An Evaluation of Recent
Secure Deduplication Proposals

Vladimir Rabotka and Mohammad Mannan”

Abstract

Deduplication is widely used by cloud storage providers to cut costs, by stor-
ing and uploading a single instance of identical files shared across multiple
user accounts. However, cross-account deduplication introduces several new
side-channel attacks on user privacy; see e.g., Harnik et al. (IEEE Security
and Privacy Magazine, 2010), Mulazzani et al. (USENIX Security, 2011).
As a response, several solutions have been proposed to mitigate different
deduplication privacy concerns. In this paper, we summarize notable attacks
on deduplication, and analyze recently proposed privacy-preserving secure
deduplication solutions in terms of privacy-gain, deployment and bandwidth
costs, and security limitations (if any). In particular, we identify weaknesses
in a secure deduplication proposal based on the use of a home gateway de-
vice (Heen et al., New Technologies, Mobility and Security, 2012); we also
explore how these weaknesses may lead to three separate attacks. Overall,
our analysis may help storage providers to evaluate competing solutions, and
the research community to better design privacy-preserving deduplication
solutions by addressing limitations of current proposals.

Keywords: Cloud storage, privacy, deduplication

“Corresponding author. E-mail addresses: v_rabotk@encs.concordia.ca (V. Rabotka),
m.mannan@concordia.ca (M. Mannan)

Preprint submitted to Elsevier Journal of Information Security and Applications, October 19, 2015

An Evaluation of Recent
Secure Deduplication Proposals

Vladimir Rabotka and Mohammad Mannan”

1. Introduction

Popular cloud storage services boast users in the millions, with gigabytes
of free storage offered to each user. To leverage common files shared across
user accounts, several cloud storage services use data deduplication. Dedu-
plication eliminates the need to upload and store redundant copies of user
data, by verifying before each upload if a file (or, more generally, a data
block) already exists in the server’s storage. If so, the file is not uploaded
and the corresponding user account is simply linked to the existing file on
the server. Data deduplication is believed to save significant storage and
bandwidth costs.

For example, a recent empirical study [29] on 857 desktop computers
reports that with deduplication, the storage requirement is only about 32% of
the original storage size (see also Harnik et al. [20] for an efficient estimation
of deduplication ratios).

Serious privacy concerns may arise when deduplication is used by popular
storage services. Harnik et al. [21] explore several side-channel attacks; for
example, the presence of a specific file in the cloud can be verified (by ob-
serving network traffic), and linked to a specific user, e.g., by having access
to a file that uniquely identifies a target user. An attacker can also fill out
a template file with specific details of a target victim (e.g., salary in an em-
ployment contract or diagnosis in a medical record template), and infer the
existence of such a file in the cloud. Mulazzani et al. [30] demonstrate several
attacks on Dropbox due to the use of deduplication (see also [40]). For exam-
ple, an attacker can obtain access to an existing file, simply by supplying the
hash of the file (i.e., without possessing the content of the file); the original

“Corresponding author. E-mail addresses: v_rabotk@encs.concordia.ca (V. Rabotka),
m.mannan@concordia.ca (M. Mannan)

Preprint submitted to Elsevier Journal of Information Security and Applications, October 19, 2015

owner of the file remains oblivious to the attack. Halevi et al. [19] provide
example scenarios in which hash values of sensitive files may be exposed and
the file content accessed by attackers.

To counter known attacks, several academic solutions have been proposed
over the past few years. Most proposals can be placed into one of four cat-
egories: (i) encryption-based solutions; (ii) probabilistic uploads; (iii) proof-
of-ownership schemes; and (iv) gateway-based solutions. In this paper, we
analyze representative solutions from each category in terms of their effec-
tiveness (i.e., privacy-gain), deployment and operational costs, and security
weaknesses (if any).

Client-side encryption of user data seems to be an obvious solution to
several deduplication attacks. However, a straightforward use of encryption
can eliminate advantages of deduplication and incur a high penalty in storage
and bandwidth consumption for cloud providers (e.g., the same file will gen-
erate a different ciphertext for each user who uploads it). Several proposed
solutions (e.g., [13, 34, 27],) aim to provide confidentiality against a storage
provider, and still allow for deduplication.

Probabilistic upload-based solutions (e.g., [21, 19, 26]) attempt to improve
user privacy by requiring additional uploads (e.g., randomly requesting up-
loads for an already uploaded file). The primary goal is to confuse an attacker
about whether a target file exists in the cloud or not. However, these solu-
tions do not offer strong deployment incentives for service providers, as they
significantly increase bandwidth costs due to the extra uploads.

Using proof of ownership (PoW) [7] schemes, a server can verify that a
user is in full possession of a file without the need of a full upload, before
linking the server copy to the user’s account. Several PoW-based schemes
have been proposed in the recent past, focusing primarily on efficiency gains
(e.g., [52, 37, 19, 50, 18, 12]). Other deduplication goals, such as proof of
data possession (PoD) [2, 47], and proof of retrievability (PoR) [5, 25, 33]
have also been proposed. We do not address PoD and PoR solutions here,
since we consider scenarios of curious-but-honest cloud storage providers.

Heen et al. [22] propose a deployment-friendly, home gateway-based so-
lution to address privacy attacks due to deduplication. It is assumed that
the user’s network service provider (NSP) is also the cloud storage provider.
The home gateway device is deployed by the NSP. As stated [22], in some
countries (e.g., UK, France), NSPs already offer cloud storage services, which
may favor home gateway-based solutions. Our analysis of Heen et al.’s pro-
posal identifies several potential weaknesses that may be exploited to launch

known side-channel attacks. We also attempt to fix these weaknesses, and
analyze our proposed counter-measures.

The remainder of this paper is organized as follows. In Section 2 we
provide the necessary background on deduplication and review known dedu-
plication attacks. After analyzing current mitigation attempts based on en-
cryption (Section 3), probabilistic uploads (Section 4) and proof of ownership
schemes (Section 5), we discuss the home gateway-based solution proposed
by Heen et al. (Section 6), presenting three attacks as well as possible ways
of mitigating the attacks. A storage-gateway solution [38], which offers dif-
ferential privacy is analyzed in Section 8. Existing solutions are compared in
Section 9 in terms of security, deployment costs and target environments.

2. Background and known attacks

In this section, we briefly introduce the concept of deduplication, and
discuss currently known attacks exploiting deduplication as used by cloud
storage providers (CSPs). We later use these attacks to evaluate different
privacy-enhanced deduplication proposals.

2.1. Deduplication

Deduplication eliminates duplicate copies of redundant data from a CSP.
Data is stored and/or transferred only once. Subsequent copies are replaced
by pointers to the one physical data instance. Deduplication approaches vary
according to organizational needs. For instance, in server-side deduplication,
data is always uploaded from the client to the CSP, but only one copy is
stored on the server. This approach saves storage space but not bandwidth.
In client-side deduplication, when a client wishes to upload a file to the cloud,
a unique representation of the file (e.g., cryptographic hash) is sent to the
storage provider. This unique representation is much smaller than the file
itself and acts as a fingerprint for the file. If the file is already present in the
cloud (e.g., identical hash), the file is linked to the client’s account without
performing an actual upload. This approach saves both storage space and
network bandwidth.

By observing the amount of upload traffic and comparing it to the file
size, an attacker can learn if a file was deduplicated (e.g., only the hash was
transferred) or not (a full upload was performed). An attacker will measure
the traffic between the CSP and her own machine and thereby identify if a
particular file is present or absent in the cloud. This fact can be exploited
when client-side deduplication is performed over different user accounts, and

the physical copy of a file is shared across different and otherwise unrelated
accounts.! Side-channel attacks on deduplication require only a valid account
with the same CSP as the victim. No further traffic analysis is necessary
(e.g., encrypting data in transit does not prevent or mitigate deduplication
attacks).

2.2. Side Channel Attacks On Deduplication

Harnik et al. [21] propose three side channel attacks on user privacy by
exploiting cross-user deduplication. We summarize the attacks below.

1. A single file can uniquely identify a user, exposing the user’s identity.
For instance, an organization can set up a trap, where different versions
of a sensitive document are made available to several suspects, and ob-
serve which version gets uploaded to the cloud; cf. a recently proposed
e-book DRM [49], and a related IBM patent to detect email leaks [9].
The attacker will try to upload the file which specifically identifies the
target user, and observe the network traffic to see whether deduplica-
tion takes place. This attack requires the attacker to possess the file
in question (or at least the fingerprint of the file), and no additional
information about the victim is revealed. However, this attack may
still be leveraged in certain cases.

2. An attacker can fill a template file with several details specific to the
victim (e.g., salary in an employment contract or diagnosis in a medi-
cal record template), and infer the existence of such a file in the cloud.
For example, if the attacker has a copy of a template file for a contract
renewal offer (e.g., by working at the same company as the victim), the
attacker can fill out the template with the victim’s name and various
monetary values, e.g., in $500 increments. By observing when dedupli-
cation takes place, the attacker can establish which version of the file
exists in the cloud and thus infer the victim’s contractual offer. This
is a threat to user privacy since users and organizations alike store and
back up an increasing number of sensitive files to the cloud. [41, 4, 51]

3. The deduplication feature can be abused to maintain a covert channel
to communicate with a command and control server (C&C). Malicious
software can store one of two versions of a single file in the cloud. The

!'Note that, for privacy reasons, not all CSPs use cross-user data deduplication; see,
e.g., SpiderOak [17] (but see also [48]).

C&C server then uploads both versions to the cloud. By observing for
which file deduplication takes place, the C&C server will receive one
bit of information from the victim’s machine (e.g., bot software was
installed successfully). Likewise, the C&C server can abuse client-side
deduplication to send one bit of information to the bot client (e.g.,
start a DDoS attack). By increasing the number of files, multiple bits
of information can be sent and received.

