓ Medium
updatePrinter AT, openID 312 ✓ ✓ Medium
createActivityId AT 36,425 ✓ ✓ Low
getNearbyPoiList AT 2,927 ✓ ✓ Low
addTemplate* AT 112 ✓ ✓ Medium
submitResource* AT 112 ✓ ✓ Medium
submitSitemap* AT 112 ✓ ✓ Medium
interfaceSubmission* AT 112 ✓ ✓ Medium
submitsku* AT 112 ✓ ✓ Medium
createCoupon* AT 112 ✓ ✓ Medium
submitcoupon* AT 112 ✓ ✓ Medium
ManageCoupon* AT 112 ✓ ✓ Medium
getTemplateList* AT 74 ✓ ✓ Medium
deleteMessageTemplate* AT 74 ✓ ✓ Medium

Table 2: Statistics of unauthorized callable WeChat (DATASET1) and Baidu (DATASET2) server-side APIs, including their required
parameters. Items marked with * denote Baidu APIs (at the lower part of the table). [A]: Read Mini-app Data; [B]: Send Arbitrary
Messages; [C]: Data Tampering; [D]: Malicious Redirects; [E]: Resource Exhaustion; AT: Access Token; ✓ denotes the possibility
of the attack using the corresponding server-side API. Impact: the impact of the attacker's invocation of the API on a mini-app
and its users — determined based on the CVSS calculator (see Appendix A.2).

WeChat in terms of both hard-coding the app secrets and not config-
uring the IP whitelisting. On the other hand, all the Baidu mini-apps
with hard-coded app secrets generated valid access tokens, meaning
all the identified secrets are valid.

The access tokenAPI returned failure responses for 6,959WeChat
mini-apps, in which for 3,578 mini-apps, the app secret was invalid.
For another 3,374 mini-apps, the API returned a 50002 error code
stating that “the user is limited.” We did not find enough informa-
tion about this error code, except that, as per the documentation,
the user is not authorized to use this API [53]. For the remaining 7
mini-apps, the API returned that the requesting IP address is not in
the list of whitelisted IPs. The use of IP whitelisting is indeed very
limited as we found out by testing all the 110,993WeChat mini-apps,
using dummy app secrets for the ones without hard-coded secrets,
that only 33 mini-apps have IP whitelisting configured.

Direct invocation of server-side APIs. Attempting to call server-
side APIs within the mini-app directly is not recommended by
WeChat or Baidu, not because the direct invocation itself causes
security issues, but because to make such calls successful the de-
veloper must involve both hard-coding app secret, and disabling IP
whitelisting (in WeChat), as a mini-app client can be run from any
IP address. Therefore, we checked the prevalence of such practice.
We found 4,098 occurrences of direct invocations of server-side
APIs from 2,317 mini-apps out of the 110,993 unpacked WeChat
mini-apps. We further classify each API call based on the cate-
gory [59, 60] as shown in Table 3 in Appendix. We detected a much
lower number of direct invocations in Baidu mini-apps compared
to WeChat. In total, there are 43 occurrences of direct server-side
APIs invocations in 11 mini-apps in Baidu (mostly getSessionKey
and getTemplateList APIs).

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef

5.2.2 Unauthorized Invocation of Server-side APIs. With a valid
access token, all the server-side APIs should be callable for a given
mini-app. However, in practice, each API has its semantics and the
mini-app’s functionality and current state determines whether a
specific API can be called or supported at a given time. Therefore,
next, we examine individual APIs’ callability for the chosen server-
side APIs under each category (see Tables 5 and 6, the category
names are from the official WeChat and Baidu documentation [4,
59]). We present the statistics of the successful server-side API calls,
based on the chosen 26 WeChat server-side APIs, and 10 Baidu
server-side APIs we tested in Tables 2, and Table 7 (in appendix).
We also discuss selected per-category results for WeChat below
(see Appendix A.3 for Baidu).
Customer service messages. We test this category of APIs to
determine if an attacker can sendmessages to mini-app users and in-
sert arbitrary media to user messages. For this category, we evaluate
two APIs, uploadTempMedia, and customerServiceMessage.s-
end. We observe that if the Customer Service Message feature
is enabled for a mini-app, then uploadTempMedia is callable, as
it requires only the media file, form data and the access token
as its request parameters. The customerServiceMessage.send
API is callable only when the openID is present. Our framework
identified that openIDs are disclosed for 312 (<1%) mini-apps via
the getPrinter API, and for 18,475 (50.7%) mini-apps via the
getFeedback API; hence customer service messages can be forged
for such mini-apps. Here, we do not consider other potential
sources for obtaining openIDs such as cloud functions which may
depend on the mini-app’s business logic.
Cloud baseHTTPAPI. If the API invokeCloudFunction is callable,
for the mini-apps containing the access token and the cloud func-
tion calls in the mini-app code, our framework statically searched
through each mini-app directory to identify the cloud function calls
and collect their names. Among the total 36,425 mini-apps that
we tested, 254 (<1%) mini-apps use cloud base, and our framework
collected 202 (<1%) mini-apps with cloud functions having valid
access tokens, containing a total of 992 distinct cloud functions. As
several cloud functions involved update, delete operations in the
cloud level, we did not invoke any of the collected cloud functions.

We also test the cloud database CRUD (Create, Read, Update,
Delete) APIs to verify if an unauthorized access to the database is
possible. Out of the total 11 database APIs available, we directly
test only one of them – databaseCollectionGet, which returns
only the table names from the cloud database. With these names,
we only evaluate the remaining 6 chosen APIs related to cloud
database based on their callability. Through statically searching the
mini-app source code, we see that out of 254 (<1%) mini-apps that
use cloud base, 179 (<1%) mini-apps use the cloud database. We
identify only for 24 (<1%) mini-apps out of 179 mini-apps database
APIs are callable, as the API requires cloud environment ID as its
request parameter. The remaining 230 (<1%) mini-apps either did
not have a valid cloud environment ID in the mini-app’s code or
the APIs returned with an error stating that the the number of
requests exceeded the quota for the mini-app. We further evaluated
other database APIs considering the 24 mini-apps. We find that the
databaseAddCollection and databaseDeleteCollection can be
performed for all the 24 mini-apps. Additionally, adding a record

to the database collection, updating and deleting are also possible
for these 24 mini-apps. We do not attempt to access or download
any of the identified database tables apart from evaluating the calla-
bility by assessing the request parameters for the corresponding
server-side APIs.

We then test for the Tencent cloud credentials API [42]. Out of the
total number of mini-apps tested, we obtain the Tencent cloud API
calling credentials for 11,786 (32.3%) mini-apps. For the remaining
24,639 (67.6%) mini-apps, the QCloud token API returned an error
message stating that the mini-app has no cloud base privilege,
meaning that the mini-app does not use Tencent cloud base. We
did not test the cloud storage APIs, as when evaluated, we see
that the upload link, download link and batch delete APIs require
the file path and value where, in most cases, it is unknown to an
unauthorized user. If the storage paths are revealed in some part of
the code, it is easier to upload arbitrary files, download files and
delete files from the cloud storage. In our analysis, we did not find
any hard-coded storage path in the tested mini-apps.
Plug-in management.We test this category of APIs to verify if an
attacker will be able to misuse the plug-in-related functionalities of
a mini-app. The API getPluginList (managePlugin with "list"
as parameter in v2 API documentation) is to retrieve the current
in-use plug-ins for any mini-app. No error code was received for
17,433 (47%) mini-apps when calling getPluginList API. For the
remaining 18,992 (52.1%) mini-apps, the API returned with an error
stating that accessing the API is unauthorized, meaning that the
mini-app has not configured plug-in related permissions in the
developer portal. Since the plug-in app ID is public information for
any plug-in, the applyPlugin (managePlugin with "apply") API is
callable for these 17,433 mini-apps, as identified by our framework.
This API takes in only the access token and the plug-in app ID
as request parameters. For 7,242 (19%) mini-apps that make use
of the plug-ins (returning a non-empty list), the unbindPlugin
(managePlugin with "unbind") API will be callable.
openAPI management. We verify openAPI management APIs
to determine if the API management details can be obtained and
modified by the attacker. We selected one Get API getAPIQuota
and two Modify APIs clearQuota and clearQuotaByAppSecret.
Using our analysis framework, we make calls to the getAPIQuota
API for all the mini-apps with valid access tokens. The clearQuota
API and clearQuotaByAppSecret API can also be called for the
mini-app with valid hard-coded app secrets and access tokens gen-
erated. Therefore, the attacker can view the used quota for every
server-side API and reset the quota at any time.
Mini-apps nearby. This is a feature for business mini-apps to
show up in WeChat (under mini-apps nearby) when a user is in
proximity to their business location. We test this category to check
if an attacker will be able to add or modify the nearby points of
interest of a mini-app. We found 4,918 mini-apps (13%) had this
feature enabled (via nearbyPoi.getList); 2,927 (8%) mini-apps
had configured some POIs, for which an attacker will be able to call
the deletePOI and setShowStatus APIs to delete or change the
visibility of the POIs, respectively. 8,110 (22%)mini-apps returned an
error stating that the mini-apps are personal mini-apps (as opposed
to business mini-apps). For 23,397 (64%) mini-apps, the API returned
an error stating that the nearby features are blocked.

