
All Your Shops Are Belong to Us: Security Weaknesses in
E-commerce Platforms

Rohan Pagey, Mohammad Mannan, Amr Youssef
Concordia University

Montreal, Quebec, Canada
{r_pagey,mmannan,youssef}@ciise.concordia.ca

ABSTRACT
Software as a Service (SaaS) e-commerce platforms for merchants
allow individual business owners to set up their online stores al-
most instantly. Prior work has shown that the checkout flows and
payment integration of some e-commerce applications are vulnera-
ble to logic bugs with serious financial consequences, e.g., allowing
“shopping for free”. Apart from checkout and payment integra-
tion, vulnerabilities in other e-commerce operations have remained
largely unexplored, even though they can have far more serious
consequences, e.g., enabling “store takeover”. In this work, we de-
sign and implement a security evaluation framework to uncover
security vulnerabilities in e-commerce operations beyond check-
out/payment integration. We use this framework to analyze 32
representative e-commerce platforms, including web services of 24
commercial SaaS platforms and 15 associated Android apps, and 8
open source platforms; these platforms host over 10 million stores
as approximated through Google dorks. We uncover several new
vulnerabilities with serious consequences, e.g., allowing an attacker
to take over all stores under a platform, and listing illegal prod-
ucts at a victim’s store—in addition to “shopping for free” bugs,
without exploiting the checkout/payment process. We found 12
platforms vulnerable to store takeover (affecting 41000+ stores)
and 6 platforms vulnerable to shopping for free (affecting 19000+
stores, approximated via Google dorks on Oct. 8, 2022). We have
responsibly disclosed the vulnerabilities to all affected parties, and
requested four CVEs (three assigned, and one is pending review).

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
SaaS E-commerce Vulnerabilities, Access Control, Web Security

ACM Reference Format:
Rohan Pagey, Mohammad Mannan, Amr Youssef . 2023. All Your Shops Are
Belong to Us: Security Weaknesses in E-commerce Platforms. In Proceedings
of the ACMWeb Conference 2023 (WWW ’23), April 30-May 4, 2023, Austin, TX,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.
3583319

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30-May 4, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583319

1 INTRODUCTION
Not many online shop owners are well versed with technologies,
such as developing andmaintaining a website or a mobile app to sell
their products. Hence, online shop owners often rely on Software as
a Service (SaaS) e-commerce solutions that enable creating/manag-
ing online stores quickly and easily. According to recent reports,
Shopify, a Canadian SaaS e-commerce platform, is used by 1.75 mil-
lion merchants, generating a revenue of around $2.93 billion [4, 24].
The popularity of such platforms has increased over the past few
years, as it rejuvenated brick and mortar businesses, which were
interrupted due to the COVID-19 pandemic [7, 11].

A SaaS e-commerce platform is different than a normal shopping
website in terms of complexity, the number of components, and
their end-users. For example, there are more roles in a SaaS e-
commerce platform (than only customers in a shopping site); e.g., a
store owner who creates a store, and an order manager with access
only to the orders functionality. Such complexity may result into
serious security vulnerabilities, as evident from recent incidents [10,
22], exposing customer data and causing account takeover.

Prior academic studies have also revealed several security and
privacy issues related to business logic in e-commerce content
management systems (CMS) [20, 29]. Notably, Wang et al. [32] per-
formed security analysis of Cashier-as-a Service-based e-commerce
applications, and found that leading merchant applications and
online stores contain logic flaws that can be exploited to shop for
free. Following [32], Pellegrino et al. [20] explored more test cases
(generated/executed automatically) to detect logic vulnerabilities.
Existing work extensively focused on the checkout process or the
payment modules from a customer’s viewpoint; however, there are
more complex and vulnerable components/features with serious
consequences than just the payment module. Moreover, GraphQL
APIs (providingmore powerful functionalities than traditional REST
APIs) in e-commerce platforms have also not been analyzed yet as
they are relatively new (stable release in 2018).

This work intends to answer the following three research ques-
tions. First, whether operations other than checkout can be ex-
ploited in e-commerce platforms to shop for free, and if so, what
are the underlying vulnerable patterns? Second, are there security
consequences beyond shopping for free affecting these platforms?
Third, how are the platforms’ primary operations affected by unau-
thorized read/write access control issues and the use of GraphQL?

To answer these questions, we first identify a list of common op-
erations for SaaS e-commerce platforms, by analyzing the network
traffic, exploring the available functionalities and documentation.
We consider vulnerabilities from past work on e-commerce plat-
forms (e.g., [20, 29, 32]), known web attacks (e.g., [28]), OWASP API
top 10 [16], and GraphQL vulnerabilities [19]. Finally, we identify

https://doi.org/10.1145/3543507.3583319
https://doi.org/10.1145/3543507.3583319
https://doi.org/10.1145/3543507.3583319

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Pagey et al.

13 vulnerable patterns, and 6 categories of security consequences
regarding the common e-commerce operations beyond checkout.

We then design a security evaluation framework to analyze
the identified vulnerabilities in SaaS e-commerce platforms (both
websites and Android apps), and open source e-commerce tools
for setting up online stores. We collect network traces while in-
teracting with the application, and then detect vulnerabilities by
considering multiple types of API requests and GraphQL calls. We
rely on automation to detect all the core vulnerabilities. We de-
tect improper input validation and mass assignment manually in
the SaaS platforms due to ethical concerns. We store all the traffic
(original and tampered) in a flow file, and detect all the core vul-
nerabilities by automatically analyzing this file. Our approach to
detect broken authentication and access control is inspired from
an open source tool Auth analyzer [21]. We also support automatic
detection of vulnerabilities in API requests pertaining to creation
and deletion operations. While our chosen categories of core vul-
nerabilities can be applied in other web services, we customize the
vulnerable patterns and attacks for e-commerce platforms.

From the analysis of the 32 SaaS platforms, our framework re-
vealed various types of flaws with serious consequences. Examples
include: returning valid authentication tokens even for incorrect
passwords, and allowing the addition of unauthorized accounts
to another merchant’s store—both leading to platform-wide store
takeover; allowing users to arbitrarily change the balance in their
accounts or issuing refunds, checking for any authentication token,
i.e., not enforcing the token assigned to a specific account after
login—leading to shopping for free bugs.
Contributions and notable findings.

(1) We develop an experimental framework1 for systematically
evaluating security vulnerabilities in e-commerce platforms,
both in storefronts (visible to regular users) and store dash-
boards (visible to merchants). Our framework comprehen-
sively assesses all functionalities (beyond checkout/payment)
offered by leading e-commerce solutions—closed-source SaaS
products (via their websites and Android apps), and open
source solutions. Our framework incorporates traditional
web vulnerabilities as applicable to these e-commerce opera-
tions, and evaluates the newly-adopted GraphQL APIs.

(2) We apply our framework on 24 representative SaaS based
e-commerce platforms and 8 open-source solutions for mer-
chants, and reveal a total of 37 serious security vulnerabili-
ties, 12 of which allow platform-wide (i.e., affecting all stores)
full store account takeover and 6 flaws allow shopping for
free. More seriously, in 5/12 platform-wide account takeover
and 5/6 shopping for free attacks, the attacker requires to
know only the target’s public store URL. Overall, 18 plat-
forms are vulnerable to at least one major attack, and fail to
adequately preserve the security of store owners/customers.