The above-listed side-channel attacks implicitly assume no correlation
between files stored by the CSP. This assumption may not always hold, as
pointed out by Shin et al. [38], who introduce the related-files attack. In
real-world scenarios, correlated files such as individual files that make up a
software package, or different formats of the same office document are often
uploaded together and stored at the same CSP. An attacker can amplify side-
channel attacks by uploading not only the targeted file, but also additional
files related to it, increasing the probability with which deduplication can
be inferred, and thereby weakening the effectiveness of probabilistic upload
solutions (see Section 4).

Harnik et al. [21] also assume the attacker playing only the role of a valid
user. However, side channel attacks can also be carried out by the CSP itself.
For instance, the CSP can compute the hash for a copyright-protected file
and then search its hash index table for clients who have the same hash value
linked to their accounts. Such identification becomes a valid threat to privacy,
when users rely on deduplication-friendly encryption for data confidentiality.
We distinguish between server and client side channel attacks in our final
comparison (Section 9), where a server side-channel attack represents any
method by which a CSP can obtain access to a user’s unencrypted data or
infer a connection between an unencrypted file (or its hash) and users who
have versions of the said file linked the their account (e.g., encrypted, encoded
or plaintext version).

2.3. Hash-Only Attacks On Deduplication

Deduplication can also be abused by exploiting the connection between a
file (or data block) and its corresponding hash value. A file will be dedupli-
cated if its unique representation (e.g., hash) matches the representation of a
file already present in the cloud. This means that an attacker can deduplicate
files to his account by only presenting their hash values. The corresponding
file will be linked to the attacker’s account, without the consent or knowl-

edge of the file’s owner. By employing this technique, an attacker can use
the cloud storage provider as a content distribution system. A C&C server
can also maintain a covert channel to communicate with bots just by sharing
hash values.

Mulazzani et al. [30] show how Dropbox’s cross-user deduplication can
be exploited to access arbitrary files, given their hash values. An open
source project called Dropship [44] (currently defunct), exploited Dropbox’s
file hashing scheme, allowing users to copy to their accounts files they did
not previously posses. Hash values can be distributed through a secondary
channel, such as forum posts.

Xu et al. [50] introduce the poison hash attack, also called the target
collision attack. The adversary controls the upload client and is therefore
able to subvert the default hash computation, allowing her to supply a hash
value that corresponds to a different file. This allows the attacker to upload
an infected or forged file, under the hash value of the corresponding clean
version. If the attacker is the first user to upload the file (e.g., newly re-
leased freeware or Linux ISO files), all subsequent uploads of the clean file
will be deduplicated to the attacker’s version of the file. The poison hash
attack presumes the adversary is able to reverse engineer the upload client,
as performed by Mulazzani et al. for Dropbox [30].

The covert-channel attack described in Section 2.2 can be amplified when
combined with a hash-only attack, in order to leak larger amounts of data [19]:
malicious software on a client computer can leak to an adversary the hash
values of all files that are uploaded to a CSP. The hash leak is low bandwidth
and would enable the attacker to download the corresponding files through
a hash-only attack on the same CSP.

3. Encryption Solutions

Users may avoid deduplication attacks by uploading only encrypted ver-
sions of their sensitive files. Traditional encryption appears to be inherently
incompatible with data deduplication. If different users encrypt the same
file with different keys, the resulting ciphertexts will be different, making
it impossible for the CSP to deduplicate different uploads of the same file.
Several third-party tools for achieving such encryption support are available
today (e.g., BoxCryptor [6]).2

2 When using a user-specific and password-derived encryption key (e.g., BoxCryp-
tor [6]), we believe that a brute-force attack can be launched by exploiting deduplication:

7

Where to encrypt. Encryption can occur at the client side or in the cloud.
If user data is encrypted only after it reaches the cloud, the provider can
read the data, be forced to hand over the data to an external party or leak
data through insider attacks. Thus, third parties may still obtain access to
the user’s unencrypted data without the data owner having any knowledge
of the privacy breach.

If encryption occurs at the client side, and only the user is in possession of
the encryption key, the cloud provider can no longer gain any insight about
the data content. The main deterrent for service providers to introduce client-
side encryption is the inability to perform deduplication on the uploaded user
data. While deduplication provides significant savings in both storage space
and bandwidth, client-side encryption ensures user data privacy but offers no
immediate incentive to CSPs, especially the ones that provide free storage
for public use. Another challenge that comes with client-side encryption is
key management across different devices, as well as between users who wish
to share their files with one another.

As only few CSPs offer client-side encryption (e.g., Tarsnap [43]), several
third-party add-ons have been developed to enable encryption for popular
unencrypted storage providers; such add-ons include: Safebox [32], BoxCryp-
tor [23], Viivo [45]. BoxCryptor and Viivo derive the encryption key from
(low-entropy) user passwords, whereas Safebox uses the actual password to
encrypt files. Note that password-derived keys are inherently unsafe for en-
cryption, as user-chosen passwords can be easily brute-forced. Another so-
lution, DFCloud [36] proposes to leverage the widely-available Trusted Plat-
form Module (TPM) to manage encryption keys and define a key sharing
protocol between users. While requiring an additional server, this solution
prevents not only server-side data leakage, but also the leakage of client-side
credentials by malicious programs. Deduplication however is not possible.

Proposals explored in this section seek to use client-side encryption yet
allow for deduplication. The goal is to protect user data from a curious

If a popular file is encrypted with the user’s password-derived key, an attacker can guess
a password, derive the key, encrypt the plaintext version of the file, upload the encrypted
version, and observe if deduplication occurs. Deduplication indicates that the encrypted
version of the file is present in the cloud, which means the password guessed by the at-
tacker was correct and thus the user’s password is exposed, without the victim even being
aware that an attack took place. However, this attack may be less of a concern in reality
as it can be easily mitigated by choosing encryption modes that use a random IV.

CSP, while still allowing the CSP to save storage space by deduplicating
data across multiple user accounts. By design, most encryption solutions
focus on server-side deduplication and are therefore not susceptible to client
side-channel attacks (Section 2.2).

3.1. Bit-Interleaving File System (BIFS)

One proposal which tries to find a compromise between encryption and
deduplication is BIFS [34]. Instead of encrypting data, BIFS re-orders but
does not substitute bits. BIFS divides a block of user data into slices of
variable size. Slices are stored in a number of randomly selected chunks,
with each chunk saved in a different location of the cloud storage. A chunk
stores slices from multiple files and users. The pseudo-random slicing and
mixing of slices from different files in the same chunk makes it difficult to
recover the original file without the block descriptor, available only to the
file owner.

By spreading user-data bits over several locations of the storage infras-
tructure, BIFS ensures that private user data cannot be identified, in prac-
tice, by unauthorized users, even if all bits and sectors on the storage media
are visible. Therefore, on-disk data is protected from unauthorized access by
the infrastructure provider (e.g., compromised server, malicious staff). As
bits are only reordered and not substituted, data regularity is still preserved
to some degree, allowing for bit-level compression and deduplication.

While it seems that meaningful data is unrecoverable from the CSP and
that data cannot be linked back to the user, this is not entirely true. The
proposed BIFS solution apparently ignores the cases of self-identifying data.
Since bits are not replaced, meaningful information may still be retrievable
from the slices. The provider can launch pattern matching attacks, searching
data chunks for sensitive information such as credit card numbers, email ad-
dresses, monetary figures, PIN numbers, which are all smaller than the slice
size and likely to be stored next to personally identifiable information (a slice
range of 4096 to 5120 bits is used in the BIFS proof-of-concept implementa-
tion). A slice size smaller than 20 bytes, which is more than a typical email
address or credit card number, makes deduplication not worthwhile. Larger
slice sizes expose larger contiguous portions of user data. Data privacy must
be sacrificed for significant deduplication savings. We do not include BIFS
in our final comparison.

3.2. Convergent Encryption

Convergent encryption [13, 46] proposes a framework which maintains
data privacy in the cloud, while still allowing the CSP to perform dedu-
plication. Instead of using a random and user-specific key, the convergent
encryption algorithm generates the encryption key from the file content itself,
usually the hash of the plaintext file. This guarantees that the same plaintext
will generate the same ciphertext, allowing the cloud storage provider to take
advantage of deduplication while only having access to encrypted user data.

Convergent encryption can also be applied on directory trees [1] in addi-
tion to singular files: assuming UNIX-based directories (which contain the
name of all files and subfolders), the hash of the directory object acts as a
unique identifier for the whole subtree. If a directory hash is already in the
cloud, there is no need to traverse the local directory tree and the whole tree
is deduplicated. A user only needs to record the keys for each root filesystem
that is already present in the cloud, reducing the number of files to hash.

Since the encryption key is created deterministically from the file con-
tent, a CSP can apply the convergent encryption algorithm for popular files
(e.g., public, leaked or pirated files) and determine by which users they were
uploaded. The CSP can also launch brute-force ciphertext recovery attacks
on any uploaded file.

Convergent encryption in itself does not address side-channel attacks,
which are feasible if convergent encryption is used in conjunction with client-
side deduplication. In such a scenario, the attacker is able to produce the
hash of a convergent encrypted file and use it to determine the existence of
said file in the cloud.

Likewise, the hash-only attack and poison hash attack are not addressed
by convergent encryption and their feasibility depends on the particular im-
plementation (e.g., client or server-side deduplication).