Measuring the Leakage and Exploitability of Authentication Secrets in Super-apps RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Logistics assistant. This category of APIs allows business mini-
apps to manage logistics such as the delivery of products. We chose
2 Get APIs (getAllDelivery and getPrinter) to test if an attacker
will have access to the logistics information of amini-app. For 26,190
(71.9%) mini-apps, calls to getAllDelivery API were successful
but only 8,622 (23%) mini-apps returned the mini-app logistics de-
livery details as a result of this API. We conducted further tests
using the getPrinter API, which we rely on for the openIDs to
test customer message APIs. 312 (<1%) mini-apps returned data
for the getPrinter API, which in turn is useful in calling the
updatePrinter API, and contains the sensitive user openIDs (re-
quired for other attacks e.g., malicious redirects). For the remaining
10,235 (28%) mini-apps, both APIs returned an error stating that the
API is unauthorized (i.e., the logistics assistant is not configured, or
the mini-app is for personal use as opposed to business).
Updatable messages. We test this category of APIs to see if an
attacker can update the messages that are already posted to users.
We call the createActivityId API to generate a unique activity
ID which can be further used to call the setUpdatableMessage
API. Although the setUpdatableMessage API is always callable,
we find that only 17 mini-apps use this feature.
Operations and management.We pick two Get APIs from this
category and test by calling them to verify if an attacker is able to
access the mini-app’s server domain configuration and mini-app’s
feedback from the users. 18,475 (50%) mini-apps returned customer
feedback as a result of the getFeedback API, which also returns
the user’s openID against each feedback. The openID returned by
this API can further be exploited in the customer service message
API to send phishing messages and malicious redirects.

5.2.3 Testing dangerous server-side APIs with our own mini-app.
To confirm the callability of all the server-side APIs, including
the Modify APIs (which we could not call in live mini-apps of
other developers), we developed our own simple WeChat mini-
app and published it on the WeChat mini-app platform. With this
published mini-app, we enabled all the available features provided
for individual developers, and we make all the Get and Modify API
calls that apply to personal mini-apps. We could call all the Get
APIs successfully after generating the access token. We employed
the response returned by the Get APIs to call the Modify APIs. We
enabled the plug-in feature for the mini-app, added a few relevant
plug-ins from the developer portal and used them in our mini-app,
which we later deleted using the server-side API, breaking the
entire mini-app functionality. We further accessed all the cloud
database related information, and updated/deleted all our stored
(test) information. As a last step, we also made continuous arbitrary
calls to the server-side APIs, exhausting the API calling limit to
the point that the mini-app cannot make any further calls to the
exhausted server-side APIs. Our proof of concept attacks confirm
the exploitability of mini-apps with known app secrets. Since Baidu
does not allow individual developer mini-apps (only enterprises),
we were unable to confirm the callability of Modify APIs in Baidu.

5.3 Temporal Comparison
We perform two additional measurements to address another aspect
of our first objective regarding the extent of the insecure develop-
ment practices over time.

Prevalence over time. To learn the trend of the prevalence of
the insecure development practices, we also conducted the same
measurement on the more recent DATASET3 in February 2023, and
we found the app secrets in 2,894 (28.9%) mini-apps, out of which
2,572 (25.7%) mini-apps have valid secrets in them. Our additional
analysis did not change the outcomes of the evaluation that we
performed with the older dataset; see Table 1 for the comparison
between DATASET1 and DATASET3, and Table 7 in Appendix for
breakdown on individual server-side API calls and their impacts.
Same-mini-app comparison. We randomly selected 100 WeChat
mini-apps with hard-coded app secrets detected from the previous
analysis (DATASET1, crawled in 2021), and downloaded their current
version (on January 24, 2023 and again on March 6, 2023) through
an updated reverse-engineering approach with Frida [48] (due to
the technical evolution of WeChat, hooking a different library and
function), and rerun our analysis for comparison.

This experiment is motivated by the fact that hard-coding app
secrets (as well as not configuring IP whitelisting in WeChat) has
been discouraged or even prohibited (but not enforced), only re-
cently more strict checks were introduced [52]. So, we would like
to see if there was any change to the mini-apps vulnerable to those
unauthorized server-side API calls. WeChat has recently enforced
the restriction on launching a mini-app when it has hard-coded app
secret in it (exact timeline unknown, but this was observed coinci-
dentally after our report was filed). We verified this by attempting
to submit our own mini-app with the hard-coded app secret in
plain-text. Our mini-app got rejected during the audit phase stating
the obvious reason of having app secret in the code. However, with
our temporal comparison, it is evident that the mini-apps that are
already on the platform with the app secrets are still not patched,
thus remain vulnerable to attacks.

Out of the total 100 mini-apps investigated that were identified
with valid app secrets in our initial analysis, 83 still have the same
app secrets hard-coded into their source code in the latest versions.
Four have eliminated the app secret from the source code, yet the
app secrets that were previously identified in these mini-apps are
still valid (access token generated). Three mini-apps have changed
their app secrets to other values, which are also hard-coded in the
current versions. Among the remaining, 9 mini-apps which had
valid secrets before are currently invalid and their current source
code does not contain any app secrets. One mini-app with hard-
coded app secret has IP whitelisting configured (previously absent).

These results for the 100 mini-apps remained the same both in
our tests in January 2023 and in March 2023, showing no very signif-
icant changes in mini-apps with hard-coded app secrets that were
published before the current (no hard-coded app secret) enforce-
ment by WeChat. In the end, 90/100 mini-apps remain vulnerable.

We further tested all the previously identified WeChat mini-apps
with app secrets (36,425 mini-apps) if those app secrets are still
valid by trying to generate the access tokens again in March 2023.
We find that out of the total tested, for 36,293 mini-apps (99.6%)
the secrets remain valid. For the ones that are no longer valid, the
getAccessToken API threw an error stating that the app secret is
invalid, except for 2 mini-app which has IP whitelisting enabled
and configured. However, in our recent analysis of the same dataset
in July 2023, we observed a significant decrease in the percentage

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef

of valid secrets to 16.5% (18,332 mini-apps) as a result of WeChat’s
restrictions on the use of app secrets. Out of these, 3,414 mini-apps
leak the app secrets of other mini-apps (i.e., own app secret leakage
by 14,918 mini-apps).

5.4 Implementation and Efficiency
We use Python to implement the automated analysis with 4,643
lines of code. The framework consists of three main components
in common for WeChat and Baidu: (1) static searching of hard-
coded app secrets and validating them, (2) calling the server-side
Get APIs, and (3) evaluating the Modify APIs. We also implement
the cloud base APIs testing for WeChat mini-apps. Based on our
observations, we created two separate regular expression patterns
for WeChat and Baidu mini-apps for finding app secrets. We run
our analysis on an Ubuntu desktop (Intel i7-10700, 2.90GHz, 16GB
RAM). For WeChat mini-apps, we first decrypted and unpacked
them, which on average took 3.98 seconds/mini-app. The average
lines of JavaScript code per mini-app (both WeChat and Baidu)
are approx. 10,000 and the average time taken for finding an app
secret is 3.58 seconds/mini-app, and the actual evaluation of one
mini-app is approx. 6 minutes against 26 WeChat server-side APIs
and approx. 4 minutes against 10 Baidu server-side APIs. To fully
utilize our CPU, the analysis was carried through 7 parallel threads,
and it took about 3 days to analyze all the WeChat mini-apps, and
about 5 hours for Baidu mini-apps.