(3) 12/32 e-commerce platforms have multiple store adminis-
trative functionalities vulnerable to access control flaws,
improper input validation, and cross-site request forgery—
allowing an attacker to takeover all the stores under them—a
total of 41,210 stores, as approximated via Google dorks. An

1https://github.com/rohanpagey/E-commerce-Security-Analysis-Framework

attacker can also access customer details of all users: email,
physical address, mobile phone number, and past orders.

(4) 6/32 platforms (nopCommerce, Storehippo, Okshop, Shoppiko,
Branchbob, Bikry) do not protect several e-commerce opera-
tions, e.g., profile/storefront management, order and coupon
handing, allowing an attacker to shop for free in all stores un-
der them—19,428 stores, as approximated via Google dorks.

(5) The open source platform nopCommerce (v4.50.2) is vulnera-
ble to improper access control, allowing an attacker to mod-
ify every customer’s address in a store. The vendor rolled
out a new version, fixing the issue in two days after our
disclosure. We requested a CVE for this vulnerability.

(6) A vulnerable GraphQL query in WooGraphql, which is an
extension forWoocommerce (estimated to be used by 5 mil-
lion stores as of 2022 [2]), allows an attacker to collect all
existing coupon codes of a store and use them to shop for
free, or a lower price. We are assigned a CVE ID for this.

(7) Another open source platform, AbanteCart (v1.3.2) is vul-
nerable to reflected cross-site scripting and SQL injection,
enabling an attacker to takeover a victim’s session by craft-
ing a malicious URL and luring the victim to click on it (by
exploiting XSS), and dumping the back-end database (by
exploiting SQLi). We are assigned two CVEs for these flaws.

Ethical considerations and responsible disclosure. The vul-
nerabilities are analyzed only on our own accounts. We refrain
from accessing sensitive information of other users. We shared our
findings with proof-of-concept attacks, security consequences, and
guidelines on possible fixes with the security team/developers of
the affected platforms. We have been gradually communicating
several times with the platforms in the past 6 months as the vulner-
abilities are found. Sellfy, Storehippo, AbanteCart and nopCommerce
have fixed our reported issues. Four platforms are still investigating
the issues: Swell, McaStore, Lovelocal andWooGraphql.

2 E-COMMERCE ENTITIES, THREAT MODEL
SaaS e-commerce entities. A merchant is the central/admin role
in SaaS e-commerce stores. They can build and customize an online
store and are responsible for managing merchant users, tracking
payment status, recording order details, and shipping products to
customers. A merchant account, if compromised, leads to a full
store takeover. A merchant user role in a store (e.g., store manager,
reseller, order manager) is added by a store’s merchant to support
various store operations. A customer is a self-registered entity in
the merchant’s store. Depending on the SaaS platform, a customer
can either register to a specific store, or create an account at the
platform, which can be used at any other store.
Threat model.We consider the following two types of attackers:
(i) platform-wide attacker, who can attack any store on a vulnerable
platform, simply by knowing the public victim-store URL; and (ii)
store-specific attacker, who can only attack a store by knowing some
non-public, (high-entropy) store-specific parameters, e.g., order
IDs of a store (known to some low-privileged merchant-users),
store coupon codes (known to some store users). Compared to the
platform-wide attacker, a store-specific attacker is limited in scope
(i.e., the consequences is limited to a store). We consider attacks

https://github.com/rohanpagey/E-commerce-Security-Analysis-Framework

All Your Shops Are Belong to Us: Security Weaknesses in E-commerce Platforms WWW ’23, April 30-May 4, 2023, Austin, TX, USA

that can be launched remotely, with or without requiring any user-
interaction; we also do not require any physical access to merchant
devices or SaaS platform infrastructures. We assume that attackers
can create their test merchant and merchant user accounts in a
target SaaS platform without paying any significant fees, ideally no
fees. (Note that such payments do not deter a motivated attacker, as
the returns are usually much higher than the imposed fees.) Also,
some attacks can be carried out using a regular customer account.
We do not consider network attackers as most network issues can
be solved by implementing HTTPS properly.

We consider four major attack goals that have significant secu-
rity consequences: (1) full store account takeover to perform all or
most actions that only a store merchant is authorized to do; (2)
store defacement to control the content on a storefront without full
store takeover (e.g., add/remove products); (3) shopping for free by
modifying existing product parameters, including a product’s price,
or any applicable discount/coupons; and (4) sensitive information
disclosure to compromise user/merchant privacy (e.g., historical
orders) and to exploit the exposed information for other attacks
(e.g., shop for free). We also take into account the following two
minor goals: (5) free membership to upgrade to a paid plan offered
by the platform, without paying any fee; and (6) denial of service to
exhaust the server’s resources by exploiting a website vulnerability.

3 SECURITY ANALYSIS FRAMEWORK
The security issues considered are inspired by previous research
in the e-commerce security [20, 28, 29, 32] and refined by us to
cover more vulnerabilities and attacks, as applicable to various e-
commerce operations. For this purpose, we systematically review
academic literature in web security [3, 5, 9, 12], and multiple non-
academic resources [1, 16, 17]. We consider the vulnerabilities that
can be exploited by a remote attacker as per our threat model, which
are relevant to SaaS e-commerce.
Overview. For each platform, we first create a merchant account
and capture the HTTP/S traffic as we explore the store dashboard
web application (or an Android app, if available). We let the traf-
fic pass through the MITM proxy and run a session modification
component in the background (with the authentication token of
an attacker merchant account, which we also create), while the
browsing merchant explores the platform interface. The session
modification component generates a flow file, storing all the HTTP
requests and responses generated by the modified and original
sessions. Thereafter, we automatically evaluate the flow file for
different security issues; see Fig. 1. For analyzing the open source
software for merchants, we download and deploy them locally on
our lab systems. All the vulnerabilities are detected automatically
for the open source platforms.

3.1 Broken Authentication and Access Control
For detecting these issues, we perform a sequence of steps: (1) we
create two merchant accounts as the victim and attacker; (2) we
login as the attacker account and supply her authentication token
to our session modification component; (3) we browse the store UI
from a victim account to generate API requests which we proxy
through the session modification component.

Figure 1: Overview of our proposed framework; all of the core
vulnerabilities are analyzed automatically except auxiliary
vulnerabilities, which are manual for SaaS platforms due to
ethical concerns; IIV: improper input validation.