3.3. DupLESS

Bellare et al. [3] address the shortcomings of convergent encryption by
introducing a third-party key server, and replacing convergent encryption
with secret-parameter, message-locked encryption (MLE); the organization-
specific secret parameter is known only to the key server. Each client be-
longing to the same organization engages with the key server in an oblivious
pseudo-random protocol (OSRP) to obtain a message-derived key, used to
encrypt a file before sending it to the CSP. Users under the same key server

10

will receive the same key for identical files, allowing the CSP to dedupli-
cate the encrypted version. To prevent the key server from learning any
information about user data, DupLESS relies on RSA blind signatures [10].
The key server is assumed to be inaccessible to the attacker (e.g., requires
authentication credentials unavailable to the attacker). In order to thwart
brute-force ciphertext recovery attacks from compromised clients, the key
server uses rate limiting, with a rate limit of 825,000 queries/week/client
being suggested as a conservative approach.

From the CSP’s perspective, deduplication is possible only for files en-
crypted by using the same key server. Files cannot be deduplicated across
different organizations without extending the DupLESS protocol to allow
interactions between separate key servers. It is therefore unclear how the
solution would scale to accommodate scenarios where large CSPs seek to
employ deduplication across data belonging to disjoint organizations. Us-
ing a key server also introduces a single point of failure and compromise
(cf. [15]). The overhead introduced by DupLESS causes a 14-17% upload
latency, decreasing with larger file sizes.

Client side-channel and hash-only attacks are not possible because Dup-
LESS is a server-side deduplication solution. Since the CSP is not in posses-
sion of the secret parameter, server side-channel attacks are also unfeasible.

In a follow-up paper, Duan [15] eliminates the need for a key server by
introducing a distributed protocol, to be used by P2P systems. Duan first
provides a formal proof of security for the DupLESS protocol in the random
oracle model, showing that in the current deduplication paradigm using an
additional secret when generating the encryption keys provides the best pos-
sible security. Duan then extends the DupLESS protocol to a P2P environ-
ment by using a modified Shoup RSA-based threshold signature scheme [39].
A private key is shared across a number of n players such that any subset of
t+ 1,t < n players can generate a signature, but any subset of ¢ or less play-
ers are unable to produce a valid signature. When a client needs to upload
a file or data block, it will request signature shares from 7" > t 4 1 signers,
combine the shares to obtain the signature, and then use the signature to
generate the encryption key. A blind signature variant of Shoup’s scheme
is used to avoid leaking any information about the file/data-block to the
signer. The distributed key sharing scheme still assumes a centralized dealer
distributing the keys. It is possible to make the scheme fully distributed by
using a variant of Shoup’s scheme that allows for distributed key generation.

11

The key retrieval overhead of the P2P DupLESS scheme causes the upload
throughput to drop by 4-30%, depending on the data block size [15]. The
overhead decreases as files get larger. As is the case for DupLESS, side-
channel and hash-only attacks are not feasible.

To hinder deduplication attacks, both DupLESS and Duan’s P2P ver-
sion of DupLESS require that a perimeter be built around deduplication
clients, by controlling access to a key server or access to a P2P network.
This approach outsources the burden of preventing deduplication attacks to
a separate entity (key server or P2P network) but has an inherent short-
coming. By fragmenting the deduplication landscape, CSPs have weaker
incentives to store data because the deduplication potential is limited by the
number of clients inside each enclave. Such an approach is appropriate for
organization-specific data (unlikely to be shared by outsiders), but is not
scalable.

3.4. Leakage-Resilient Encryption

Another proposal to offer leakage-resilient encryption, introduced by Xu
et al. [50], uses randomly generated keys for each file and yet allows CSPs to
identify identical files and employ deduplication. On first upload of a file F,
the user chooses a random AES key K and produces two ciphertexts: the file
encrypted with the key {F'}x , and the key encrypted with the file {K}p.
Both are stored by the CSP. When another user tries to upload the same file
F, the server asks for proof of ownership (see Section 5) and then provides
the key encrypted with the file. Since the user is in possession of the file
F, she will be able to retrieve the encryption key K, and store it for later
decryptions. The CSP links the encrypted version of the file to the second
user’s account.

This approach is still susceptible to both the client and server side-channel
attacks. A malicious client can engage in a full protocol run with the server
for any file it generates (e.g., by filling out template files) and observe the
network traffic. The CSP can launch a successful attack without knowing
the encryption keys, by simply observing disk usage information and dedu-
plication tables stored in memory [31]. A malicious CSP can play the role of
a client and at the same time observe the server’s reaction to client requests.
By first uploading random junk data (which is guaranteed to not be dedupli-
cated), the malicious CSP can create a baseline for disk and memory usage
of the server’s deduplication process when a full upload is performed. By
analyzing how disk and memory usage deviate from the established baseline

12

when uploading a file in question, the CSP can know if it was deduplicated
or not. In this way, by simply monitoring the use of its resources, a malicious
CSP can launch a successful guessing attack (e.g., the template side-channel
attack). Hash-only attacks are mitigated by proof of ownership schemes
proposed in the same paper (see Section 5).

3.5. Single-Server Cross-User Deduplication

Liu et al. [27] introduce a single-server cross-user deduplication scheme
with client-side encryption, where a client uploading an existent file uses a
password authenticated key exchange (PAKE) protocol to obtain the encryp-
tion key from another client who has previously uploaded the same file. If
the file has not been previously uploaded, the CSP instructs the client to use
a random key.

For each uploaded encrypted file F', the CSP stores a short hash sh(F),
which has a high collision rate and cannot be used by the CSP to determine
the content of F'. When a client C wishes to upload file F', the CSP identifies
clients C; that have uploaded files F; with the same short hash sh(F;) =
sh(F'). The short hashes may equal because they were derived from the
same file (F' = F;), or due to a hash collision. To determine if F' = F;, the
client C' engages in a same-input-PAKE protocol with every candidate client
C;. C’s input is hash(F) and C;’s input is hash(F;). For each client C;, the
same-input-PAKE protocol produces a session key k;, while C' ends up with
a set of session keys k;, one for each PAKE run with a different C;.

With an overwhelming probability, k; = k! if and only if F; = F. The
same-input-PAKE protocol is run through the CSP, no direct connection
between C' and C; is required. At this point, in case of a match, F(k;, kg,),
the encryption key kp, symmetrically encrypted with the session key k;, could
be transferred from C; to C. This however would allow a side-channel attack
where C' infers the absence of file F' in the cloud, if it replaces some of the
keys k; with bogus values and is instructed by the CSP to use the index of
one of those keys. To defeat this attack, each client C; extends the length of
k; by using a pseudo-random function and then splits the result into k;y ||k;g,
sending k;z, and (kg, + k;g) to the CSP.

Similarly, client C' extends and then splits all k] into k[, ||k}z. C then
sends its public key pk, ki, and Enc(pk, ki + 1), where Enc() represents
homomorphic additive encryption, and r is a random element chosen by C'.
Upon receiving these messages, the CSP verifies if there is an index j such
that kj; = kj;. If such an index j exists, the CSP uses the encryption’s

13

homomorphic properties to compute e = Enc(pk, kr, + k;jr) © Enc(pk, K +
r) = Enc(pk, kp, —1); e is sent back to C. If there is no index j such that
kjr = kjr, the CSP sends to C' e = Enc(pk,r'), where 1’ is a random element
chosen by the CSP.

Upon receiving e, C' uses its private key sk to calculate kr = Dec(sk,e)+
r, and sends F(H;(kr), F') to the CSP. The hash function H; is used to hash
the length of the key kr to the length expected by E. The CSP deletes
E(Hy(kp), F), if it is already stored as E(Hy(kr,), F;), and then allows C' to
access E(Hy(kg,), F;). If the file is not present in the storage, the CSP stores
E(Hl(kF)7F>

By providing client-side encryption, the single-server cross-user deduplica-
tion protocol prevents server-side attacks such as the CSP identifying clients
who have uploaded a specific file. The file is always uploaded from the
client’s machine to the CSP, which mitigates side-channel attacks but pro-
vides no bandwidth savings. To save bandwidth, Liu et al. expand their
algorithm to use the randomized threshold solution proposed by Harnik et
al. [21] and covered in Section 4, thereby achieving the same information
leakage probability for the same bandwidth cost; see Table 2. Using the
randomized threshold approach makes the protocol susceptible to hash-only
attacks which can be mitigated through PoW schemes (see Section 5). In
the basic (server-side) version of Liu et al.’s protocol, hash-only attacks are
implicitly mitigated since the last step of the protocol involves a full upload
of the file E(H;(kr), F) from the client to the CSP. To fetch the client-side
encryption key, (some) previous clients must be online when the protocol is
run. Both versions of Liu et al.’s protocol, original and randomized threshold
extension, are included in our final comparison.

4. Probabilistic Upload-based Solutions

As discussed in Section 2.2, by uploading a file and observing the net-
work traffic, an attacker can establish if a given file is already in the cloud.
Such side-channel attacks can be mitigated through probabilistic upload solu-
tions by randomly performing artificial uploads (i.e., uploading a file already
present in the cloud) in order to weaken the correlation between the existence
of the file and deduplication. Probabilistic uploads do not address server side
channel attacks, but have the side-benefit of partially mitigating hash-only
attacks.

Harnik et al. [21] proposed the first randomized threshold deduplication
technique which has been improved upon by Lee and Choi [26] to provide

14

Artificial upload Full upload performed from a user’s machine to the
cloud, despite the uploaded file being available in the
cloud

Bandwidth penalty | The average number of artificial uploads performed
by a deduplication algorithm

Total info leakage | The probability with which an adversary can infer
either the presence or the absence of a file by ex-
ploiting deduplication

Table 1: Terms used in deduplication analysis

better privacy guarantees. In this section, we discuss these two proposals in
terms of privacy gain and bandwidth cost.