In terms of effectiveness of our app secret search via regular
expressions, successfully generating the access tokens ensures the
validity of the identified app secrets, avoiding false positives. Al-
though as we identified in 9,244 WeChat mini-apps and in 21 Baidu
mini-apps with multiple hard-coded app secrets, only one of those
secrets turns out to be valid after the token generation attempt. To
identify false negatives, we randomly chose 200 WeChat mini-apps
and 50 Baidu mini-apps where no hard-coded app secrets were
identified by our regular expression, and checked them manually.
Out of the 250 mini-apps, no hard-coded app secret was found.

6 SECURITY CONSEQUENCES
Based on the analysis results presented in Sec. 5.2, in this section, we
address our third objective to understand the security consequences
of the unauthorized server-side API calls caused by hard-coded app
secrets and absence of IP whitelisting.

6.1 Consequences from Server-side APIs
After analyzing individual server-side APIs for their callability by an
attacker based on per-mini-app semantics/states, we come up with
six impact categories by reviewing several sources (e.g., [28, 31])
adapted to the mini-app paradigm; see Table 2 for a complete list
of the APIs tested and matched with the impact categories, and
their corresponding CVSS severity scores, as we determined using
the CVSS calculator (Appendix A.2). We provide further details on
these categories below; see Table 4 in Appendix for the statistics of
mini-apps against each consequence.
Authentication bypass and entity impersonation. Pertaining to
the type of mini-app to super-app authentication, we have studied
the problem of unauthorized calls to server-side APIs, and how the
super-app server authenticates individual mini-apps. This is very

different from the other types of authentication where a human
user is involved to provide knowledge/possession/biometrics at the
time of authentication. For mini-apps to get authenticated with the
super-app server, which in some sense is on behalf of the mini-app
developer, the developer needs to store a form of secret securely in
advance to be used at runtime. The WeChat way is to recommend
the use of a developer server to call their server-side APIs where the
app secret can be stored, assuming the developer server is secure
(which is relatively true). However, in practice, some developers
make direct server-side API calls within the mini-app, which is not
blocked by WeChat or Baidu (blocked in the WeChat developer
portal, but can still be unchecked in the devtool for development
and testing), and hence creating the need for hard-coded secrets in
the mini-app package. IP whitelisting in WeChat was expected to
add further restrictions on which server IPs can be used to make
calls involving app secrets; however, this again required developers’
understanding and engagement, which does not happen readily
in practice. In consequence, an attacker having extracted the app
secret from a package will be able to generate a valid access token
from any system and effectively bypass mini-app to super-app
authentication impersonating the mini-app developer. Super-app
servers assume that any request that contains a valid app secret or
access token is a legitimate request and respond with the requested
data, and thus allow the attacker to interact with the super-app
servers. What makes it worse is that whoever calling these APIs do
not even need to possess a super-app account, due to no binding to
the super-app (e.g., WeChat, Baidu) environment.
Readingmini-app data. 36,425WeChat mini-apps from DATASET1
and 112 Baidu mini-apps from DATASET2 are subject to data expo-
sure, through unauthorized server-side API calls (when the corre-
sponding feature is enabled by the developer); see Table 2. Examples
of sensitive mini-app data that can be exposed include but are not
limited to mini-app data analytics, email addresses, security ques-
tions and answers, order IDs, tracking numbers and transaction
information. This undermines data confidentiality of the super-app
ecosystem, both for the millions of users of affected mini-apps and
their developers. We refrain from measuring the extent of such
leakage due to obvious ethical issues.
Mini-app data tampering. Through unauthorized server-side API
calls, in addition to losing confidentiality, mini-app data can also
be tampered with. For example, when a WeChat mini-app has the
plug-in feature enabled and the mini-app’s category matches with
the plug-in’s category, the managePluginAPI can send arbitrary re-
quests to the legitimate plug-in apps, and the same API can remove
any plug-in from the live mini-app, thus breaking the mini-app’s
functionality (details in Sec. 5.2.2). Unauthorized access to a mini-
app’s cloud database can lead to more catastrophic consequences as
an attacker can read/modify the entire database, including deleting
it. This combined with the plug-in deletion can bring down the
mini-app completely, thus affecting the availability of the mini-
app. Unauthorized calls to the previously mentioned deletePOI
and setShowStatus can obviously manipulate configured points
of interest of a business mini-app.

In Baidu, with the APIs such as submitResource, and
submitSitemap, an attacker can upload arbitrary file resources
to the mini-app. This unauthorized access also enables the attacker

Measuring the Leakage and Exploitability of Authentication Secrets in Super-apps RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

to create and submit fake coupons for the corresponding vulnerable
mini-apps, thus adding arbitrary and fake data to the server.
Resource exhaustion attacks. As all the WeChat and Baidu mini-
app server-side APIs have a quota limit (howmany times an API can
be called), the attacker can call these APIs repetitively until the limit
is exhausted and are no longer available for the legitimate in-mini-
app usage. Therefore, we can consider all the mini-apps for which
an access token can be successfully generated to be vulnerable to
resource exhaustion attacks. What is worse, in WeChat, by using
the getApiQuota API, an attacker can obtain the quota for each
API further facilitating the attacks, e.g., by making just enough
number of calls to exhaust the limit; and the clearQuota API may
also be exhausted for the legitimate user which can only be called
10 times per month. All these harm the availability of mini-apps in
the super-app ecosystem.
Sending arbitrarymessages andmalicious redirects. FromCus-
tomer Service Messages in Sec. 5.2.2, it is clear that an attacker can
send arbitrary customer service messages to the affected WeChat
mini-app users. This message can be a text, an image, an external
link or a link to open another mini-app. Attackers can obtain the
openIDs of an affected mini-app with the help of other server-side
APIs like getFeedback and getPrinter (also cloud functions or
database, in some cases), and use those openIDs to send arbitrary
messages. Further, attackers can also modify the news-feed of the
affected WeChat mini-apps as discussed in Sec. 5.2.2 (under “Updat-
able Messages”), including past messages from a user’s feed. This
can lead to fraud and phishing attacks, and malicious redirects. In
Baidu, unlike WeChat, we did not find the leakage of openIDs, and
hence, sending malicious messages to users seems infeasible.

6.2 Consequences from Cloud Functions
As WeChat cloud functions provide the developers with an online
space to host business logic, they will not be part of the mini-app
package. In the package, we only see where a cloud function call is
made, the cloud function names, and the parameters passed to that
function. These cloud functions can also be triggered by the devel-
oper’s server using the server-side API invokeCloudFunction. As
the API requires only the cloud function name, the parameters to
that function and the mini-app’s access token, an attacker can easily
use the server-side API to invoke the cloud function by using the
extracted app secret. Making such unauthorized calls can further
harm business logic in the cloud, impacting all the mini-app’s users.

As an example, we observed that an e-commerce mini-
app with hard-coded app secret has multiple cloud func-
tions such as confirmCustomerOrder, editCustomerOrder,
changeDeliveryAddress, changePaymentStatus, and
cancelOrders, with order ID and openID as the parame-
ters to these functions. It appears to be possible to obtain the
order ID and openID by calling the getCurrentOrderList cloud
function, which will return a list of all orders, containing the order
ID, openID, order date, total cost, and delivery address. As a result,
an attacker can simply use the curl command on the terminal
to call invokeCloudFunction with the identified cloud function
name getCurrentOrderList, and obtain all the currently placed
orders’ order IDs and openIDs. By employing this information,
the attacker can invoke other cloud functions to modify the order

address to their own, cancel orders arbitrarily, edit current orders,
change the payment status, etc.

Another important aspect of the cloud base is that it can be
shared between other services of a WeChat mini-app developer,
such as other mini-apps, and WeChat official accounts that can
provide a hub for branding products and gather followers. If one
of their mini-apps has its secret hard-coded in the mini-app code,
using that secret, an attacker can access the common cloud base
(e.g., cloud functions, database, storage) and attack or even worse,
take down all the relying services of that cloud base.

7 DISCUSSION
In here, we discuss the takeaways and reflections on our measure-
ment and analysis of the mini-app to super-app authentication
problem due to developer secret leakage, as well as our limitations.
Root cause analysis.After examining the code of the large number
of mini-apps and corresponding documentations, we try to further
understand why such app secret leakage problems happen.