In order to analyze all API requests, the session modification
component divides them into two types. (a) Requests that can be
successfully called multiple times without any modifications in
the request body while producing no errors; e.g., a GET request to
view user details or a POST call to update a customer name. For
these APIs, the session modification component sends the origi-
nal request to the server to get the expected response, and then
forwards the modified request (by swapping merchant/attacker
authentication tokens). Receiving the same response code and a
similar content-length for both requests indicates an access control
vulnerability. (b) Requests that generate errors when called more
than once. For example, a DELETE API call to remove an existing
customer can only be used successfully once because the server
would reply with e.g., “customer already deleted” message for all
subsequent calls. Similarly, a POST request to register a user can
only be called once (subsequent calls would generate a “user email
already exists” error from the server). Requests to create an object
also fall under this category, as they need unique parameters on
every call, e.g., each coupon object would need a unique coupon
code. Responses for the original and modified requests in this case
might not be the same (even if there is an access control vulnera-
bility). Hence the session modification component can determine
an access control violation by only sending the modified request,
and then checking the status code (e.g., 200 OK) and the response’s
content-length. To automatically classify the category of requests,
the session modification component checks the HTTP method and
the API endpoint of an incoming request. HTTP requests with a
DELETE method always fall under type (b). Also, by manually ex-
ploring some platforms we populate a list of keywords (see Table 3

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Pagey et al.

in the appendix) which are typically found in requests that fall un-
der (b). POST/PUT API requests that contain these keywords (based
on exact/partial matching) fall under type (b). All other requests are
categorized as (a). Besides analyzing broken access control issues
with the attacker merchant role, we also use other user roles. We
supply a target role’s (e.g., order-manager) authentication token
instead that of the attacker merchant’s, and automatically replay
the original requests from the saved flow file (store merchant). This
creates HTTP/S traffic for the user with a lower role, which is saved
in a new flow file. We then compare the newly created flow file
against the original one to identify any access control issues. We
also replay the saved original requests (from the merchant flow
file) by stripping off the authentication headers, and compare the
replayed and original traffic to detect broken authentication issues.

The flow files are also used as an input to other automated anal-
ysis components for detecting other core vulnerabilities (discussed
in the following sections).

3.2 Cross-Site Request Forgery (CSRF)
A successful CSRF [3] attack allows an adversary to trigger state-
changing requests (which can update some data on the server side–
e.g., HTTP requests with POST, and PUT methods) in the victim’s
session. In case of a merchant account, a site-wide CSRF would
allow an attacker to takeover all stores on the site. In order to
perform a CSRF attack, an attacker would first need the victim to
click on her exploit URL to trigger a CSRF. We leverage the fact that
a successful CSRF exploit requires three conditions to be satisfied
(as per OWASP [18]): the client and server must not work with
JSON data; there must not be any custom headers required in the
request; and the request does not contain any anti-CSRF token. For
each state changing request (extracted from the flow file), we first
check the content-type, and then search for anti-CSRF tokens in the
request, based on the token name. As these token names are usually
generic across different platforms, we can compare them exactly
(literal matching), or using regular expressions for partial match.
We create a list of regular expressions of such tokens based on
CSRF Scanner2. State changing HTTP requests that do not contain
anti-CSRF tokens are then flagged as vulnerable.

3.3 Insecure GraphQL
GraphQL is designed to be an improvement over REST API by al-
lowing the client to request only the needed data and hence solving
the problem of over-fetching unnecessary data. However, there are
some inherent features offered by GraphQL, which can make it
more vulnerable than a REST API, e.g., batching queries (read oper-
ation) and mutations (write operation). Batching allows GraphQL
to group multiple requests into one. GraphQL also enables nested
queries with a circular relationship, i.e., queries that reference each
other. These two features can be combined to cause denial of ser-
vice attacks (using nested/circular queries) [31] and brute-force
attacks, especially in case of authenticating mutations.3 We note
that a typical rate-limiting mechanism for regular APIs, would not
stop such attacks as those mechanisms are designed to block ex-
ecution of thousands of requests in a short-time frame but they
2https://portswigger.net/bappstore/60f172f27a9b49a1b538ed414f9f27c3
3A mutation that is responsible for authenticating a user.

would not detect a single request containing thousands of opera-
tions. Moreover, the errors returned from a failed GraphQL query
are very descriptive by default. If there are no custom errors defined
in the application, triggering a wrong GraphQL query would reveal
correct parameters required to make a successful call.

For analyzing an insecure GraphQL instance, we first detect
if the platform under testing is using GraphQL. We do this by
automatically searching the flow file for the presence of common
GraphQL endpoints.4 We also search on Google for any GraphQL
documentation for the e-commerce platform under testing. Then,
we use an open source GraphQL auditor tool [6] for detecting
batching attacks and circular queries.

4 ANALYSIS RESULTS
We use our framework to analyze the security posture of 32 rep-
resentative platforms, including 24 SaaS products (websites, and
15 Android apps for merchants/customers), and 8 open-source e-
commerce platforms. For the SaaS based platforms, we used “create
e-commerce store” and “best e-commerce builder” as search terms
on Google. Since Shopify is one of the largest platforms, we also
used “sites like shopify” as a search criterion. We also relied on
Wikipedia [33] for SaaS and open source platforms (e.g., whether
actively maintained and features offered). In the end, our selec-
tion of commercial web platforms includes a mixture of popular
platforms (e.g., Shopify, BigCommerce), and some new/emerging
platforms (e.g., Swell, Okshop). For Android apps, we used “sell
online” and “digital shop” as search terms on Google Play and se-
lected apps based on their installation/store counts, and availability
of a trial plan (we also used the “similar apps” feature of the Play
Store). Based on our results, we did not observe any correlation
between the type of vulnerability discovered and the programming
framework utilized by the platform.

In this section, we provide a summary of the findings and their
impacts; for an overview, see Table 2. For several attacks, the victim
store ID is required, which can be a store URL, a six-digit integer,
or a UUID string. In all cases, it can be found by simply making
a GET request to the public store URL. While some of the attacks
require the attacker to create their own shop, we found 5 vulnera-
ble patterns—OTP/token leaks, missing anti-CSRF token, account
info tampering, refund abuse, and coupon leaks/tampering—that
can be exploited by an attacker without registering her own shop.
These patterns can lead to serious attacks, e.g., store takeover and
shopping for free (see Table 1).

4.1 Store Takeover
We found at-least one store takeover attack in 12/32 platforms
through 4 common vulnerable patterns (see Table 1). Once logged
into the victim’s store as a merchant, an attacker can view customer
and merchant users’ data, e.g., email, physical address, mobile num-
ber; remove the victim merchant’s bank account, and link their own
account to withdraw the remaining order amount; and deactivate
the store altogether. (The analysis was done on our own accounts).
OTP/token leaks. The exposure of authentication tokens and
OTPs (of merchants) in API responses enabled full store takeover
in 3 platforms—McaStore, Okshop and Lovelocal. We could use the
4Endpoints = [’/graphiql’, ’/playground’, ’/console’, ’/graphql’]

https://portswigger.net/bappstore/60f172f27a9b49a1b538ed414f9f27c3

All Your Shops Are Belong to Us: Security Weaknesses in E-commerce Platforms WWW ’23, April 30-May 4, 2023, Austin, TX, USA

Attacks Vulnerable patterns E-commerce operations

Authentication Profile
management

Storefront
management

Order
processing

Coupon
handling

Store takeover

OTP/token leaks [A] ✗

Unprotected invitation [A][D] ✗

Missing anti-CSRF token [B] ✗

Session hijacking [C] ✗ ✗ ✗

Shopping for free

Account info tampering [A] ✗

Price tampering [A] ✗

Refund abuse [A] ✗

Coupon leaks/tampering [A] ✗

Store defacement Storefront tampering [A] ✗

Sensitive info disclosure Unauthorized read requests [A] ✗ ✗ ✗

Unprotected server database [C] ✗

Free membership Sensitive parameter tampering [A] ✗ ✗

Denial of service GraphQL cyclic queries [D]* ✗ ✗ ✗ ✗ ✗

Table 1: Vulnerable patterns in platform operations that result into major (the first four) and relatively minor (the last two)
attacks. [A]: Broken Access Control; [B]: CSRF; [C]: Improper Input Validation; [D]: Insecure GraphQL; [D]*: Tested on
introspection queries.