Randomized Threshold Deduplication [21]. For each file X, the storage
server uniformly generates a random threshold value tx € [2,d], with d a
public parameter (e.g., d = 30). The value of tx is known only to the server.
For every file X, the server also keeps a counter cx, which represents the
number of clients who previously uploaded copies of X. A new copy of X is
deduplicated only if cx > tx, or if the copy is uploaded by a client that has
previously uploaded X. For the first tx — 1 uploads of X, the occurrence
of deduplication is effectively hidden from users. The solution still allows an
attacker to identify if a file X has been uploaded by d users, or if no user
has uploaded the file. This information is leaked when the randomly selected
threshold tx happens to be d or 2.

The Harnik et al. [21] proposal allows an attacker to establish that a file
X has been uploaded by d users (with probability ﬁ), and that no user
has uploaded the file (with probability ﬁ) The two events (X present,
X absent) are mutually exclusive. However, for comparison purposes we
consider the total information leakage probability of the proposed system
as being ﬁ. By total information leakage probability we represent the
combined probability with which an adversary can learn that either one copy
or no copy of a target file X is present in the cloud.

The information leakage probability comes with a cost in bandwidth con-
sumption. For each file X, tx — 1 artificial uploads must be performed. Since
tx is chosen uniformly at random from [2,d], the mean (or expected) value
will be (d + 2)/2. Therefore, on average, the Harnik et al. [21] solution will

d

perform (txy — 1 = ©2 — 1 = 9) artificial uploads. We refer to the aver-

15

Algorithm HPS [21] LC [26]
Parameters d d,u; d = 3u
Total info. leakage % - independent file % (%)“ + (%)d
Total info. leakage % - n related files 1-(1-Z)" [1-{1—-(3)"— G)4"
Avg. bandwidth cost g g

Table 2: Overview of parameters and results in Harnik et al. (HPS) and Lee-Choi (LC).
Parameters d and v are all natural numbers.

age number of artificial uploads as the “bandwidth penalty”; see Table 1 for
terms used.

Although not directly addressed by the Harnik et al. [21] proposal, hash-
only attacks are inherently mitigated for the first ¢x — 1 uploads of X which
require a full upload from the client to the CSP. Hash-only attacks can be
mounted however once cx > tx and additional security controls such as PoW
schemes (Section 5) are required in order to mitigate them.

Improved Randomized Threshold Deduplication [26].

Lee and Choi [26] expand the randomized solution by lowering the total
information leakage probability. With d a public parameter, the server keeps
a counter cy for every file X, which represents the number of clients who
have previously uploaded a copy of X. The threshold tx is initialized with
the value of d. For each new uploaded copy of X, the server randomly selects
r €r {0,1,2} and performs ty = tx —r. X is deduplicated at the client side,
if cxy > tx. The authors also show that the total probability with which
an attacker can infer that either one copy or no copy of X was previously
uploaded is lowest when d is divisible by 3. In this case, the total information
leakage probability is (3)" + () where d = 3u. The associated bandwidth
penalty is g.

As is the case for the Harnik et al. proposal, hash-only attacks become
feasible once cx > tx.

By uploading not only the targeted file F', but also additional files cor-
related to F', the related-files attack can significantly increase the total in-
formation leakage probabilities for both Harnik et al. and Lee-Choi [38]. An
attacker can infer the presence of a targeted file by observing deduplication
occurring for any of its related files. Therefore, the total leakage probability

16

increases exponentially with the number of related files uploaded to the CSP;
see Table 2.

5. Proof of Ownership solutions

Hash-only attacks, as discussed in Section 2.3, can be mitigated using
data ownership proofs [7]. Before performing deduplication and linking data
to a user’s account, the CSP requests from the user random bits of the file,
to ensure that the user is actually in possession of the file and not only of
the hash values. Failure to provide the randomly requested bits of the file
will cause the server to not deduplicate the file, and require a full upload,
ensuring that only previously owned data is linked to a user’s account.

A similar concept is used in US patent 8528085B1 [24], where for each
uploaded file, the CSP generates a secret index referencing a random block
of the file. The index and the corresponding data block (or its hash value)
are stored along with the file’s hash value and used by the CSP to challenge
clients who try to upload a file already present in the cloud. The client is
requested to produce the file block referenced by the server-specified index.
If the block uploaded by the client is identical to the block in the server’s
storage, the entire file is deduplicated to the user’s account. Each time that a
client retrieves a file, its secret index is generated anew and the corresponding
file block (or it hash value) is used for the next challenge. For each file,
the CSP also stores an access control list (comprised of all accounts who
have uploaded the file), along with the file’s hash value, its secret index and
corresponding file block. Clients who are already on the access list are not
challenged with the PoW scheme.

Performing random seeks in the server’s storage for each uploaded (or
downloaded [24]) file is however costly for the server. As a response, a wide
array of proof of ownership (PoW) schemes were proposed (e.g., [52, 37, 19,
50, 18, 12]), to provide ownership guarantees without incurring a significant
cost to the CSP. Below, we summarize two representative PoW schemes.

PoW schemes of Halevi et al. [19]. Halevi et al. [19] introduced and
formalized the notion of proof of ownership (PoW), using the concepts of
proof of retrievability (PoR) [25] and proof of data possession (PoD) [2] as
a starting point. The proposed PoW solution uses a proof protocol, run
between a verifier that is in possession of the root value of a Merkle tree
and the number of leaves in the tree, and a prover who claims to know the
underlying buffer.

17

A Merkle [28; 42] or hash tree is constructed by splitting an input buffer
(e.g., the file to be deduplicated) into multiple blocks which are hashed and
become the leaves of the tree. These hash values are grouped in pairs and
each pair is again hashed, producing the parent of the group. The process
is repeated until a single hash value, the root of the Merkle tree, remains.
Each leaf node has a corresponding sibling path, which consists of the leaf’s
value and the values of all the siblings of nodes on the path from the given
leaf node to the root of the tree. The values of all nodes on the path from
a given leaf to the root can be computed from bottom to top, given just the
index of the leaf and its sibling path.

To verify that the client is in possession of a file, the server selects a
number of leaf indexes and asks the client to provide the corresponding leaf
values and the sibling path for each leaf. The server will accept the proof
if all sibling paths are valid. A sibling path is said to be valid if its length
(e.g., the number of nodes it contains) is the same as the tree height and if
the root value computed on the sibling path corresponds with the root value
stored on the server.

Three PoW schemes are proposed by Halevi et al. [19], each asking the
client for a valid sibling path for a subset of leaves of the file’s Merkle tree.
The Merkle tree is constructed from a buffer, derived from the original file,
but processed in a different way for each scheme: (1) an erasure coding of
the file, (2) a sufficiently large universal hash of the file or (3) a mixing and
reduction phase.

If an adversary possesses the entire Merkle tree for a file, she will pass the
verification process. The protocol allows to set a threshold for how short the
Merkle tree size can be. In a proof-of-concept implementation, a size of 64MB
is used. This effectively thwarts low-bandwidth hash-only attacks such as
the amplified covert channel attack from Section 2.3. A content distribution
system would suffer from such large (64MB) unique representations of a file,
but would still offer usage incentives for large files. To increase the cost of
transferring the unique representation of a file between content distribution
network peers, Halevi et al. propose to use multiple Merkle trees (e.g., one
over the file itself and one over an encoded version of the file). The server
would only need to store the hash of the two roots while the attacker would
have to obtain and transfer two entire trees.

As noted by Xu et al. [50], the schemes proposed by Halevi et al. do
not protect partial information of user files against a malicious client. As
a solution, Xu et al. construct a PoW scheme which is provably secure in

18

the random oracle model, for any input file distribution with sufficient min-
entropy. However, both Halevi et al. and Xu et al. PoW schemes are very
demanding for the client, in terms of I/O requirements and CPU cycles [12].

PoW scheme of Di Pietro et al. [12]. A different approach to the
ownership problem is proposed by Di Pietro et al. [12]: the cloud server has
two types of storage: a large capacity, but slow and resource-demanding back-
end storage system, which stores user uploaded files, and a small capacity
but low latency front-end storage system, used to store per file challenges
served to clients.

The Di Pietro et al. PoW scheme comprises two phases. When a file is
uploaded to the cloud provider for the first time (the file is not already present
in the cloud), the storage server computes responses for a tunable number
of PoW challenges and stores them on the fast storage front-end system.
The original file is stored on the back-end storage. During the second phase,
when an already existing file is uploaded to the cloud, the storage server will
serve a previously unused challenge from the front-end storage and compare
the client’s response with the pre-computed value. When the pool of unused
challenges is depleted, the server fetches the original file from the back-end
storage system and produces a new set of challenges and the corresponding
responses and saves them in the server’s front-end storage.

Any PoW scheme can be abused to turn the CSP into an oracle. An
attacker can use the outcome of any PoW scheme to query the CSP if a file
is present or absent in the cloud. If a file is absent, all PoW schemes will ask
the client for a full upload. However, when a file is already present in the
cloud, the client is asked to perform additional tasks in an effort to prove
to the CSP that it possesses the entire file. This difference in client-side
requests can be leveraged by an attacker to infer if a file is being uploaded
for the first time, or if the CSP is engaging in a PoW algorithm.

An intuitive solution, that hides from the client if a file is uploaded for
the first time or validated by a PoW scheme, is to run the PoW algorithm
every time, even for files that are not present in the cloud. The CSP would
of course be unable to validate the proofs received from the client and at the
end of the fake PoW run, the CSP must request a full upload to avoid data
loss. This means that even if the client possesses the entire file and correctly
answers all PoW challenges, the CSP will still request a full upload. Such
noticeable behavior can again be used as a side-channel.