Binding through super-app. When making calls to super-app
server-side APIs, the subject being authenticated is just code (at least
in WeChat, TikTok and Baidu) on behalf of the mini-app developer,
or in certain terminologies, the third-party user or the merchant.
Without another aiding entity, the app secrets must be stored with
the code. This is in contrast to the getAuthCode API of Alipay
mini-apps [3], which prompts the user through the super-app to
consent and returns an authorization code (equivalent to a dynamic
app secret). This code can then be used with applyToken to get
an access token to call server-side APIs. Access tokens generated
this way will be per user session, “endorsed” by the super-app (as
the super-app server would not assign a dynamic app secret to
random requesting code, unlike the static app secret which can be
pre-assigned).1 Therefore, we can see that involving the super-app
to locally authenticate the mini-app code and generate dynamic
app secrets can avoid having to hard-code static app secrets, which
is not the case for super-apps like WeChat and Baidu.

Intended use of server-side APIs. Despite having to hard-code app
secrets as discussed above, the location matters. Hard-coding app
secrets in the mini-app is considered an insecure practice according
to WeChat, and the intended way is to manage the entire business
logic on the developer server where the app secret is stored and
used to make all the super-app server-side API calls. However,
our measurement clearly showed that shifting this to mini-apps
(potentially falling in the wrong hands) can lead to significant
security consequences. Therefore, our observation is that mini-
app developers involved insecure development practices and the
super-app platform also failed to prevent them in the first place.
Comparing WeChat and Baidu with other super-app plat-
forms. Other miniapp platforms like QQ,2 Duoyin (Chinese Tik-
Tok), Toutiao,3 and DingTalk4 also offer mini-app features with
1The same authorization also exists in WeChat/Baidu but not for this purpose. Only
when the API involves accessing super-app-stored user information, a dynamic app
secret is used along with the regular app secret (using code2Session API for WeChat
and getsessionkey [5] for Baidu), which still does not avoid hard-coding app secrets.
2QQ mini-apps - https://q.qq.com/wiki/develop/miniprogram/frame/
3Duoyin and Toutiao from ByteDance - https://developer.open-douyin.com/docs/
resource/zh-CN/mini-app/introduction/overview/
4https://open.dingtalk.com/document/orgapp/introduction-to-dingtalk-mini-
programs

https://q.qq.com/wiki/develop/miniprogram/frame/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/introduction/overview/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/introduction/overview/
https://open.dingtalk.com/document/orgapp/introduction-to-dingtalk-mini-programs
https://open.dingtalk.com/document/orgapp/introduction-to-dingtalk-mini-programs

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef

their own server-side APIs, and similar to WeChat, they require the
usage of an access token for these APIs’ invocation. QQ, being under
Tencent’s ownership, shares substantial similarities with WeChat
in terms of API functionalities [36]. Duoyin and Toutiao, developed
by ByteDance, follow a similar pattern, requiring access tokens ob-
tained through the getAccessToken API with parameters like app
ID, app secret, and grant type set to "client_credentials" [14].
DingTalk, developed by Alibaba, provides different mini-app plat-
forms but retains a common access token acquisition process through
the gettoken API, utilizing parameters like corpID and corpse-
cret [12]. Our approach for WeChat and Baidu may also apply to
the above three platforms, and lead to similar attacks if the front-
end code of mini-apps from these platforms discloses app secrets,
despite the documentations stating otherwise [12, 14, 36].

In contrast, Paytm,5 a prominent digital payments app in In-
dia, utilizes a different approach for access token retrieval. The
getAccessToken API requires the client ID and client secret in the
request header, along with other parameters in the request body,
such as the scope, grant type, and authorization string obtained
through the paytmFetchAuthCode JSAPI [32]. Similarly, Alipay6
mini-apps have their own set of server-side APIs, where the ac-
cess token is obtained using the applyToken API with specific
parameters like the mini-app’s ID, authClientID, grant type set
to "AUTHORIZATION_CODE", and the corresponding authCode ac-
quired through the my.getAuthCode JSAPI [3]. It is worth noting
that the acquisition of authorization codes, linked to individual
users, poses a challenge for the attackers. Requiring explicit autho-
rization makes it largely impractical to obtain users’ authorization
codes at a large-scale. While attackers may resort to creating ma-
licious mini-apps to deceive users and obtain their authorization
codes, replicating this process for other mini-apps is not feasible.
Consequently, access tokens obtained through this grant type offer
better security against the attacks considered in our study.
Mini-app to developer server authentication. Although our
work is mostly centered on mini-app to super-app authentication
using the app secrets, we also manually test the authentication
of mini-app to its developer server. Through experimenting with
our own mini-app, we confirm that the developer server does not
enforce restrictions for incoming requests from mini-apps. We also
confirm that it is possible for a mini-app to communicate with
other mini-apps’ developer servers. Thus, keeping the secrets in
the developer server just shifts the authentication problem if it is
not handled by the developers properly.
Ways forward.We enumerate a few potential directions below.

Replacing the developer server with cloud features. As one impor-
tant advantage of mini-apps, developers can be saved from the need
to deploy their own servers. They can make use of WeChat cloud
base and Tencent cloud hosting to host their mini-app’s backend, in
which no explicit app secret or access token is required—an implicit
grant is implemented. In addition, all necessary server-side APIs
can be invoked from cloud functions to lessen the reliance on access
tokens. However, this is secure only if the app secret has not been
hard-coded, otherwise without IP whitelisting, cloud functions can
be called without authorization as seen in Sec. 5.2.2. In certain cases,

5Paytm - https://business.paytm.com/docs/miniapps/overview
6Alipay - https://miniprogram.alipay.com/docs/

a developer server is not avoidable, e.g., the business may involve a
large amount of data/code, not manageable or cost-effective for the
cloud base; in such cases, the developers must avoid hard-coding
app secrets and enable IP whitelisting.

Mandating IP whitelisting. When a developer server is neces-
sary and can be used to make super-app server-side API calls, IP
whitelisting can be enabled to only allow making calls from the IP
address of the configured developer server. Despite its technical
feasibility, forcing a fixed set of IP addresses may not work for
developers who do not own the infrastructure or have servers of a
varying nature. But this might be mandated to popular, security-
critical mini-apps.

Disallowing app secret hard-coding. A straightforward way is to
restrict it from the source by WeChat/Baidu. As of this writing,
WeChat already prevents mini-apps from being released if hard-
coded secrets are detected and the latest version of devtools [55]
supports app secret detection as part of code quality analysis. How-
ever, this is not retrospective, leaving still 32.6% live mini-apps
with the app secrets hard-coded. We strongly suggest that such
hard-coding prohibition should be implemented for all mini-apps.
Note that, we even observed from our manual code review, several
mini-apps hard-coded valid app secrets for no apparent reason (i.e.,
no use of developer/WeChat server-side APIs), and simply add app
secrets in the globalData object.

Disallowing server-side API invocation from mini-apps. This is
already in use through server domain name restrictions [57], which
requires any domain name contacted by a mini-app must be con-
figured in the portal. By disallowing "api.weixin.qq.com" (WeChat)
and "openapi.baidu.com" (Baidu) to be configured, direct server-side
API calls can be prevented. It is possible that the mini-apps we have
seen with these direct server-side API calls have been developed
before this restriction was enforced.

Switching to super-app bound dynamic secrets. As mentioned
earlier, Paytm and Alipay’s use of user-bound (as opposed to mini-
app-bound in WeChat, Baidu) authorization tokens, generated and
managed by the super-app, replaces fixed app secrets.While binding
to a user involves the user to click, this may be necessary since oth-
erwise the initial trust remains a question, e.g., without prompting
the user explicitly, ensuring the request’s authenticity is difficult.
Limitations. The mini-apps obtained from the WeChat platform
whether collected manually or through the use of crawlers, might
typically undergo obfuscation, as described in Sec. 4. The unpacker
utilized in our framework, which is widely recognized within the
community, is considered the most popular tool for unpacking
mini-apps. However, while utilizing this tool, approximately 4%
of WeChat mini-apps were not unpacked completely, leading to
the generation of obfuscated files. This affects the analysis, as our
framework performs static analysis on the mini-app code to detect
the hard-coded app secrets. If app secrets are present within the
obfuscated code, our framework may inadvertently overlook them
during the analysis. Secondly, as part of our analysis, we installed
the WeChat client application on a rooted Android device to access
the mini-app packages. Our recent experiment showed that any
WeChat account created on a rooted device would be blocked from
further use on that device.

https://business.paytm.com/docs/miniapps/overview
https://miniprogram.alipay.com/docs/

Measuring the Leakage and Exploitability of Authentication Secrets in Super-apps RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