Platform Store
takeover

Shopping
for free

Store
defacement

Sensitive
info disclosure

Denial
of service

Free
membership

Bikry ★

Branchbob ★

Crystallize
GraphCMS
Lovelocal
McaStore
Mozello ★

Okshop
Shoppiko
Shopware
Storehippo
Swell
Wix
AbanteCart ★

Microweber ★

nopCommerce
Saleor
WooGraphql

Table 2: Overall results for security vulnerabilities in the tested platforms (with at least one major attack); : platform-wide
attacker and : store-specific attacker (★ implies victim interaction is needed); blank: not vulnerable. In instances where there
are multiple attacker types, we consider the worst one (e.g., platform-wide attackers are worse than store-specific attackers),
with the broadest scope; the last five platforms are open source.

leaked session tokens to successfully login into the victim’s ac-
count using a cookie editor [8]. For example, in Morecustomersapp
(50,000+ app installations), the server verifies an authentication
request correctly, but there is no connection between this verifi-
cation result and the generation of an authentication token; i.e.,
the token is sent to the client irrespective of the authentication
result (failure/success), even though the UI shows a “login failed”

message. An attacker can simply enter any password for a target
account (victim’s email address), and receive the victim’s authenti-
cation token, leading to full store takeover. The attacker needs to
use victim’s email address for a target attack, or simply a (large)
list of known user email addresses for a platform-wide attack.
Unprotected invitation. From the profile management UI, a store
merchant can invite new users to her store and assign them a

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Pagey et al.

desired role. We found that this functionality is insufficiently pro-
tected on Storehippo, Shoppiko and Swell. For instance, in Storehippo,
there is an API endpoint to add a merchant user into a store with a
defined role. A low-privilege user role cannot make this API call,
but any other merchant can call it to add merchant users into a
victim’s store. In Swell, only a low-privilege user could make such
calls, and hence, only a store-specific attacker can exploit this vul-
nerability. Also, in Crystallize, we found that GraphQL batching
queries were enabled by default. Upon exploring the available in-
trospection schema (documentation), we found a mutation used
to redeem the merchant invitation token. With batching queries
enabled, an attacker can guess the value of invitation tokens sent
out by a victim merchant, by associating thousands of aliases with
the redeem mutation, and then triggering a single GraphQL call. If
an invite token is found, an attacker can successfully impersonate
a low-privileged store user. We note that the invitation token is
16-character long, which may make the attack less practical as we
do not know how many tokens can be tested in a single GraphQL
call although there is no specified limit. Nevertheless, platforms
should disable batching for such sensitive operations.
Missing anti-CSRF token. We identify missing anti-CSRF tokens
as a vulnerable pattern, and if present in a sensitive e-commerce
operation, this vulnerability would lead to store takeover attack
(see Table 1). We found that 5/32 platforms are vulnerable to CSRF.
We note that a typical CSRF attack requires victim interaction. In
Mozello, no anti-CSRF tokens are present in the merchant’s store
settings flow; an attacker can craft a form for settings modification
(including the associated email) and may trick the victim to submit
the form, thereby taking over the merchant’s store.
Session hijacking. 5/32 e-commerce platforms fail to properly
validate the supplied inputs, and are vulnerable to injection attacks
described in Appendix A.2. In AbanteCart, we found that the update
user page is vulnerable to reflected XSS via the user_id parameter.
Although most of the HTML characters were properly sanitized,
we found unescaped HTML characters – e.g., '{}() – are reflected
in the response. Since the values were reflected inside JavaScript
code, we could use the unsanitized characters to execute our own
JS code. An attacker could input malicious JavaScript code inside
the user_id parameter and send the URL to any authenticated user;
the Javascript code can be used to steal victim’s session tokens
resulting in account takeover. In Bikry, we found that a XSS payload
injected in product reviews (as a customer), was reflected as it is
in the merchant’s store dashboard. An attacker could exploit this
vulnerability by first registering as a customer in the victim’s store
and then droping a malicious Javascript payload inside a product
review, which would execute on the victim’s store dashboard.

4.2 Shopping for free
6/32 platforms can be exploited to shop for free or lesser amount via
four vulnerable patterns: account information tampering, product
price modification, refund approval and coupon leaks/tampering.
Account information tampering. By unauthorized modification
of account details, e.g., the customer wallet balance and physical
address, an attacker can shop for free, as found in the case of Store-
hippo and nopCommerce, respectively. In Storehippo, a merchant can
add some balance to a customer’s wallet, which can be used by the

customer while checking out a product. However, we found that
the server does not verify the user calling this API. As a result, any
malicious customer could target the profile management operation
(designed for any merchant here) to assign arbitrary balance to
their own wallet and purchase store items for free. In nopCommerce,
we found a redundant address ID parameter in the modify address
functionality–one in the URL (which is validated by the server), and
another in the request body (not validated). An attacker can exploit
this by supplying their own address ID in the URL, and the victim
customer’s address ID in the request body. Note that the address
ID parameter is 2-3 digit long and can be easily enumerated. The
server’s validation will be successful (as it is only checking in the
URL) and the victim’s address will be updated. An attacker can au-
tomate this to modify all customers’ addresses in a store. A vigilant
customer may notice their shipping address before finalizing an
order; otherwise, the items will be shipped to the attacker.
Price tampering.We do not modify the product’s price in a typical
checkout process [29, 32], rather we show another e-commerce
operation (store management) in which an attacker can modify the
price to shop for free. For example, in Okshop (500k+ installations),
an attacker can generate a product modification request with the
victim’s store ID and any desired product price, including zero,
from her store dashboard. This request returns success, as Okshop
only checks the existence of any authentication token (i.e., not
necessarily the target’s token) from a merchant role. The attacker
can now go to the victim’s storefront and authenticate as a customer
to place an order for the tampered product for free. In order to avoid
any obvious suspicion, an attacker can also change the price to a
non-zero value, such as a cent. We note that once the attacker
modifies the product’s price, a legitimate customer can also shop
the affected product for a lesser price.
Refund approval. An access control vulnerability in the refund
functionality would allow an attacker to approve her own refund
requests, resulting in shopping for free. For instance, in Storehippo
andOkshop, anymalicious customer can trigger an “approve refund”
API call, which has no access control (i.e., requires no merchant
approval). An attacker can exploit this by first filling the refund
form (for her own order), and then triggering the process refund
API call (supplying her own order ID).
Coupon leaks/tampering. Exposure of undisclosed coupon codes
can result in shopping for free or a lesser price. For instance, in
WooGraphql (v0.11.0) a popular extension for Woocommerce, we
found a missing access control check on a GraphQL query (used
for fetching the coupon codes). Given a valid coupon ID, anyone
(without authentication) can make a GraphQL call to disclose the
corresponding coupon code and the associated amount. The coupon
ID for a particular shop in WooGraphql is a 3 digit integer (Base64
encoded). An attacker can enumerate all existing coupon codes by
brute-forcing the coupon IDs via the vulnerable GraphQL query,
and use the codes to reduce a product’s price. Similarly, in Branch-
bob, each added coupon code is assigned a coupon_id, which is a 32
character long UUID value; the stores distribute only the coupon
codes to their customers, and not the UUID values. However, the
UUID is leaked when a customer applies a given coupon code into
the cart. A malicious customer can then make an API call to modify
the coupon’s value and apply it to their cart to shop for free. We

All Your Shops Are Belong to Us: Security Weaknesses in E-commerce Platforms WWW ’23, April 30-May 4, 2023, Austin, TX, USA

note that this issue can only be exploited by a store-specific attacker,
as she would need a valid coupon code for a particular store.