19

A PoW scheme alone does not mitigate against the side-channel attacks
introduced in Section 2.2. On the contrary, PoW schemes offer an additional
way to establish the presence or absence of a file in the cloud, and should
therefore be used in conjunction with side-channel mitigation techniques.

6. Home Gateway-based Deduplication

To address side-channel attacks on deduplication, Heen et al. [22] pro-
pose to implement parts of the deduplication process in a user’s gateway de-
vice that connects the user’s home network to the Network Service Provider
(NSP). Below, we summarize this solution for a clearer understanding of the
weaknesses we describe in Section 7.

The gateway device is used to obfuscate the occurrence of deduplication
from both regular users and attackers. The deduplication process is concealed
by always copying a user file from the user’s computer to the gateway device,
and then mixing the deduplication traffic from the gateway device to the
NSP with other types of network traffic, as well as obfuscation traffic.

Heen et al.’s approach requires advanced home modem /router devices to
be used as gateway devices. Required features for the gateway device include
internal storage (500MB is presumed in the paper [22]), and three internal
modules: a gateway server (to copy data from the user’s PC to the gateway’s
internal disk), a gateway client (to upload data from the gateway disk to the
cloud), and a bandwidth manager (to schedule the upload to the cloud and
combine file data with other traffic for obfuscation purposes). The gateway
disk, the gateway client and the bandwidth manager are presumed to be in
a zone inaccessible to the user (Zone B); the user has access only to the
gateway server (Zone A); see Figure 1.

Every file the user wishes to upload to the cloud is copied in its entirety to
the gateway server, which saves the file to the internal storage, inaccessible to
the user. The gateway server then delegates the upload task to the gateway
client. The cloud storage service is queried by the gateway client for the
existence of the file in the cloud. If the file is not present in the cloud, the
file is added to the bandwidth manager queue. If the file is already present
in the cloud, nothing is added to the bandwidth manager queue and the file
is linked to the user’s account by the cloud storage provider. The bandwidth
manager will upload the file when needed, along with other traffic (legitimate
traffic such as web browsing and VoIP traffic, as well as obfuscation traffic).
After a possible delay, the file is deleted from the gateway disk.

20

[
o e S S S S S S —

Figure 1: Gateway-based cloud storage system — adapted from [22]. SSP stands for Storage
Service Provider

The bandwidth manager combines different types of traffic, catalogued
according to their QoS requirements: D (real time support, e.g., VoIP), F
(peer-to-peer traffic), F' (no QoS requirement, e.g., browsing traffic). The
aggregation of these traditional services is denoted by T'= {D, E, F'} (traffic
is inter-mixed). C' represents cloud storage traffic and O stands for obfusca-

21

Table 3: Bandwidth allocation for cloud storage and obfuscation traffic — adapted from [22]

tion traffic. The cloud (B¢) and obfuscation (Bp) bandwidths are allocated
as shown in Table 3.

In Table 3, Ix is a binary function indicating the presence (Iy = 1) or
absence (Ix = 0) of file X in the cloud. Ip is a binary function indicat-
ing whether the bandwidth required by the T services is smaller or greater
than By, (maximum bandwidth available on the gateway uplink). I = 1
if Br < By, and Ig = 0 otherwise. When I = 0, then Bp = 0 and
Be =0 [22]. The amount of bandwidth that can be allocated for obfuscation
traffic, a € [0, 1] can be adjusted; o = 0 offers maximum bandwidth savings,
but least resistance against the detection of deduplication, and o = 1 offers
no bandwidth savings, but most resistance against the detection of dedupli-
cation. O can be stuffing traffic or other useful traffic. Zone B of the data
path (see Fig. 1) is composed of the gateway client, bandwidth manager (im-
plemented as software or hardware modules) and the authenticated link to
the digital subscriber line access multiplexer (DSLAM). This zone is defined
as secure and inaccessible to an attacker/user, and thus assumed to provide
protection against the detection of deduplication.

7. Weaknesses of the Home Gateway-based solution

We discuss three weaknesses of the Gateway-based deduplication solution,
which can lead to deduplication detection at the client side without violating
assumptions as used by Heen et al. [22].

7.1. The Attacker’s Capabilities

We assume that the attacker is able to perform several actions, which
are consistent with the threat model used by Heen et al. An attacker has
access to zone A of the network model (see Fig. 1); i.e., the attacker has
full control over the traffic that reaches the gateway device and is able to
measure and monitor this traffic. The attacker also has physical access to
his own gateway device (e.g., he can unplug or reset the device). We also
assume that the attacker has a means of measuring the amount of traffic

22

that leaves the gateway device. This measurement can be performed with
dedicated network equipment or inferred from side channels, such as energy
consumption [8] or heat release [35] of the gateway device, or by observing
the network activity LED (or connecting it to a meter). Most router/modem
devices also offer real-time upload/download statistics on the device’s web
interface. ISPs also offer ways of querying a subscriber’s traffic stats. The
attacker is not required to inspect traffic that leaves the gateway device.

7.2. Zero Traffic Attack

According to Heen et al. [22], the gateway device makes it impossible
for an attacker to learn if a file is already present in the cloud by simply
observing the network activity. The attacker cannot distinguish between C'
(traffic generated from a file being uploaded to the cloud) and O (obfuscation
traffic between the gateway device and the DSLAM). This assumption may
be bypassed as follows.

An attacker in possession of a gateway device (as any legitimate user of
the service will have to be), can control traffic 7. (As depicted in Fig. 1:
Zone A, where the traffic T' is generated, is easily controlled by an attacker).
In particular, the attacker can purposefully generate no 7T traffic at all. In
this case (T' = 0), it follows that for Ix = 0 and Ip = 1, we have By =
Bz — Bo, Bo = Bo (see Table 3). So the total traffic that leaves the
gateway device will be Ty = Bmar — Bo + Bo = Bpa:- Whereas for
Ix =1,Ig =1, we have Bp = « - B4z, Bc = 0, and thus the total traffic
will be Trrota = - Bz

Therefore, if o # 1 the traffic transmitted for Ix = 0 (file is not present)
will always be greater than the traffic transmitted when the file is present
(Ix = 1). By simply observing the amount of traffic transmitted (as indi-
cated in Section 7.1), an attacker can know if a file has been deduplicated
or not, without the need to inspect the traffic. B,,., is known, or can be
easily measured. In a scenario where the attacker generates zero traffic T,
a bandwidth consumption of less than B,,,, will reveal that data is being
deduplicated.

Measuring «. We show that a has to be randomly generated for each file;
otherwise its value can be easily deduced and used to fine-tune the zero-traffic
attack. We consider the following cases: when « is fixed across different file
upload sessions, and when « is generated randomly for each session. If « is
not randomized before each transfer, its value can be easily deduced in the
following way (again, assuming 7' = 0):

23

1. The attacker generates a set of Xy files, filled with junk data (e.g.,
from /dev/urandom). For ease of measurement, the files can have the
same size. As the files are generated with pseudo-random data, they
will not be in the cloud storage.

2. The attacker uploads one file at a time, measuring the transmission
time for each file. According to the bandwidth manager algorithm (see
Table 3), the upload time for each file can be calculated as follows:

_ filesize(X;)

B ,forie{l...N}.

ta[d]

3. Next, the attacker uploads the same files again, one at a time. At this

point the files will already be in the cloud and the transmission time
for each file can be calculated as follows:

_ filesize(X;)

o B ,forie{l...N}.

tai]
4. By observing the time difference, an attacker can calculate the values

«; as follows:

M,forie{l...]\f}.

Nl
If o is the same for all uploads, all values of a; will be equal or slightly
fluctuate around the same value. If « is randomly generated before each
transmission, the attacker can gain insight into the random number generator
by observing «;.

Regardless of o being random or not, by simply measuring the amount
of traffic that leaves the gateway, the attacker can deduce if a file is being
deduplicated or not. This attack assumes that a # 1 and that the attacker
is able to set T" = 0. An obvious solution would be to always saturate the
uplink by generating an amount of traffic Bo = B4 — Br. This corresponds
to the case of @ = 1 - maximum resistance against deduplication attacks but
no bandwidth savings and is equivalent to server-side deduplication.

7.3. File Deletion Attack

The user’s home network transfers files to the gateway disk at a signif-
icantly higher rate (e.g., 1Gbps) than the rate at which files are uploaded
from the disk to the cloud (e.g., 1Mbps). This difference in transfer speed
can be exploited to infer when deduplication takes place. As shown below,

24

randomly delaying, pausing or throttling the transfer of files from the user
machine to the gateway disk does not mitigate this attack. Delaying the
deletion from the gateway disk of a file that has been transferred or linked
to the user account doesn’t help either.

The last step of the process that takes place when a user wishes to upload
a file is to delete the file from the disk:

“(9) At last, and with a possible internal delay, the file X is
deleted from the gateway disk.” [22] (section III-A, step 9).

The second attack can be launched just by knowing the size of the gate-
way’s internal drive. If the size is not present in the device’s specifications,
it can be easily obtained, e.g., by physically extracting the drive, since all
gateways of the same model will have the same disk capacity. We suppose,
as assumed in the paper, that the drive can hold a maximum of 500MB.

Step 1 of the process that takes place when a user uploads a file X to
the storage service provider (SSP) can be used to infer if deduplication takes
place or not. In the Heen et al. scenarios, the SSP (storage service provider)
and NSP (network service provider) are the same entity. We quote step 1 for
completeness [22]:

“The user client uploads the file X to the gateway server. This
upload is fast because it is performed at the home network LAN
speed (typically 8 seconds for a 1 GByte file on a 1 Gb/s home
network). The gateway server always accepts the file X from the
user, i.e., the gateway server does not apply deduplication. Once
the file uploaded, the user client is not anymore required in our
scenario: the end user is free to leave the home network or to
start another task.”