8 DISCLOSURE & ETHICAL CONSIDERATIONS
We have taken careful consideration to contemplate the ethical
implications when designing our analysis framework. We had to
generate the access tokens for the corresponding 53,377 mini-apps
comprising bothWeChat and Baidu, to verify if the identified secrets
can lead to security and privacy exposures; note that secrets can
be changed by developers, and enabling IP whitelisting can make
leaked secrets unexploitable. We refrained from calling any Modify
API to avoid modification or deletion of mini-app data; we verified
such APIs only on our test mini-app we created for research. To
understand and measure the real and immediate threat to mini-apps
with valid access tokens, we call only those Get APIs whose results
can be used to call the Modify APIs in order to verify if a mini-app’s
data can be modified. We also did not arbitrarily call any server-side
API to avoid resource exhaustion. According to the regulations from
our university’s Research Ethics Unit, we took multiple precautions
to prevent the exposure of secrets from our collection database.
We did not store any unnecessary data returned from the calls and
erased the minimally captured data appropriately after the analysis.
We also have disclosed our findings to Tencent and Baidu, including
the list of all the server-side APIs that can be abused when the app
secret is known. Tencent notified us, stating, “For increments, we
will have a review mechanism, and if hard-coded is detected, it will
not be approved for release. For inventory, we will notify developers
to fix it, but some developers don’t fix it, such is the case in your report.”
Although we successfully reported to Baidu using their portal, it
was more complicated than Tencent. The email to their security
team (security@baidu.com) was declined because of authentication
requirement, and the report required a Chinese phone number to
be bound to the reporting account.

9 RELATEDWORK
Zhang et al. [70] implemented the first large-scale WeChat mini-
app crawler and performed an empirical study on the crawled
mini-apps. Also, Hao et al. [20] studied the key features, system ar-
chitecture, and development prospects of WeChat mini-apps. Below
we summarize the studies more relevant to our work.
Security analysis on mini-apps. Zhang et al. [68] analyzed the
mini-apps permission model of 9 super-apps, and found six vul-
nerabilities with at least one security issue in each super-app; they
also presented three proof of concept attacks that can reveal user
location, contacts, and clipboard content to unauthorized mini-
apps.. Lu et al. [25] studied security vulnerabilities in 11 super-apps
based on the resource management between the super-app and the
mini-app. Further, Zhang et al. [69] identified the novel identity
confusion based on the app ID, domain name, and capability in
47 high-profile super apps based on the identity check adopted by
the super-apps. They demonstrated several attacks based on this
vulnerability, such as installing malware on victim’s phone, stealing
victim’s financial accounts, and bypassing security patches. Fur-
thermore, the National Computer Network Emergency Response
Technical Team tested around 50 personal banking mini-apps from
WeChat and reported that more than 60% of the mini-apps did not
encrypt the user information both in the device and while it was
transmitted [38, 43]. Yang et al. [67] implemented CMRFScanner to
identify the cross mini-app request forgery (CMRF) attacks, a novel

attack leading to several security consequences, e.g., privileged
data access, information leakage, and shopping for free. Wang et
al. [47] developed a consistency analysis framework to identify the
inconsistencies between privacy policies and the data practice in
the mini-apps. They crawled 10,000 mini-apps from WeChat and
extracted 2,998 mini-apps in which they found 2,680 mini-apps did
not meet the policy requirements.

Unlike the prior studies on the security ofmini-apps, our study fo-
cuses on the mini-app’s developer server to super-app authentication
problem, mainly affecting mini-app data that can be user-specific or
shared among all users of a mini-app, instead of local resources on
a user’s phone. By measuring the extent of insecure development
practices (defeating such authentication), we analyze how the re-
sulting unauthorized server-side API calls can cause severe security
issues, including bringing down the mini-apps and their services.
In a concurrent study, Zhang et al. [71] identified 40,880 mini-apps
(approximately 1.18% of the total 3,450,586) that leaked their own
app secrets. However, their study focused on identifying vulnerable
mini-apps that leaked their own secrets. We considered both this
self-leakage and the leakage of other mini-apps’ secrets, resulting
in a significantly higher percentage (32.8%) of app secret leakage
(albeit mostly self-leakage, see the last paragraph in Sec. 5.3).
Identifying hard-coded secrets. Sinha et al. [40] provided practi-
cal solutions to detect, prevent and fix API key leaks in the source
code repositories (GitHub). Meli et al. [26] studied the large-scale
secrets leakage with GitHub Search API and BigQuery snapshot, for
a period of six months, especially targeting 11 different platforms.
CredMinder [13] is aimed at finding credentials that are leaked
in Android apps, by using code analysis instead of string match-
ing, in order to identify credentials even when they are obfuscated.
Wen et al. [63] developed iCredFinder to fix the gap of credential
leak detection in iOS apps. Saha et al. [37] developed a generalized
machine learning-based framework with regular expressions to
identify the secrets in source code, and analyzed 24 different types
of secrets with precision and recall rate of 59% and 97% respectively.
Several other studies focus on OAuth and SSO-related vulnerabli-
ties [21, 45, 46]; e.g., MoSSOT [39] detects app secret and access
token leakage from the network traffic between the relying party
and provider apps, which also includes WeChat and its relying
third-party apps (but not the mini-apps).

10 CONCLUSION
We have presented the app secret leakage issues in popular mini-
app platforms, which is the result of non-compliance of mini-apps
with the super-app’s security guidelines. In order to identify this
non-compliance in a large number of mini-apps, we developed a
tool to detect the hard-coded app secrets in the mini-app’s source
code and accessibility of the server APIs using the identified secret.
We analyzed 110,993WeChat mini-apps and 10,000 Baidumini-apps,
out of which 36,425 WeChat mini-apps and 112 Baidu mini-apps
are found to have valid app secrets hard-coded. We also discussed
how these hard-coded secrets can lead to the misuse of server-side
APIs by defeating the authentication mechanisms implemented
by the super-apps. Additionally, we used the measurement results
to identify potential attack vectors on the identified vulnerable
mini-apps that could lead to severe security consequences at the
mini-app level.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef

REFERENCES
[1] Adchina. 2022. The power of the Baidu super-app. Available at: https://www.

adchina.io/what-is-baidu/.
[2] Alipay. 2022. Mini-app framework demystified. Available at: https://juejin.cn/

post/7137478354042617869.
[3] Alipay. 2023. Get access token API. Available at: https://miniprogram.alipay.

com/docs/miniprogram/mpdev/v2_applytoken.
[4] Baidu. 2023. Get access Token API. Available at: https://smartprogram.baidu.

com/docs/develop/serverapi/serverapilist/.
[5] Baidu. 2023. Get session key API. Available at: https://smartprogram.baidu.com/

docs/develop/api/open/getSessionKey/.
[6] Baidu. 2023. Mini-app directory structure. Available at: https://smartprogram.

baidu.com/docs/develop/framework/app_service/.
[7] Farzana Ahamed Bhuiyan and Akond Rahman. 2020. Characterizing co-located

insecure coding patterns in infrastructure as code scripts. In IEEE/ACMConference
on Automated Software Engineering Workshops (ASE’20). Melbourne, Australia.

[8] ByteDance. 2023. Duoyin. https://developer.open-douyin.com/docs/resource/zh-
CN/mini-app/introduction/overview/.

[9] ByteDance. 2023. Tiktok - Overseas version of Duoyin. https://www.tiktok.com/.
[10] Ao Cheng, Gang Ren, Taeho Hong, Kichan Nam, and Chulmo Koo. 2019. An

exploratory analysis of travel-related WeChat mini program usage: affordance
theory perspective. In Information and Communication Technologies in Tourism
(ENTER’21). Cham.

[11] Chinese article. 2022. Extracting WeChat mini-apps under Windows. Online
blog article (in Chinese). Available at: https://zone.huoxian.cn/d/883-pcfirda.

[12] DingTalk. 2023. Mini-app API documentation. Available at: https://open.dingtalk.
com/document/orgapp/how-to-call-apis.

[13] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao
Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. 2018. Understanding Android
obfuscation techniques: A large-scale investigation in the wild. In Security and
Privacy in Communication Networks (SecureComm’18). Cham.

[14] Duoyin. 2023. Get access Token API. Available at: https:
//microapp.bytedance.com/docs/zh-CN/mini-app/develop/server/interface-
request-credential/get-access-token/.

[15] Duoyin. 2023. Safety guidelines. Available at: https://developer.open-douyin.
com/docs/resource/zh-CN/mini-app/develop/guide/anquankaifa/.