4.3 Store defacement
5/32 platforms are vulnerable to unauthorized store defacement
attacks through storefront tampering.
Storefront tampering. Unprotected storefront management inter-
face allows storefront tampering in Storehippo, Shoppiko, Shopware
and Branchbob. In Storehippo and Shoppiko, a merchant attacker can
add any malicious HTML code, such as a form to collect plain-text
customer credentials from the victim’s store. An attacker can also
add random products given a store ID. In Branchbob, the store dash-
board allows merchants to create new pages inside the store, which
requires proper authentication; however, existing pages remain un-
protected against modification attacks. The API call to edit a page
includes three parameters: store ID, page ID, and content. We found
an API call (can be called by any unauthenticated user) disclosing
the store ID and every existing page’s ID in the HTTP response. An
attacker can then add images, videos, texts, any HTML code, along
with forms and JavaScript code, e.g., to collect customer data; she
can also modify the privacy policy, and terms and conditions.

4.4 Sensitive information disclosure
11/32 platforms disclose sensitive information due to unauthorized
read requests, and one of them discloses due to an unprotected
server database.
Unauthorized read requests. In Storehippo, we found an API
disclosing user details such as the name, email and role of all mer-
chant users. First, the request does not have sufficient access control
checks and an attacker with a merchant role could make this API
call for a victim’s store. Second, upon further inspection (from
API documentation), we found the parameter fields can be used
to display selected profile item. We supplied a blank array in the
fields value and the response from server contained all merchant
users’ data (for a single store), including: email, password (hashed),
address, mobile number, OTP, activation code, role, and IP address.
Note that these vulnerabilities are evaluated on our created stores
only. An attacker can gain access to any store merchant’s data by
supplying the victim’s store ID. In Crystallize, a merchant user can
see name, email, and role of all the invited as well as existing store
users due to an access control vulnerability.
Unprotected server database. We found a time-based blind SQL
injection in AbanteCart’s customer update functionality (accessible
to merchant). The SQLi allows a store-specific attacker to dump
AbanteCart’s database containing all the store’s information such
as the registered customer emails, passwords, order details, and so
on. Although the information leaked is sensitive, an attacker would
need a merchant role on a store to exploit this vulnerability (i.e.,
a store-specific attack). However, a malicious merchant can learn
customer passwords which should not be available to anyone.

5 DISCUSSION
In this section, we discuss our manual efforts, limitations, lessons
learned, and recommendations for platform owners and merchants.
Manual efforts. First, we manually browse the platforms as a store
merchant while observing all the available roles. Since merchant is

the highest role, browsing with it helps to cover more API URLs and
generate a proper baseline request/response in the flow file. While
manually browsing the store, we also need to observe available
roles, and the type of authentication offered by the platform, such
as cookie-based or header-based authentication. Second, we collect
the session cookies for each platform by logging into the store
and by analyzing the Set-Cookie response header from the Chrome
browser’s network tab (via the inspect element functionality). The
browsed traffic and the session cookies help us to generate a flow
file (containing HTTP traffic) by running the session modification
component as described in Sec. 3. Manual browsing can be auto-
mated, with the risk of missing some critical features (e.g., the ones
under several layers of menu/UI items).
Limitations. (1) Our detection of injection attacks, and mass as-
signment vulnerability is fully manual (for SaaS platforms) due
to ethical reasons (automated in our local setup for open source
solutions). (2) Since we pre-define the list of keywords to detect
the API requests that generate error upon multiple calls, we cannot
determine new keywords on the fly. However, the list can be easily
extended to include more relevant keywords. (3) We do not consider
finding flaws in the payment systems or the checkout process as
previous work extensively covered them (see Sec. 6). Moreover, we
do not analyze other vulnerabilities from the OWASP testing guide,
such as remote code execution (very few operations in e-commerce
that can lead to remote code execution). (4) We evaluate platforms
that offer a free/trial version for the merchants, not the paid-only
platforms or the ones that require merchant/business identity ver-
ification (e.g., Taobao). Such platforms may pose new challenges,
and have other categories of vulnerabilities (e.g., in ID verification
steps). Even though these platforms might have a merchant vetting
system, most of the attacks shown in our work can be conducted
without requiring a merchant account.
Lessons learned. Based on our systematic study of 32 representa-
tive e-commerce platforms, we have some interesting and important
observations. (1) The operational functionalities in e-commerce be-
yond checkout and payment can also have similar (shopping for
free) and in some cases even much more significant security con-
sequences (platform-wide store takeover). E-commerce operations
(beside checkout) that can cause shopping for free include: profile/s-
torefront management, and order and coupon handling; see Table 1.
(2) Based on our results, access control vulnerabilities are more
common compared to other types, which are also easier (i.e., no
victim interaction is needed) to exploit than e.g., injection attacks
or CSRF. This is possibly due to the fact that injection attacks or a
CSRF can generally be prevented by the underlying framework that
the platforms are built on, and there are predefined functions for
input validation that the developers can use. However, for imple-
menting a secure access control, the developers have to understand
the underlying business logic, available roles, and properly imple-
ment role-to-object access mapping. (3) Some platforms rely on
the confidentiality of object IDs in order to prevent access control
issues. This is not an appropriate mechanism as the object IDs may
be extracted from other API responses. (4) Lastly, we observe that
e-commerce platforms are progressively incorporating GraphQL,
which has its own security risks such as batching attacks and de-
scriptive errors. These new vulnerabilities can provide powerful
attack vectors for brute-forcing and denial of service.

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Pagey et al.

Recommendations. The vulnerable SaaS e-commerce providers
should immediately fix the identified issues. Despite platform-level
affects, some providers are slow in their response (as evident from
our disclosure experience). They should also repeatedly use security
frameworks like the proposed one, especially, when new features,
roles are added, or security measures are modified. Merchants can
also take advantage of our framework to check the security posture
of a platform before selecting one. Customers, on the other hand,
cannot take any active measure to detect/fix these vulnerabilities.
However, along with a merchant’s reputation/rating, they may also
take into consideration the reported security/privacy weaknesses
(if any) of the merchant’s platform.