Assume that an attacker would like to check if Flile, exists in the cloud;
also assume the arbitrary size of 20MB for Filey. The attacker generates
Fileg of pseudo-random content, with the file size equal to the total disk
capacity of the gateway’s internal drive (in this example 500MB). The at-
tacker then proceeds to upload Filey to the cloud. As soon as Filey has
been transferred to the gateway’s disk (which can be observed by monitoring
the traffic between the attacker’s machine and the gateway), the attacker
initiates the upload of F'ileg to the cloud. However, Fileg cannot be stored
in its entirety on the gateway’s drive before File, is deleted. Files in turn

25

cannot be deleted from the drive before it exists in the cloud, either by being
copied from the gateway’s disk or because it was previously uploaded to the
cloud by a different user. If Filey does not exist in the cloud and must be
uploaded, the transfer of Fileg from the user’s machine to the gateway’s
disk will be delayed by the time it takes to upload and then delete Filey,.
This scenario of uploading in sequence 2 or more files with a combined size
exceeding the gateway’s disk capacity, remains unaddressed in the Heen et
al. proposal.

7.3.1. Simple Counter-Measures and Their Shortcomings

Below we briefly discuss four simple approaches to address the file deletion
attack; we also analyze shortcomings of these proposals.

(a) Delayed upload. In the first case, the gateway server might delay the
upload of Flileg until the drive has enough free space to hold the entire file.
However, the attacker can use this initial delay as an indication that F'ilea
is not being deduplicated.

(b) Simultaneous upload. Another approach would be to start the upload
of Filep to the gateway’s drive immediately, storing it in the available space,
i.e., total capacity — sizeof (Fliles). In our current example, the available
space is: (500 — 20)MB = 480MB. In this case, after copying a certain
percentage of Fileg to the gateway drive, the drive will have no more space
available and the upload must be paused until Flile, is deleted from the
drive. This pause can be used by an attacker to infer that F'ile, is being
copied to the cloud.

It is possible that the upload and deletion of Filey completes before
the drive runs out of space. The conditions for this event to occur can
be calculated as follows. In the case of Heen et al.’s 1Gbps home network
example, if Fliley is 20MB and Fileg is 500MB, the drive will fill up in 3.75
seconds. Considering that the stated ADSL uplink speed is 1Mbps, only
0.46875 MB of File4 will be uploaded to the cloud before the drive fills up.
For the given parameters (network speed and disk size), any Filey larger
than 500KB (the exact threshold is 499.507KB) will not be uploaded quickly
enough to free up the space for Fileg.

The 500KB value is obtained as follows. Assume a file of size X MB
that has been copied from the user’s machine to the 500MB gateway disk.
It takes 8 - X seconds (the uplink speed is 1 Mbit/s, and the filesize is given
in MBytes) to upload the file from the gateway device to the cloud over a

26

1Mbps uplink. It takes (500 — X) MB to fill up the drive. The time to copy
(500 — X) MB from the user’s device to the gateway disk is % sec
over the assumed 1Gbps connection. Therefore, in order for the file to be
uploaded to the cloud before the drive fills up, its size X must satisfy the
following relation: 5082_8)(>8X,or X < % = 0.48780 MB = 500 KB. The
time it takes to delete File, from the drive is assumed to be zero. Thus, for
any file larger than 500K B, an attacker can determine if it is being duplicated
or not.

Note that, the minimum size for Files, can be significantly increased
by using a larger gateway disk (e.g., to 9.99MB for a disk size of 10GB,
or 99.90MB for a disk size of 100GB). The size of Flileg could be limited
by the user’s cloud storage quota, if this value is known to the gateway
server. In such a scenario, the gateway server could disrupt or refuse the
upload of a file whose size (or amount of bytes already transferred to the
gateway disk) exceeds the user’s cloud quota. This hurdle can be easily
overcome by the attacker, by simply generating a series of pseudo-random
files, Fileg;, 0 < i < n, so that the size of Filep; is less than the user’s cloud
quota (minus the size of Filey if the available quota is updated before the
upload completes). A disrupted or delayed upload of any file Fileg; in the

series, indicates that F'ile, is not being deduplicated.

(c) Throttled upload speed. The gateway server can also throttle the
upload of Flileg to the gateway disk so as to provide enough time for File,
to be uploaded to the cloud. However, this change in upload speed can be
easily detected by an attacker.

(d) Delayed file deletion. To obfuscate if Filey has been deduplicated,
the deletion time must be delayed with a period equal to or greater than the
time it would take to perform the actual upload to the cloud. This is feasible,
since the gateway client knows the size of the file to be deduplicated as well as
the uplink speed. However, even in this scenario, the attacker can still learn
if a file is indeed uploaded to the cloud or just kept on the gateway disk for
a time equal to the upload time. By generating other types of upload traffic
(e.g., D, E, F) the attacker can saturate the upload link to various degrees
and further delay the deletion of File4. If the file is indeed uploaded from the
gateway’s disk to the cloud, the upload time will be delayed in accordance
to the other upload traffic that the attacker generates. These delays will be
reflected in the time it takes to upload F'ileg from the user’s device to the
the gateway disk. If instead the file has been deduplicated and its deletion is

27

delayed from the gateway disk with a pre-established value (calculated by the
gateway client from the filesize and uplink speed), the upload traffic that the
attacker generates will have no effect on the time it takes to upload Flileg.

7.4. Forced Power-Cycle Attack

An attacker may also detect file deduplication by interrupting the traffic
between the gateway device and the CSP. Since the attacker knows the size of
the file she is about to upload, as well as the uplink speed, she can calculate
the minimum amount of time that a full upload would take (e.g., a 50MB
file will take 6.6 minutes over a 1Mbps uplink). The attacker can unplug
or power-cycle the gateway device before a full upload would complete (e.g.,
after four minutes for a 50MB file).

If deduplication occurred, then the file would be linked to the attacker’s
account even though the gateway was disconnected. On the other hand, if
the file was not already present in the cloud, then the actual upload process
was terminated prematurely, and either no file or only a portion of the file will
be present in the attacker’s account. Even if the content of a user’s account
cannot be viewed from a device that does not connect through the gateway
device (e.g., a web interface accessed through a different Internet connec-
tion), it is still possible to infer deduplication as follows. After the gateway
device is reconnected, the attacker observes the amount of traffic that leaves
the gateway device (the attacker purposely generates zero T traffic; see Sec-
tion 7.2). If the file was deduplicated, no traffic will be sent after the gateway
device authenticates with the DSLAM. Traffic that would match the remain-
ing data to be uploaded indicates that a full upload was interrupted and is
now resumed. This assumes that the gateway device will try to re-upload
the file or resume a previously failed upload. If the upload is not re-initiated
or continued after an unexpected power cycle or disconnect, the attacker can
wait until the file is deleted (or perhaps trigger the deletion by uploading a
file of pseudo-random content whose size equals the disk capacity). Once the
file is deleted from the gateway disk, the attacker verifies if the file appears
in her CSP account. If the file is present in the attacker’s CSP account, it
means the file was deduplicated.

The attacks described above are made possible by weaknesses of the dedu-
plication algorithm that are exploitable due to the amount of control that
users have over their home gateway devices. The attacks can be mitigated by
either rethinking the deduplication algorithm, or by positioning the gateway
device outside of the user’s control. For instance, the gateway device could

28

be placed at the ISP level for home users, or a the DMZ/perimeter level for
corporate scenarios. In both cases, attackers would no longer be able to con-
trol the amount of traffic reaching the gateway device, measure the amount
of traffic leaving the gateway device, or power cycle the device. Given the
higher throughput and lower cost of subscriber-to-ISP and internal-network-
to-perimeter links compared to WAN links, the approach could still provide
implementation incentives. Of course, the gateway device would have to be
re-sized (and potentially redesigned) accordingly.

8. Storage Gateway-based Deduplication

Shin et al. [38] propose a storage gateway-based deduplication solution
that relies on a local, disk-attached network server, which resides at the cus-
tomer’s site, and acts as a broker between multiple users and the CSP. The
approach is targeted towards scenarios involving multiple users uploading
their data through the same local network storage server, such as a corpo-
rate setup (see Figure 2). By providing differential privacy guarantees, the
proposed deduplication algorithm is shown to mitigate side channel attacks,
including independent file and related files attacks (see Section 2.2).

The concept of differential privacy was introduced by Dwork et al. [16]
for the purpose of disclosure and inference control in statistical database
scenarios (i.e., releasing statistical data without compromising the privacy
of individual respondents). Intuitively, if the probability of any result of a
randomized function is almost independent of whether an individual item
is present or not in the input, the randomized function is said to satisfy
differential privacy. Formally, a randomized function R gives e-differential
privacy, if for all data sets D; and D, that differ in a single item, and all
S C Range(R), Pr{R(D1) € S} <e°- Pr{R(Dy) € S}.

Shin et al. observe that deduplication can be defined mathematically as
a function Rg(F), where a file F' is the input of the function R and the
amount of network traffic represents its output based on whether a storage
S contains the file F' or not. By assuming S; and S5 to be two storages that
differ only in the file ', Sy = S;U{F'}, a randomized function Rg(F) satisfies
e-differential privacy, if for all storages Sy and Sy and all 0 < 7 < filesize(F),
Pr{Rs,(F) =7} <e° - Pr{Rs,(F) =T}.