[16] Ming Fan, Le Yu, Sen Chen, Hao Zhou, Xiapu Luo, Shuyue Li, Yang Liu, Jun Liu,
and Ting Liu. 2020. An empirical evaluation of GDPR compliance violations
in Android mHealth apps. In IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE’20). Coimbra, Portugal.

[17] GitHub. 2023. WeChat mini-apps unpacker. Available at: https://github.com/
Ryan-Miao/wxappUnpacker.

[18] GitHub. 2023. Wxapkg decryptor. Available at: https://github.com/BlackTrace/
pc_wxapkg_decrypt.

[19] Mingjia Guo, Ru-De Liu, Yi Ding, Biying Hu, Rui Zhen, Ying Liu, and Ronghuan
Jiang. 2018. How are extraversion, exhibitionism, and gender associated with
posting selfies on WeChat friends’ circle in Chinese teenagers? Personality and
Individual Differences 127 (June 2018), 114–116.

[20] Lei Hao, Fucheng Wan, Ning Ma, and Yicheng Wang. 2018. Analysis of the
development of WeChat mini program. Journal of Physics: Conference Series 1087,
6 (September 2018), 062040.

[21] Pili Hu, Ronghai Yang, Yue Li, and Wing Cheong Lau. 2014. Application im-
personation: problems of OAuth and API design in online social networks. In
Proceedings of the Second ACM Conference on Online Social Networks (COSN’14).
Dublin, Ireland.

[22] Che Hui Lien and Yang Cao. 2014. Examining WeChat users’ motivations, trust,
attitudes, and positive word-of-mouth: Evidence from China. Computers in
human behavior 41 (December 2014), 104–111.

[23] Yubei Lin, Jingyan Qiu, and Pingping Chen. 2020. Exploration and practice on
intelligent teaching patterns based on WeChat mini program. In Proceedings
of the 9th International Conference on Educational and Information Technology
(ICEIT’20). Oxford, United Kingdom.

[24] Yanyan Liu, Danyu Li, Haishan Ruan, Yun Hu, and Nanping Shen. 2022. Devel-
opment and usability test of a symptom management WeChat mini program for
parents of children with cancer. Asia-Pacific Journal of Oncology Nursing 9, 12
(December 2022), 100166.

[25] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFengWang, and
Xueqiang Wang. 2020. Demystifying resource management risks in emerging
mobile app-in-app ecosystems. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS’20). Virtual Event, USA.

[26] Michael Meli, Matthew R McNiece, and Bradley Reaves. 2019. How bad can it
git? Characterizing secret leakage in public GitHub repositories. In Network and
Distributed Systems Security Symposium (NDSS’19). San Diego, CA, USA.

[27] Microsoft. 2023. Detect secrets - credentials scanning tool. Avail-
able at: https://microsoft.github.io/code-with-engineering-playbook/continuous-
integration/dev-sec-ops/secret-management/recipes/detect-secrets/.

[28] Mitre. 2023. CWE top 25. Available at: https://cwe.mitre.org/top25/archive/2022/
2022_cwe_top25.html.

[29] NPM. 2023. wx-server-sdk - Cloud call npm Package. Available at: https:
//www.npmjs.com/package/wx-server-sdk.

[30] NVD. 2023. CVSS calculator. Available at: https://nvd.nist.gov/vuln-metrics/
cvss/v3-calculator.

[31] OWASP. 2023. OWASP top 10 API. Available at: https://owasp.org/www-project-
api-security/.

[32] Paytm. 2023. Mini-app API documentation. Available at: https://business.paytm.
com/docs/api/miniapps/login-flow/getaccesstoken.

[33] Andrea Possemato and Yanick Fratantonio. 2020. Towards HTTPS everywhere
on Android: We are not there yet. In 29th USENIX Security Symposium (USENIX
Security 20) (USENIX’20). Boston, MA, USA.

[34] Postman. 2023. Postman API platform. Available at: https://www.postman.com/.
[35] Property Guru for Business. 2023. The power of theWeChat super-app. Available

at: https://www.propertyguruforbusiness.com/publications/the-power-of-the-
wechat-super-app.

[36] QQ. 2023. Mini-app API Documentation. Available at: https://q.qq.com/wiki/
develop/miniprogram/server/open_port/port_use.html.

[37] Aakanksha Saha, Tamara Denning, Vivek Srikumar, and Sneha Kumar Kasera.
2020. Secrets in source code: Reducing false positives using machine learning. In
Conference on Communication Systems & Networks (COMSNETS’20). Bengaluru,
India.

[38] Scmp.com. 2021. WeChat mini programs for banking pose ‘significant’ risks
of personal data leakage. Available at: https://www.scmp.com/tech/tech-
trends/article/3142239/wechat-mini-programs-banking-pose-significant-risks-
personal-data.

[39] Shangcheng Shi, Xianbo Wang, and Wing Cheong Lau. 2019. MoSSOT: An auto-
mated blackbox tester for single sign-on vulnerabilities in mobile applications. In
Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security (Asia CCS’19). Auckland, New Zealand.

[40] Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, and
Senthil Mani. 2015. Detecting and mitigating secret-key leaks in source code
repositories. In IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries (MSR’15). Florence, Italy.

[41] Sixthtone. 2020. China’s ‘mini-apps’ have big privacy issues, report says. Avail-
able at: https://www.sixthtone.com/news/1006196.

[42] Tencent. 2023. Tencent cloud API overview. Available at: https://cloud.tencent.
com/document/api/876/34809.

[43] Time Business News. 2021. WeChat mini-apps Risk Data Leaks. Available at:
https://timebusinessnews.com/wechat-mini-apps-risk-data-leaks/.

[44] U.S. department of health and human services. 2018. The Belmont report -
Ethical principles and guidelines for the protection of human subjects of research.
Available at: https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/
read-the-belmont-report/index.html.

[45] Hui Wang, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. The achilles heel of
OAuth: a multi-platform study of OAuth-based authentication. In Proceedings of
the 32nd Annual Conference on Computer Security Applications (ACSAC’16). Los
Angeles, California, USA.

[46] Hui Wang, Yuanyuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong Li, and
Dawu Gu. 2015. Vulnerability assessment of OAuth implementations in Android
applications. In Proceedings of the 31st Annual Computer Security Applications
Conference (ACSAC’15). Los Angeles, CA, USA.

[47] Yin Wang, Ming Fan, Junfeng Liu, Junjie Tao, Wuxia Jin, Qi Xiong, Yuhao Liu,
Qinghua Zheng, and Ting Liu. 2023. Do as you say: Consistency detection of
data practice in program code and privacy policy in mini-app. Available at:
https://arxiv.org/pdf/2302.13860.pdf.

[48] Web archive. 2022. Extracting WeChat mini-apps using frida. Online blog article
(in Chinese). Available at: https://web.archive.org/web/20221215183356/https:
//www.ljczero.top/article/2022/9/5/144.html.

[49] WeChat. 2023. Cloud base. Available at: https://developers.weixin.qq.com/
miniprogram/dev/wxcloud/basis/capabilities.html.

[50] WeChat. 2023. Cloud initialization. Available at: https://developers.weixin.qq.
com/miniprogram/en/dev/wxcloud/guide/init.html.

[51] WeChat. 2023. code2Session API. Available at: https://developers.weixin.qq.com/
miniprogram/en/dev/api-backend/open-api/login/auth.code2Session.html.

[52] WeChat. 2023. Devtool stable version update log. Available at: https://developers.
weixin.qq.com/miniprogram/dev/devtools/stable.html.

[53] WeChat. 2023. Error codes developer error codes. Available
at: https://developers.weixin.qq.com/doc/oplatform/en/Return_codes/Return_
code_descriptions.html.

[54] WeChat. 2023. get access token API. Available at: https://developers.weixin.qq.
com/miniprogram/dev/OpenApiDoc/mp-access-token/getAccessToken.html.

[55] WeChat. 2023. IDE devtool. Available at: https://developers.weixin.qq.com/
miniprogram/en/dev/devtools/download.html.