6 RELATEDWORK
Prior studies [20, 29, 32, 34] mainly focus on the security of the
checkout process in an e-commerce storefront (visible to customers),
and reveal numerous logic flaws when integrating services of third-
party cashiers. Wang et al. [32] conducted the very first detailed
study on Cashier-as-a-Service based web stores, and found serious
logic flaws allowing a malicious shopper to purchase items for free.
Xing et al. [34] proposed a proxymodel for testing stores that rely on
third-party checkout integration and single sign-on authentication.
Sun et al. [29] proposed a static analysis mechanism for detecting
logic vulnerabilities in e-commerce applications while focusing on
logic flow of the checkout process. In contrast, we focus on the
merchant dashboard and other store management features, which
revealed even more serious security flaws (e.g., store defacement,
and platform-level attacks affecting all stores).

Sun et al. [30] analyzed scam operations on merchant sites, in-
cluding the refund process scams, demonstrating an attack vector
(involving social engineering) to shop for free by scamming the
merchant. We also found similar issues in Storehippo, where an
attacker can directly make an API call to exploit the refund API
without requiring any victim interaction or social engineering. Xu et
al. [35] discussed the emergence of an underground market called
seller-reputation-escalation (SRE) markets, where online sellers
can hire human labourers to conduct fake transactions in order to
improve the reputation of their stores. Giancarlo and Davide [20]
proposed a black-box approach to detect logic vulnerabilities in web
applications, using an application-independent model interference
technique. They capture network traces between the client and
server, and create a navigation graph from the traces. Then they
extract access control patterns related to the underlying application
logic by applying some heuristics. Then test cases and attack pat-
terns are created to find parameter tampering and workflow bypass
vulnerabilities (in open source e-commerce solutions). However, as
the authors mention, their approach is not designed to detect other
types of logic vulnerabilities, e.g., unauthorized access to resources.
As their test cases involve malformed operations, they evaluate
only the open source platforms. Similar to past work (see below),
they also applied their framework on the checkout process in a
customer-facing storefront.

Security concerns pertaining to the payment systems [13, 15, 36]
in e-commerce have also been studied extensively in past research.
Yang et al. [36] analyze major Chinese third-party in-app payment
systems, which are integrated in many Chinese Android apps. They

report serious implementation flaws in the implementation code
of 2,679 apps, and also reveal design issues in the payment SDKs.
These flaws generally allow an attacker to shop for free in various
ways. Beyond large commercial payment services, Lou et al. [13]
conducted a systematic study on 35 Chinese personal payment sys-
tems, which are also integrated with many apps and web services.
They found at least one security vulnerability in each of the ana-
lyzed payment systems, resulting into financial losses for payment
systems, businesses relying on them, and users.

Researchers have also developed generic open source automation
tools [14, 21, 23] for detecting unauthorized read/write vulnera-
bilities in web applications. Generally, these tools replace session
tokens or selected parameters in the original request, and then
detect unauthorized access by comparing the differences between
the modified and original responses. However, some tools [14, 23]
do not handle the requests that generate error upon multiple calls.
Auth-analyzer [21] is an improvement over the other tools as it
supports all types of requests, although manual effort is needed for
handling different request types. Our approach for detecting broken
authentication and access control issues is based on auth-analyzer,
and we automate distinguishing different types of requests based
on e-commerce related keywords (see Table 3 in the appendix).

In summary, we conduct a comprehensive, systematic study of
security vulnerabilities in e-commerce platforms, covering both
the storefront (exposed to regular customers) and store dashboard
(exposed to store operators only). We show that there are more
vulnerable components than just the checkout process, even within
a storefront (such as modifying customer details, adding coupon
code). Our framework supports websites, Android apps, and open
source products, since our core vulnerabilities do not involve cre-
ating any malformed operations as in [20]. Our analysis therefore
sheds light on the broader picture of security vulnerabilities on
e-commerce platforms. Since the logic vulnerabilities in checkout
and payment systems have been extensively covered in prior work,
we exclude them in our work. Rather, we show new attack vectors
that lead to the same consequence as a vulnerable checkout process
such as shopping for free. Our attack vectors would work even if
the checkout process is securely implemented.

7 CONCLUSION
SaaS based e-commerce platforms are hosting an ever increasing
number of stores, but security vulnerabilities can affect such store
merchants and users alike, if proper protection mechanisms are
not enforced. Our security evaluation framework is effective in
terms of finding new vulnerabilities and answering our research
questions. We found operations beyond checkout/payment, e.g.,
profile/storefront management, and order/coupon processing, can
be easily exploited to shop for free. Beyond shopping for free, we
also found more serious issues: platform-wide store takeover, store
defacement, and large-scale information disclosure. Several of our
findings are due to unauthorized read/write access control issues
and the use of GraphQL. Overall, we hope our work can improve
the platform security, and inspire other researchers to devise more
comprehensive frameworks for effective security evaluation.

All Your Shops Are Belong to Us: Security Weaknesses in E-commerce Platforms WWW ’23, April 30-May 4, 2023, Austin, TX, USA

REFERENCES
[1] Cross site scripting (XSS). https://owasp.org/www-community/attacks/xss/.
[2] Barn2.com. How many websites use WooCommerce? https://barn2.com/

woocommerce-stats/.
[3] S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and G. Tolomei. Mitch: A machine

learning approach to the black-box detection of csrf vulnerabilities. In IEEE
European Symposium on Security and Privacy19, 2019.

[4] B. Dean. Shopify revenue and merchant statistics in 2022. https://backlinko.com/
shopify-stores.

[5] K. Drakonakis, S. Ioannidis, and J. Polakis. The cookie hunter: Automated black-
box auditing for web authentication and authorization flaws. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security,
Nov. 2020.

[6] D. Farhi. GraphQL security auditor. https://github.com/dolevf/graphql-cop.
[7] Folio3.com. Growing popularity for SaaS e-commerce platforms. https://

ecommerce.folio3.com/blog/ecommerce-saas-platforms/.
[8] C. Gagnier. Cookie-editor. https://cookie-editor.cgagnier.ca/.
[9] M. Ghasemisharif, C. Kanich, and J. Polakis. Towards automated auditing for

account and session management flaws in single sign-on deployments. In IEEE
Symposium on Security and Privacy, 2022.

[10] Imperva. The state of security within e-commerce 2021. https:
//www.imperva.com/resources/reports/TheState_ofSecurityWithin_
eCommerce2021_report.pdf.

[11] B. Joseph. 5 reasons of growing popularity of SaaS e-commerce plat-
forms. https://www.linkedin.com/pulse/5-reasons-growing-popularity-saas-
ecommerce-platforms-binny-joseph/.

[12] X. Likaj, S. Khodayari, and G. Pellegrino. Where we stand (or fall): An analysis of
CSRF defenses in web frameworks. In 24th International Symposium on Research
in Attacks, Intrusions and Defenses, San Sebastian, Spain, Oct. 2021.

[13] J. Lou, X. Yuan, and N. Zhang. Messy states of wiring: Vulnerabilities in emerging
personal payment systems. In 30th USENIX Security Symposium (USENIX Security
21), Aug. 2021.