Side-channel deduplication attacks can be modeled as an attacker trying
to identify whether the storage S is 57 or Ss. Therefore, a deduplication
protocol that provides e-differential privacy is not susceptible to side channel
attacks. To also be resilient against related-files attacks, a deduplication

29

SSL/TLS

I_________ e ———

[Eufer 7] --;

Storage gateway

$

Customer's network

Figure 2: Storage gateway-based cloud storage system — adapted from [3§]

protocol has to prevent information leakage when an attacker uploads the
related files {F}, Fy,...F,},n > 1, meaning the probability of an attacker
distinguishing S from Sy = S1U{F1, Fy, ..., F,, } is the same as the probability
of distinguishing S; from Sy = Sy U {F'}.

30

The deduplication protocol is implemented on the storage gateway de-
vice, which determines the amount of traffic sent to the CSP by running a
differentially private algorithm. When a user uploads a file to the CSP, the
entire file is first transferred to the gateway’s local storage. The gateway de-
vice queries the CSP for the existence of the file by uploading the file’s hash
and receiving a true/false response. The amount of data to be transferred
from the gateway device to the CSP, 7 = [« - filesize(F')] is calculated by
using a Poisson-distributed random number with the mean « € [0, 1].

If F does not exist in the cloud, a < Poi(15¢) and a subset of 7 =
[- filesize(F)| bytes of F, {by,bs,...,b.} is transferred to the cloud. The
remaining bytes of F' are en-queued into a buffer T on the gateway device. If
F already exists in the cloud, o <= Poi(1£<), and 7 = [~ filesize(F)] bytes
of data {cy, ¢, ...,c. } are de-queued from the buffer 7" and then transferred
to the CSP.

If T' does not hold enough data, junk data (pseudo-random bytes) are sent
instead. Using a buffer 7', which holds complementary segments of already
uploaded file portions, the network overhead is reduced; data transmitted to
the CSP when uploading an already existing file will mostly consist of file
chunks that need to be uploaded in order to complete the transfer of previ-
ous files. Shin et al. show that the proposed protocol provides e-differential
privacy for both individual files and related-files scenarios.

The bandwidth penalty is smaller than in the Harnik et al. and Lee-Choi
proposals, since dummy data is uploaded only when the buffer 7" holds less
data than needs to be transmitted. However, unlike for Harnik et al. and
Lee-Choi, an overall average bandwidth penalty cannot be calculated. Each
time a file is deduplicated, the amount of artificial traffic sent to the CSP will
be given by the difference between the amount of data stored in the buffer T’
(a chunk of a previous file that needs to be uploaded), and the amount of data
that must be uploaded in order to satisfy e-differential privacy. This amount
is dependent on the size of specific files and the order in which they are
uploaded. Empirically, running 3TB of data through the proposed protocol
configured for the highest security guarantee (¢ = 0) resulted in 48GB of
artificial traffic (1.56%).

The zero traffic, file deletion and forced power-cycle attacks introduced
in Section 7 are not applicable since (i) the attacker has no longer control
over the gateway device; (ii) he is unaware of the disk capacity (which for
a storage gateway is likely to be larger than for a workstation); and (iii)

31

he does not have the advantage of a significant difference between the LAN
speed and the gateway uplink speed.

Both the home- and storage-gateway solutions always perform a full up-
load from the client to the gateway device, thereby mitigating hash-only
attacks. Since the solutions do not use any form of encryption, server side-
channel attacks are still feasible.

The effectiveness of gateway-based deduplication approaches is limited
in scope, since it only addresses attacks launched from behind the gateway
device. Files stored by large CSPs are accessible from all over the Internet
and side-channel attacks can be launched from networks whose traffic does
not pass through the proposed device, thereby circumventing its security
controls.

9. Comparison

Table 4 summarizes our comparison of existing solutions. We evaluate
these solutions in terms of security (i.e., prevention of known attacks), deploy-
ment cost (e.g., latency, throughput, bandwidth, CPU) and target environ-
ment. We also list special requirements and parameters for each solution, if
applicable. By design, server-side deduplication solutions will always perform
a full upload from the client to the server and are therefore not susceptible to
hash-only or client side-channel attacks. The downside of server-side dedu-
plication proposals is that they provide no bandwidth savings. Client-side
deduplication proposals on the other hand do not address all user attacks.

10. Conclusions

Cloud storage services are heavily used by both home and enterprise users,
cf. [14, 11]. Most such services strongly rely on (cross-account) deduplication.
Thus, deduplication is likely to remain in use for the foreseeable future, even
though existing deduplication mechanisms pose a significant threat to user
privacy. In this paper, we provide a systematic and comprehensive survey of
deduplication-related privacy attacks, perform a security analysis of several
leading mitigation proposals, evaluate their efficiency and deployability, and
present three attacks on a home gateway-based deduplication solution. While
most proposals address one specific exploitation method (e.g., POW schemes
or probabilistic uploads), none of the existing proposals attempt to address all
threat categories explored in this paper and at the same time take advantage
of both bandwidth and storage savings that deduplication can offer.

32

“1ogouwrered wo)sAs e st p *(spesodoid 10Y)-00T pue ‘TR o JIUIRY) OPIS JUSID Y] e
poreor[dnpap st o[y oY) ueym 10 ([esodord jual[IsaI-o8eyesr]) JUSI[O ® JO 9[0I o) sAe[d JS)) 9Y) USUM :S9SeD UIRLISD SI 9[(ISes] 9q
JYSTU FoRIJR BT[Y JRY) SYRIIPUI () IR)S Y 'sSulses y)pimpueq ou ap1aold g ‘syoe)je [PUURYD-OPIS IS pur ATUO-Ysel] 0} 9[qT)
-deosns jou axe suornos uoryesrdnpap opis-1oareg -syesodord uoryeoridnpsp Apustij-£oearrd Sursixe jo uostredwo)) :f 9[qe],

dnios ostidion
. odoos Aem
O pUe 901Adp Abaoyes -01e38 o3eI03S uol [9g] ‘Te 90 ut
09e109s ® sormboy] ‘Aoea X A A ¥ 3 J_ID 9¢] 'Te 99 uryg
03 pojyuury
-ud [RIJUSISPIP-3 SISP()
A1
S901A9p AeM0eE o oures oy uol [cg] Te 10 woa
owoy [ewads sormboy X X / i AN YLD cel T H
oIe JSN dSO
PasvqQ-fivmayny)
({701 Topun
neaerd S9AD 9)OLI}S0. o ‘T® 19 01391 J T
X X M ndo oo <go) | PORHIOTN LSfe) [21] T8 90 onard 1
peayIaA0 ndo
(@o1/s¢'1
‘INT/swgg .
X X A “8-0) PROYI0A0 PooLI}se.Iul) FLID [6T] 'Te 10 1aoreH
ndo IR
. - mod
p(5) 4 n(¥) st ¢/p Leuad
qoxd oSwyeo] -oJur (10T X A X qippreg | PORHISOTIN eIl [9g] 10D 23 997
ﬂ ot o/p Ayeuad 9)O1I}SOIU ot [1g] ‘Te 1o yure
‘qo1d oSeee] “OJuI 10T, X A X ypLpueg pojoLnysarur) LI 1¢] 'Te 19 qlurey
projdn 21751)19Dqo4q
=P o -
7~ St "qoxd ogexes] s .
‘OJUI [B}0], ‘UNI ST [020% 2/p £reus))
~o1d oy) WM SUIUO B M M «X . PoIOLI}soIU) ULl UOTSUIXD - [Lg] 'Te 20 NIy
0} pPo9U SJUSID SNOIADIJ
UNI ST [090)
-oxd oY) WoYM oUIUO dq N M M pojoLIsaIU) I9AIDG reutduo - [1g] ‘e 90 NIy
0} POdU SJUSID SNOIADIJ
wX X M PooLI}seIU) Jual[) [0g] quetIser-o8exear]
(%0€7) odoos Jz.d
Vs Va 2| dorp udysnonyy, | oy peymry TOAIDG [g1] ssaTdna ded
(42151) odoos
N N 2 fowore] FomION IOAIOS Koy I9AING [e] ssATdNQ
0} pojwurg
X X X pojoLIsaIU) JULI[D) | OPIS-HULID - [¢]] IUOSI0ATUO))
X M M PojoLI}seIU) IOATOG | OPIS-IOAILS - [gT] Jue810ATO))
uoydfiaousy
(dSD) (1050)) Auo JUSUIUOT opIs
[Puueyd | [PUUeyD 1500 :
apIg - Useq -TAUS 3931e], dnpe(
Srewed [PHonipPY PoJeSIIUL SYOR))Y juowdordo(]

33

Because deduplication can be abused in many ways, a secure end-to-end
solution has to be resilient against all types of known attacks on deduplication
and ideally offer both bandwidth and storage savings. Such a solution can
be achieved through a novel design or by combining existing solutions that
each address specific attacks. Ways in which different deduplication solutions
can be combined (e.g., combining PoW with probabilistic solutions) and how
efficient the various combinations would be have not been analyzed yet and
constitute a topic for future research. Our goal here is to highlight the missing
pieces and limitations of existing privacy-friendly deduplication proposals to
help attract more research in this area.

References

[1] P. Anderson and L. Zhang. Fast and secure laptop backups with en-
crypted de-duplication. In USENIX Conference on Large Installation
System Administration (LISA’10), San Jose, CA, USA, Nov. 2010.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Pe-
terson, and D. Song. Provable data possession at untrusted stores. In
ACM Conference on Computer and Communications Security (CCS’07),
pages 598-609, Alexandria, VA, USA, 2007.

[3] M. Bellare, S. Keelveedhi, and T. Ristenpart. DupLESS: server-aided
encryption for deduplicated storage. In USENIX Security Symposium,
Washington, DC, USA, Aug. 2013.

[4] R. Bhadauria and S. Sanyal. Survey on security issues in cloud com-

puting and associated mitigation techniques. International Journal of
Computer Applications, 47(18):47-66, June 2012.