[56] WeChat. 2023. Mini-app directory structure. Available at: https://developers.
weixin.qq.com/miniprogram/en/dev/framework/structure.html.

https://www.adchina.io/what-is-baidu/
https://www.adchina.io/what-is-baidu/
https://juejin.cn/post/7137478354042617869
https://juejin.cn/post/7137478354042617869
https://miniprogram.alipay.com/docs/miniprogram/mpdev/v2_applytoken
https://miniprogram.alipay.com/docs/miniprogram/mpdev/v2_applytoken
https://smartprogram.baidu.com/docs/develop/serverapi/serverapilist/
https://smartprogram.baidu.com/docs/develop/serverapi/serverapilist/
https://smartprogram.baidu.com/docs/develop/api/open/getSessionKey/
https://smartprogram.baidu.com/docs/develop/api/open/getSessionKey/
https://smartprogram.baidu.com/docs/develop/framework/app_service/
https://smartprogram.baidu.com/docs/develop/framework/app_service/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/introduction/overview/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/introduction/overview/
https://www.tiktok.com/
https://zone.huoxian.cn/d/883-pcfirda
https://open.dingtalk.com/document/orgapp/how-to-call-apis
https://open.dingtalk.com/document/orgapp/how-to-call-apis
https://microapp.bytedance.com/docs/zh-CN/mini-app/develop/server/interface-request-credential/get-access-token/
https://microapp.bytedance.com/docs/zh-CN/mini-app/develop/server/interface-request-credential/get-access-token/
https://microapp.bytedance.com/docs/zh-CN/mini-app/develop/server/interface-request-credential/get-access-token/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/develop/guide/anquankaifa/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/develop/guide/anquankaifa/
https://github.com/Ryan-Miao/wxappUnpacker
https://github.com/Ryan-Miao/wxappUnpacker
https://github.com/BlackTrace/pc_wxapkg_decrypt
https://github.com/BlackTrace/pc_wxapkg_decrypt
https://microsoft.github.io/code-with-engineering-playbook/continuous-integration/dev-sec-ops/secret-management/recipes/detect-secrets/
https://microsoft.github.io/code-with-engineering-playbook/continuous-integration/dev-sec-ops/secret-management/recipes/detect-secrets/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://www.npmjs.com/package/wx-server-sdk
https://www.npmjs.com/package/wx-server-sdk
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://business.paytm.com/docs/api/miniapps/login-flow/getaccesstoken
https://business.paytm.com/docs/api/miniapps/login-flow/getaccesstoken
https://www.postman.com/
https://www.propertyguruforbusiness.com/publications/the-power-of-the-wechat-super-app
https://www.propertyguruforbusiness.com/publications/the-power-of-the-wechat-super-app
https://q.qq.com/wiki/develop/miniprogram/server/open_port/port_use.html
https://q.qq.com/wiki/develop/miniprogram/server/open_port/port_use.html
https://www.scmp.com/tech/tech-trends/article/3142239/wechat-mini-programs-banking-pose-significant-risks-personal-data
https://www.scmp.com/tech/tech-trends/article/3142239/wechat-mini-programs-banking-pose-significant-risks-personal-data
https://www.scmp.com/tech/tech-trends/article/3142239/wechat-mini-programs-banking-pose-significant-risks-personal-data
https://www.sixthtone.com/news/1006196
https://cloud.tencent.com/document/api/876/34809
https://cloud.tencent.com/document/api/876/34809
https://timebusinessnews.com/wechat-mini-apps-risk-data-leaks/
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html
https://arxiv.org/pdf/2302.13860.pdf
https://web.archive.org/web/20221215183356/https://www.ljczero.top/article/2022/9/5/144.html
https://web.archive.org/web/20221215183356/https://www.ljczero.top/article/2022/9/5/144.html
https://developers.weixin.qq.com/miniprogram/dev/wxcloud/basis/capabilities.html
https://developers.weixin.qq.com/miniprogram/dev/wxcloud/basis/capabilities.html
https://developers.weixin.qq.com/miniprogram/en/dev/wxcloud/guide/init.html
https://developers.weixin.qq.com/miniprogram/en/dev/wxcloud/guide/init.html
https://developers.weixin.qq.com/miniprogram/en/dev/api-backend/open-api/login/auth.code2Session.html
https://developers.weixin.qq.com/miniprogram/en/dev/api-backend/open-api/login/auth.code2Session.html
https://developers.weixin.qq.com/miniprogram/dev/devtools/stable.html
https://developers.weixin.qq.com/miniprogram/dev/devtools/stable.html
https://developers.weixin.qq.com/doc/oplatform/en/Return_codes/Return_code_descriptions.html
https://developers.weixin.qq.com/doc/oplatform/en/Return_codes/Return_code_descriptions.html
https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/mp-access-token/getAccessToken.html
https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/mp-access-token/getAccessToken.html
https://developers.weixin.qq.com/miniprogram/en/dev/devtools/download.html
https://developers.weixin.qq.com/miniprogram/en/dev/devtools/download.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/structure.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/structure.html

Measuring the Leakage and Exploitability of Authentication Secrets in Super-apps RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

[57] WeChat. 2023. Mini-app server domain name information. Available
at: https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/
network.html.

[58] WeChat. 2023. Safety guidelines by WeChat. Available at:
https://developers.weixin.qq.com/miniprogram/en/dev/framework/security.
html#Code-Management-and-Leaks.

[59] WeChat. 2023. Server-side API classification. Available at: https://developers.
weixin.qq.com/miniprogram/en/dev/api-backend/.

[60] WeChat. 2023. Server-side API classification v2. Available at: https://developers.
weixin.qq.com/miniprogram/dev/OpenApiDoc/.

[61] WeChat. 2023. Tencent cloud hosting. Available at: https://developers.weixin.qq.
com/minigame/dev/wxcloudrun/src/practice/call.html.

[62] WeChat. 2023. WeChat. Available at: https://www.wechat.com/.
[63] Haohuang Wen, Juanru Li, Yuanyuan Zhang, and Dawu Gu. 2018. An empir-

ical study of SDK credential misuse in iOS apps. In 25th Asia-Pacific Software
Engineering Conference (APSEC) (APSEC’18). Nara, Japan.

[64] Wikipedia. 2023. Baidu. Available at: https://en.wikipedia.org/wiki/Baidu.
[65] Wikipedia. 2023. ICP license. Available at: https://en.wikipedia.org/wiki/ICP_

license.
[66] Wenbo Yang, Juanru Li, Yuanyuan Zhang, and Dawu Gu. 2019. Security analysis

of third-party in-app payment in mobile applications. Journal of Information
Security and Applications 48 (October 2019), 102358.

[67] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross miniapp request forgery:
Root causes, attacks, and vulnerability detection. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS’22). Los
Angeles, CA, USA.

[68] Jianyi Zhang, Leixin Yang, Yuyang Han, Zhi Sun, and Zixiao Xiang. 2022. A small
leak will sink many ships: Vulnerabilities related to mini programs permissions.
In Syposium on Security, Trust, & Privacy in Computing (COMPSAC’23). Torino,
Italy.

[69] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun Chen,
Yuan Zhang, Guangliang Yang, and Min Yang. 2022. Identity confusion in
webview-based mobile app-in-app ecosystems. In 31st USENIX Security Sym-
posium (USENIX’22). Boston, MA.

[70] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang
Lin. 2021. A measurement study of Wechat mini-apps. ACM SIGMETRICS
Performance Evaluation Review 5, 2 (June 2021), 1–25.

[71] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t leak your keys: Under-
standing, measuring, and exploiting the AppSecret leaks in mini-programs. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS’23). Copenhagen, Denmark.

[72] Jinyang Zheng, Zhengling Qi, Yifan Dou, and Yong Tan. 2019. How mega is
the mega? Exploring the spillover effects of WeChat using graphical model.
Information Systems Research 30, 4 (December 2019), 1343–1362.

A APPENDIX A
A.1 WeChat Login
wx.login is one of the several APIs provided by WeChat for the
developers to interact with the WeChat’s native app functions and
services (also termed as “JSAPI”). Whenever the wx.login interface
is called in a miniapp, the interface will return a random temporary
WeChat login credential (termed as “JS Code”) which is valid for
only 5 minutes. The JS Code is for onetime use only. This JS Code is
then sent to the developer’s server using the interface wx.request,
from where the WeChat’s Code2Session API [51] is called. The
WeChat’s back-end server returns the session key and Open ID of
the miniapp user to the developer server. Figure 3 illustrates the rec-
ommended flow of the WeChat Code2Session user authentication
API. For security reasons, this session key should not be returned to
the miniapp as recommended by WeChat [51]. The session key will
expire only when the miniapp user does not use the corresponding
miniapp for a long time. This code to session login interface is to
authenticate the miniapp users to the WeChat, and a custom login
status is determined to the miniapp.