[14] J. Moore. AutoRepeater: Automated HTTP request repeating with Burp Suite.
https://github.com/nccgroup/AutoRepeater.

[15] C. Mulliner, W. Robertson, and E. Kirda. VirtualSwindle: An automated attack
against in-app billing on Android. In ACM ASIA CCS’14, Kyoto, Japan, 2014.

[16] OWASP. API top 10 - 2019. https://owasp.org/www-project-api-security/.
[17] OWASP. Session fixation. https://owasp.org/www-community/attacks/Session_

fixation.
[18] OWASP. Testing for cross-site request forgery. https://owasp.org/www-project-

web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-
Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery.

[19] OWASP. Testing GraphQL. https://owasp.org/www-project-web-security-
testing-guide/latest/4-Web_Application_Security_Testing/12-API_Testing/01-
Testing_GraphQL.

[20] G. Pellegrino and D. Balzarotti. Toward black-box detection of logic flaws in web
applications. In Network and Distributed System Security Symposium (NDSS’14),
San Diego, CA, USA, Feb. 2014.

[21] S. Reinhart. Auth analyzer. https://github.com/PortSwigger/auth-analyzer.
[22] E. Roberts. E-commerce-under-attack. https://www.optiv.com/insights/discover/

blog/black-friday-cybersecurity-covid-ecommerce-under-attack.
[23] SecurityInnovation.com. Authmatrix: Testing authorization in web applications

and web services. https://github.com/SecurityInnovation/AuthMatrix.
[24] Shopify.com. 2022 shopify’s biggest year ever. News article (February 16, 2022).

https://news.shopify.com/2021-was-shopifys-biggest-year-ever-2022-lets-go.
[25] Somdev Sangwan. Arjun HTTP parameter discovery suite. https://github.com/

s0md3v/Arjun.
[26] Somdev Sangwan. XSStrike. https://github.com/s0md3v/XSStrike.
[27] Sqlmap.org. SQLMap. https://github.com/sqlmapproject/sqlmap.
[28] A. Sudhodanan, A. Armando, R. Carbone, and L. Compagna. Attack patterns

for black-box security testing of multi-party web applications. In NDSS’16, San
Diego, CA, USA, Feb. 2016.

[29] F. Sun, L.Xu, and Z.Su. Detecting logic vulnerabilities in e-commerce applications.
In Network and Distributed System Security Symposium (NDSS’14), San Diego, CA,
USA, Feb. 2014.

[30] Z. Sun, A. Oest, P. Zhang, C. Rubio-Medrano, T. Bao, R. Wang, Z. Zhao, Y. Shoshi-
taishvili, A. Doupé, and G.-J. Ahn. Having your cake and eating it: An analysis
of Concession-Abuse-as-a-Service. In USENIX Security Symposium, Aug. 2021.

[31] Wallarm. GraphQL batching attacks. https://lab.wallarm.com/graphql-batching-
attack/.

[32] R. Wang, S. Chen, X. Wang, and S. Qadeer. How to shop for free online–security
analysis of cashier-as-a-service based web stores. In 2011 IEEE symposium on
security and privacy, 2011.

[33] Wikipedia. Comparison of shopping cart software. https://en.wikipedia.org/
wiki/Comparison_of_shopping_cart_software.

[34] L. Xing, Y. Chen, X. Wang, and S. Chen. InteGuard: Toward automatic protection
of third-party web service integrations. In NDSS’13, San Diego, CA, USA, Feb.

2013.
[35] H. Xu, D. Liu, H. Wang, and A. Stavrou. E-commerce reputation manipulation:

The emergence of reputation-escalation-as-a-service. In Proceedings of the 24th
International Conference on World Wide Web, Florence, Italy, May 2015.

[36] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu. Show me
the money! Finding flawed implementations of third-party in-app payment in
Android apps. In NDSS’17, San Diego, CA, USA, Feb. 2017.

https://owasp.org/www-community/attacks/xss/
https://barn2.com/woocommerce-stats/
https://barn2.com/woocommerce-stats/
https://backlinko.com/shopify-stores
https://backlinko.com/shopify-stores
https://github.com/dolevf/graphql-cop
https://ecommerce.folio3.com/blog/ecommerce-saas-platforms/
https://ecommerce.folio3.com/blog/ecommerce-saas-platforms/
https://cookie-editor.cgagnier.ca/
https://www.imperva.com/resources/reports/TheState_ofSecurityWithin_eCommerce2021_report.pdf
https://www.imperva.com/resources/reports/TheState_ofSecurityWithin_eCommerce2021_report.pdf
https://www.imperva.com/resources/reports/TheState_ofSecurityWithin_eCommerce2021_report.pdf
https://www.linkedin.com/pulse/5-reasons-growing-popularity-saas-ecommerce-platforms-binny-joseph/
https://www.linkedin.com/pulse/5-reasons-growing-popularity-saas-ecommerce-platforms-binny-joseph/
https://github.com/nccgroup/AutoRepeater
https://owasp.org/www-project-api-security/
https://owasp.org/www-community/attacks/Session_fixation
https://owasp.org/www-community/attacks/Session_fixation
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/12-API_Testing/01-Testing_GraphQL
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/12-API_Testing/01-Testing_GraphQL
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/12-API_Testing/01-Testing_GraphQL
https://github.com/PortSwigger/auth-analyzer
https://www.optiv.com/insights/discover/blog/black-friday-cybersecurity-covid-ecommerce-under-attack
https://www.optiv.com/insights/discover/blog/black-friday-cybersecurity-covid-ecommerce-under-attack
https://github.com/SecurityInnovation/AuthMatrix
https://news.shopify.com/2021-was-shopifys-biggest-year-ever-2022-lets-go
https://github.com/s0md3v/Arjun
https://github.com/s0md3v/Arjun
https://github.com/s0md3v/XSStrike
https://github.com/sqlmapproject/sqlmap
https://lab.wallarm.com/graphql-batching-attack/
https://lab.wallarm.com/graphql-batching-attack/
https://en.wikipedia.org/wiki/Comparison_of_shopping_cart_software
https://en.wikipedia.org/wiki/Comparison_of_shopping_cart_software

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Pagey et al.

A APPENDIX
A.1 Common E-commerce operations
Key components in a SaaS e-commerce solution include: the CMS
server (CS), the store dashboard (admin panel for managing a store
by the merchant, and merchant users), and the storefront (customer
login and order placement). We identify the following main func-
tionalities from several representative platforms.
Store creation. A merchant requests a personalized store from a
SaaS provider. If the request is successful, the store front/dashboard
URL and a store ID is created and returned to the merchant.
Merchant and customer authentication. For both merchants
and customers, authentication requires a user ID and password,
which are verified by the CS. If successful, an authentication token
is sent to the merchant/customer. The authentication request for the
merchant originates from the store dashboard, while for customers
it originates from the storefront.
Profile management. The operation allows a store merchant to
modify store settings (e.g., adding new roles), and a customer to
change their profile parameters (e.g., email).
Storefront management. This interface allows merchants to set
up their stores (e.g., add/remove products) using an interactive drag
and drop menu bar, and adding HTML code, images, or extra pages.
Order processing. This operation contains four sub-operations:
order create, read, update, and delete. A customer can create an
order request from a storefront URL, which is then verified by the
merchant and CMS server. Once verified, the product is shipped.
Coupon handling. This also involves 4 sub-operations—coupon
create, modify, delete, and apply. The apply coupon operation is
intended for customers, and the others are meant for the merchant.