[5] K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: The-
ory and implementation. In ACM Cloud Computing Security Workshop
(CCSW’09), pages 4354, Chicago, 1L, USA, Nov. 2009.

[6] Boxcryptor.com. Boxeryptor: encryption for your cloud storage. Multi-
platform solution for major cloud storage provider including Dropbox,
Google Drive, and Microsoft SkyDrive. https://www.boxcryptor. com.

[7] C. Cachin and M. Schunter. A cloud you can trust. [EEE Spectrum,
48(12):28-51, Dec. 2011.

[8] A. O. Calchand, P. Branch, and J. But. Analysis of power consumption
in consumer ADSL modems. Technical Report 100125A, Swinburne Uni-
versity of Technology, Jan. 2010. http://researchbank.swinburne.
edu.au/vital/access/manager/Repository/swin:19993.

34

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

A. Chakra, S. P. O’Doherty, J. Rice, and B. K. Yap. Embedding a
unque serial number into the content of an email for tracking information
dispersion. US Patent 20090187629 (publication date: July 23, 2009).

D. Chaum. Blind signatures for untraceable payments. In Crypto’s2,
pages 199-203. Springer, 1982.

CNET.com. Dropbox clears 1 billion file uploads per day. News
article (Feb. 27, 2013). http://reviews.cnet.com/8301-13970_7~
57571513-78/dropbox-clears-1-billion-file-uploads-per-day/.
R. Di Pietro and A. Sorniotti. Boosting efficiency and security in proof
of ownership for deduplication. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS’12), Seoul, Korea,
May 2012.

J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. Re-
claiming space from duplicate files in a serverless distributed file system.
In IEEFE International Conference on Distributed Computing Systems
(ICDCS’02), pages 617-624, Vienna, Austria, July 2002.

I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras.
Inside Dropbox: understanding personal cloud storage services. In Inter-
net Measurement Conference (IMC’12), Boston, MA, USA, Nov. 2012.

Y. Duan. Distributed key generation for encrypted deduplication:
Achieving the strongest privacy. In ACM Cloud Computing Security
Workshop (CCSW’14), pages 5768, Scottsdale, AZ, USA, Nov. 2014.
C. Dwork. Differential privacy: A survey of results. In Theory and Ap-
plications of Models of Computation (TAMC’08), pages 1-19. Springer,
Xi’an, China, Apr. 2008.

A. Fairless. Why SpiderOak doesn’t de-duplicate data across users.
Online article (Aug. 28, 2010). https://spideroak.com/articles/
why-spideroak-doesnt-deduplicate-data-across—-users—and-
why-it-should-worry-you-if-we-did.

C.-I. Fan, S.-Y. Huang, and W.-C. Hsu. Hybrid data deduplication in
cloud environment. In Information Security and Intelligence Control
(ISIC’12), pages 174-177, Taiwan, Aug. 2012.

S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of own-
ership in remote storage systems. In ACM Conference on Computer and
Communications Security (CCS’11), Chicago, IL, USA, Oct. 2011.

35

[20]

23]

[24]

[25]

D. Harnik, O. Margalit, D. Naor, D. Sotnikov, and G. Vernik. Estima-
tion of deduplication ratios in large data sets. In IEEE Symposium on
Mass Storage Systems and Technologies (MSST’12), Pacific Grove, CA,
USA, Apr. 2012.

D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud
services: Deduplication in cloud storage. IEEE Security and Privacy,
8(6):40-47, Nov—Dec 2010.

O. Heen, C. Neumann, L. Montalvo, and S. Defrance. Improving
the resistance to side-channel attacks on cloud storage services. In
International Conference on New Technologies, Mobility and Security
(NTMS’12), pages 1-5, Istanbul, Turkey, May 2012.

HowToGeek.com. How to encrypt your cloud-based drive with Box-
cryptor. Online article (June 28, 2011). http://www.howtogeek.
com/67074/how-to-encrypt-your-cloud-based-drive-with-
boxcryptor/.

A. Juels. Method and system for preventing de-duplication side-channel
attacks in cloud storage systems, Sept. 3 2013. US Patent 8,528,085.
A. Juels and B. S. Kaliski Jr. PORs: Proofs of retrievability for large
files. In ACM Conference on Computer and Communications Security
(CCS°07), pages 584-597, Alexandria, VA, USA, 2007.

S. Lee and D. Choi. Privacy-preserving cross-user source-based data
deduplication in cloud storage. In IEEE International Conference on
ICT Convergence (ICTC’12), pages 329-330, Jeju Island, Korea, Oct.
2012.

J. Liu, N. Asokan, and B. Pinkas. Secure deduplication of encrypted
data without additional independent servers. In ACM Conference on
Computer and Communications Security (CCS’15), Denver, CO, USA,
Oct. 2015.

R. C. Merkle. Secrecy, authentication, and public key systems. PhD
thesis, Stanford University, June 1979.

D. T. Meyer and W. J. Bolosky. A study of practical deduplication. In
USENIX Conference of File and Storage Technologies (FAST’11), San
Jose, CA, USA, Feb. 2011.

M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl.
Dark clouds on the horizon: Using cloud storage as attack vector and
online slack space. In USENIX Security Symposium, San Francisco, CA,
USA, 2011.

36

[31]

[32]
[33]

[34]

[35]

[36]

E. Rozier. The perils of cross-silo deduplication: Trading user security
for provider storage efficiency. In IEEE Workshop on Information Foren-
sics and Security (WIFS’13), pages 85-90, Guangzhou, China, Nov.
2013.

Safeboxapp.com. Safebox: Secure your life. Multi-platform encryption
tool for Dropbox. http://www.safeboxapp.com.

H. Shacham and B. Waters. Compact proofs of retrievability. In ASI-
ACRYPT’08, pages 90-107. Springer, Melbourne, Australia, Dec. 2008.
Z. Sheng, Z. Ma, L. Gu, and A. Li. A privacy-protecting file system on
public cloud storage. In Conference on Cloud and Service Computing
(CSC’11), pages 141-149, Hong Kong, China, Dec. 2011. IEEE.

I. J. Sherlock. Method for achieving adaptive thermal management of
dsl modems, July 6 2001. US Patent App. 09/900,394.

J. Shin, Y. Kim, W. Park, and C. Park. DFCloud: A TPM-based secure
data access control method of cloud storage in mobile devices. In IEFEE
Cloud Computing Technology and Science (CloudCom’12), pages 551—
556, Taipei, Taiwan, Dec. 2012.

Y. Shin, J. Hur, and K. Kim. Security weakness in the proof of storage
with deduplication. IACR Cryptology ePrint Archive, Report 2012/554,
2012. http://eprint.iacr.org/2012/554.pdf.

Y. Shin and K. Kim. Differentially private client-side data deduplica-
tion protocol for cloud storage services. Security and Communication
Networks, 8(12):2114-2123, Aug. 2015.

V. Shoup. Practical threshold signatures. In Furocrypt’00, pages 207—
220, Bruges, Belgium, May 2000. Springer.

C. Soghoian. How Dropbox sacrifices user privacy for cost savings. On-
line article (Apr. 12, 2011). http://paranoia.dubfire.net/2011/04/
how-dropbox-sacrifices-user-privacy-for.html.

Sophos.com. Many Amazon S3 cloud storage users are exposing
sensitive company secrets, claims report. Online article (Mar. 29,
2013). http://nakedsecurity.sophos.com/2013/03/29/amazon-s3-
cloud-storage-data-leak/.

M. Szydlo. Recent improvements in the efficient use of Merkle trees.
Online article (Mar. 10, 2004). http://www.emc.com/emc-plus/rsa-
labs/historical/recent-improvements-efficient-use-merkle-
trees.htm.

37

[43]
[44]
[45]

[46]

[47]

[50]

[51]

[52]

Tarsnap.com. Online backups for the truly paranoid. http://www.
tarsnap.com.

W. van der Laan. Dropship. Open source project (Apr. 2011). https://
github.com/driverdan/dropship.

Viivo.com. Cloud file encryption. Multi-platform encryption tool for
Dropbox, Box, Drive and SkyDrive. http://www.viivo.com.

C. Wang, Z.-g. Qin, J. Peng, and J. Wang. A novel encryption scheme
for data deduplication system. In International Conference on Commu-
nications, Circuits and Systems (ICCCAS’10), pages 265-269, Chengdu,
China, July 2010. IEEE.

Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li. Enabling public au-
ditability and data dynamics for storage security in cloud computing.
IEEFE Transactions on Parallel and Distributed Systems, 22(5):847-859,
2011.

D. Wilson and G. Ateniese. “To share or not to share” in client-side
encrypted clouds. In Information Security Conference (ISC’14), Hong
Kong, China, Oct. 2014.

Wired.com. New DRM will change the words in your e-book. News
article (June 17, 2013). http://www.wired.com/gadgetlab/2013/06/
new-ebook-drm/. Project site: https://www.sit.fraunhofer.de/de/
angebote/projekte/sidim/.

J. Xu, E.-C. Chang, and J. Zhou. Weak leakage-resilient client-side
deduplication of encrypted data in cloud storage. In ACM Symposium on
Information, Computer and Communications Security (ASIACCS’13),
Hangzhou, China, May 2013.

ZDNet.com. Epsilon data breach: What’s the value of an email address.
Blog post (Apr. 5, 2011). http://www.zdnet.com/blog/btl/epsilon-
data-breach-whats-the-value-of-an-email-address/46915.

Q. Zheng and S. Xu. Secure and efficient proof of storage with deduplica-

tion. In ACM conference on Data and Application Security and Privacy
(CODASPY’12), pages 1-12, San Antonio, TX, USA, Feb. 2012.

38