Figure 3: WeChat Code2Session - Login API

A.2 CVSS Scores
We make use of the CVSS (Common Vulnerability Scoring System)
score calculator from NVD [30] to calculate the base metrics (con-
fidentiality, integrity and availability), and estimate the security
consequence of each super-app server-side API call. We set our
attack vector as network and attack complexity as low, as calling
these APIs does not require any special privileges and involves
no user interaction. The scope of attack does not change in most
cases, except for the WeChat cloud base related attacks, where a
vulnerable mini-app could affect other non-vulnerable mini-apps or
WeChat official accounts; see Sec. 6.2. The CVSS scores are summa-
rized in Table 2 (and Table 7 in Appendix). It is to be noted that by
the impact of medium and low, it defines the impact of the attack
on the mini-app and the user. This does not change the attacker
capabilities and hence, for executing all these super-app server-side
APIs, the attacker requires only a network connection.

A.3 Unauthorized Invocation of Baidu
Server-side APIs

Message templates. We test this category of APIs to verify if the
message templates of the mini-apps can be accessed by an attacker.
We see from our analysis that the getTemplateLibraryList API
returns valid values for all 112 (100%) mini-apps, and hence it is
possible to call the addTemplate API for these 112 mini-apps, as
the output of the former API can be used as an input for the latter.
Using our framework, we call getTemplateList API for all 112
mini-apps, which returned valid values for 74 (66%) mini-apps, and
thus it is possible to call deleteTemplate for these 74 mini-apps.
Traffic distribution resources.Using this category of APIs, a mini-
app developer can distribute the resources for a mini-app across
different paths. We test this list of APIs to check if an attacker is ca-
pable of submitting resources such as image files to the Baidu server.
We did not actually make calls using these APIs (submitResource,
submitSitemap, interfaceSubmission, submitsku), but verified
only the callability. These calls require several parameters, which
are all user-controlled values, and thus the APIs can be called by
the attacker for all the 112 (100%) mini-apps with valid app secrets.
Coupons. We test the APIs under this category to verify if an
attacker can create and manage Baidu coupons (provided by Baidu

https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/security.html#Code-Management-and-Leaks
https://developers.weixin.qq.com/miniprogram/en/dev/framework/security.html#Code-Management-and-Leaks
https://developers.weixin.qq.com/miniprogram/en/dev/api-backend/
https://developers.weixin.qq.com/miniprogram/en/dev/api-backend/
https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/
https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/
https://developers.weixin.qq.com/minigame/dev/wxcloudrun/src/practice/call.html
https://developers.weixin.qq.com/minigame/dev/wxcloudrun/src/practice/call.html
https://www.wechat.com/
https://en.wikipedia.org/wiki/Baidu
https://en.wikipedia.org/wiki/ICP_license
https://en.wikipedia.org/wiki/ICP_license

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef

to the mini-app developers, who then manage and distribute the
coupons to the mini-app users). We do not call any APIs under
this category to avoid adding anything to the server arbitrarily,
and thus only check the callability of these APIs (createCoupon,
submitCoupon, and ManageCoupon). For all 112 (100%) mini-apps
with valid app secrets, these APIs are callable, hence enabling an
attacker to manipulate the coupons.

Figure 4: Example code snippet of a WeChat mini-app using
server-side API calls in the code with hard-coded secret

Figure 5: An example of a WeChat mini-app calling a devel-
oper server API for WeChat login with a hard-coded secret
that is passed from the mini-app.

API Categories # miniapps

Mini-app User Login 1723 (42%)
Access Token 554 (13.5%)
Customer Service 429 (10.4%)
Dynamic Messages 319 (7.7%)
Generate QR code 285 (6.95%)
Message Templates 279 (6.8%)
Image Processing 176 (4.3%)
Security Check 134 (3%)
Live Broadcast 81 (1.97%)
Logistics 77 (1.87%)
Data Analytics 41 (1%)

Table 3: WeChat mini-apps with the direct invocation of
server-side APIs

Consequences DATASET1 DATASET3 DATASET2

read mini-app data 36,425 2,572 112
send msgs. 18,241 199 -
data tampering 36,425 2,572 112
malicious redirects 23,162 573 -
resource exhaustion 36,425 2,572 112

Table 4: Relationship between number of WeChat (DATASET
1 and DATASET 3) and Baidu (DATASET 2) mini-apps against
the identified security consequences.

API Category Get API Modify API

Access Token getAccessToken -

Customer Service Message
- uploadTempMedia

customerServiceMessage.send

Updatable Message createActivityId setUpdatableMsg

Miniapp Plug-in
managePlugin
managePluginApplication

Miniapps Nearby getNearbyPoiList deleteNearbyPoi
setShowStatus

Logistics Assistant getPrinter updatePrinter
getAllDelivery

openAPI Management getApiQuota clearQuotaByAppSecret
clearQuota

Operations and Maintenance getFeedback
getDomainInfo

Cloud Base

invokeCloudFunctions
databaseCollectionGet databaseCollectionAdd

databaseCollectionDelete
getQcloudToken databaseAdd

databaseDelete
databaseUpdate
databaseQuery

Table 5: List of get and modify WeChat server-side APIs eval-
uated in our measurement study chosen based on the avail-
ability of request parameters.

API Category Get API Modify API

Access Token getAccessToken -

Message Templates

addTemplate
getTemplateList deleteMessageTemplate

Traffic Distribution Resources submitResource
- submitSitemap

interfaceSubmission
submitsku

Coupons createCoupon
- submitcoupon

ManageCoupon

Table 6: List of get and modify Baidu server-side APIs eval-
uated in our measurement study chosen based on the avail-
ability of request parameters.

Measuring the Leakage and Exploitability of Authentication Secrets in Super-apps RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

WeChat server-side APIs Required parameters # miniapps [A] [B] [C] [D] [E] Impact
clearQuotaByAppSecret appID, appSecret 2,572 ✓ ✓ High
clearQuota AT, appID 2,572 ✓ ✓ High
managePlugin AT, pluginAppID 433 ✓ ✓ ✓ High
deleteNearbyPoi AT, poiID 303 ✓ ✓ High
setShowStatus AT, poiID 303 ✓ ✓ High
managePluginApplication AT, appID 179 ✓ ✓ ✓ High
invokeCloudFunctions AT, CloudFunctionName 65 ✓ ✓ ✓ ✓ High
databaseCollectionGet AT, CloudEnv 21 ✓ ✓ High
databaseCollectionAdd AT, CloudEnv, CollectionName 21 ✓ ✓ High
databaseCollectionDelete AT, CloudEnv, CollectionName 21 ✓ ✓ High
databaseAdd AT, CloudEnv 21 ✓ ✓ High
databaseDelete AT, CloudEnv 21 ✓ ✓ High
databaseUpdate AT, CloudEnv 21 ✓ ✓ High
databaseQuery AT, CloudEnv 21 ✓ ✓ ✓ High
setUpdatableMsg AT 4 ✓ ✓ ✓ ✓ High
uploadTempMedia AT 2,572 ✓ ✓ Medium
getApiQuota AT, cgi_path 2,572 ✓ ✓ Medium
getDomainInfo AT 2,101 ✓ ✓ Medium
getAllDelivery AT 252 ✓ ✓ Medium
customerServiceMessage.send AT, openID 151 ✓ ✓ ✓ Medium
getPrinter AT 114 ✓ ✓ Medium
updatePrinter AT, openID 114 ✓ ✓ Medium
getFeedback AT 93 ✓ ✓ Medium
getQcloudToken AT 59 ✓ ✓ Medium
createActivityId AT 2,572 ✓ ✓ Low
getNearbyPoiList AT 303 ✓ ✓ Low

Table 7: Statistics of unauthorized callable WeChat server-side APIs for DATASET3. AT: Access Token; [A]: Read Mini-app Data;
[B]: Send ArbitraryMessages; [C]: Data Tampering; [D]: Malicious Redirects; [E]: Resource Exhaustion; ✓ denotes the possibility
of the attack using the corresponding -side API.

	Abstract
	1 Introduction
	2 Background
	3 Objectives and Threat Model
	4 Methodology
	5 Measurement
	5.1 Datasets
	5.2 Measurement Results
	5.3 Temporal Comparison
	5.4 Implementation and Efficiency

	6 Security Consequences
	6.1 Consequences from Server-side APIs
	6.2 Consequences from Cloud Functions

	7 Discussion
	8 Disclosure & Ethical Considerations
	9 Related Work
	10 Conclusion
	References
	A Appendix A
	A.1 WeChat Login
	A.2 CVSS Scores
	A.3 Unauthorized Invocation of Baidu Server-side APIs