A.2 Auxiliary vulnerabilities
Improper Input Validation. Essentially, in an injection attack,
the attacker can send malicious input to the server which is then
processed and may cause the application to behave in an unex-
pected way, such as running arbitrary JavaScript code in a victim’s
session (XSS) or injecting SQL queries to dump the application
server’s database (SQL injection). We first filter the saved flow file
for selecting the URLs with GET method to analyze for XSS, and
inputs the selected URLs to XSStrike [26], which outputs the vul-
nerable URLs. Then, for SQLi, we give the saved requests (from
flow file) as an input to SQLMap [27], allowing us to determine if a
request parameter is vulnerable or not. We avoid analyzing SQLi
on SaaS platforms due to possible modifications on the server’s
database. For manual analysis of XSS on SaaS platforms, we inject a
simple payload5 in only those request parameters that are reflected
in the response to determine the unfiltered characters. In case our
payload appears as it is in the response, we use JavaScript alert()
to confirm the vulnerability. We also consider stored XSS primarily
in the functionalities modifiable by a customer, such as their profile
form or adding a product review. Note that customer information
including their profile attributes, placed orders, reviews etc, is ac-
cessible to a store dashboard. Thus a customer-injected payload
executed in a merchant’s session can allow the customer to access
merchant dashboard and takeover the store.

5<>’"{}()test

MassAssignment.Amass assignment vulnerability occurs when a
server-side object’s sensitive properties are inadequately protected.
This can happen when a developer defines a list of object properties
that a user is not privileged to modify, but omits some sensitive
properties (e.g., User.is_admin). For open source platforms, we
use a parameter discovery tool [25] to find all the modifiable param-
eters in a given request. We assess mass assignment vulnerabilities
manually (due to ethical reasons) for the SaaS platforms. Particu-
larly, we first find a list of available properties by probing their API,
checking the client-side code, or reading the API documentation.
Second, we make an API request to modify the object, by including
the known properties in the JSON request body. Third, before trig-
gering the request, we change the property value according to its
data type. After the modification request, we make a GET request
to view the updated object property.

A.3 Minor attacks
Free Membership. Storehippo and Bikry are vulnerable to this
attack via sensitive parameter tampering. In Storehippo, when a
merchant gets a store for a 14-day free trial period; a subscription
fee must be paid afterwards. We found a vulnerability in the “store
settings" functionality allowing an attacker to extend the free trial
period indefinitely. An attacker with a merchant role canmodify the
"remaining_days" (representing the store trial period) parameter
of a store, allowing an indefinite free subscription. We confirmed
this vulnerability by extending the trial period to 20 days, and our
test store remained operational beyond the 14-day trial period. In
Bikry, if a customer injects the price parameter with any arbitrary
value or zero, they can get a product for a lower price or for free.
This was confirmed by placing an order as a customer for a lower
price, and then checking the merchant dashboard for the order.
Denial of Service. We found that 8/32 platforms, namely Shopify,
Crystallize, BigCommerce, GraphCMS, Saleor, Wix, Magento, and
WooGraphql, make a call to standard GraphQL endpoints. In Crys-
tallize and Wix, we found that attackers could create malicious
queries that were nested thousand-level deep, which can cause
denial of service. For a 25-level nested query, the server took 18
seconds to generate a 68MB HTTP response. In Saleor, we found a
defensive mechanism when executing nested and circular queries.
Particularly, a query cost analysis mechanism is implementedwhich
only allows query below a certain threshold to execute. However,
the cost is not calculated for introspection queries (the queries
for fetching the available documentation), which can be easily ex-
ploited for DoS. We note that persistent-hashed-queries could help
prevent DoS (e.g., quickly retrieving cached-query results when the
same-query is made). However, we did not find any platform using
such queries in their GraphQL schema.

A.4 Platforms
We present the SaaS e-commerce platforms that we evaluated, along
with their popularity and number of stores hosted, as estimated us-
ing Google dorks (excluding stores that use custom domain names);
see Tables 4 and 5.

All Your Shops Are Belong to Us: Security Weaknesses in E-commerce Platforms WWW ’23, April 30-May 4, 2023, Austin, TX, USA

Request description Keywords
Add a coupon code coupon, promo, promotion, voucher
Apply discounts on cart discount
Add pages to the store page, blog
Add low-privilege users customer, user, seller, staff
Create product inventory catalogue, categories
Approve/deny an order order, approve, refunds, currencies, returns, invoice
Add item into a wishlist wishlist
Edit store URL slug

Table 3: Different requests for a SaaS e-commerce platform with the POST/PUT methods, which can produce errors in multiple
calls, along with keywords to detect them.

Platform # of stores (approx.) Google dork Website URL (app package)
BigCartel 3,750,000 site:*.bigcartel.com www.bigcartel.com (com.bigcartel.admin)
BigCommerce 1,520,000 site:*.mybigcommerce.com www.bigcommerce.com (com.bigcommerce.mobile)
Bikry 7,980 site:*.bikry.com bikry.com (my.bikry.app)
Branchbob 9,300 site:*.mybranchbob.com www.branchbob.com
Crystallize - - crystallize.com
Dukaan - - mydukaan.io (com.dukaan.app)
Ecwid 264,000 site:*.company.site www.ecwid.com (com.ecwid.android)
GraphCMS - - graphcms.com
Gumroad 335,000 site:*.gumroad.com gumroad.com (com.gumroad.app)
Lovelocal - - www.lovelocal.in (chotelal.mpaani.com.android.chotelal)
McaStore 402 site:*.mcastore.co/ mcastore.co (com.morecustomersapp)
Mozello 19,700 site:*.mozellosite.com www.mozello.com
Okshop 678 site:*.okshop.in/ www.okshop.in (in.okcredit.dukaan.onlineshop.nearme)
Saleor - - saleor.io
Sellfy 56,600 site:*.sellfy.store sellfy.com (com.sellfy.sellfyapp)
Shopify 28,600,000 site:*.myshopify.com www.shopify.com (com.shopify.mobile)
Shopnix - - shopnix.in (com.shopnix.shopnixadmin)
Shoppiko 1,470 site:*.store.shoppiko.com shoppiko.com (com.shoppikoadmin)
Shopware 5050 site:*.shopware.store shopware.com
Simvoly - - simvoly.com
Storehippo - - www.storehippo.com
Swell 1680 site:*.swell.store -inurl:status swell.is
Volusion - - www.volusion.com
Wix 3,680,000 site:*.wix.com www.wix.com (com.wix.admin)

Table 4: List of all SaaS platforms along with the number of stores hosted on them, as estimated using Google dorks on Oct 8,
2022 (no suitable dorks could be used for the ones represented with ‘-’).

Platform Forks Stars URL
AbanteCart 161 128 https://github.com/abantecart/abantecart-src
Magento 9039 10215 https://github.com/magento/magento2
Microweber 750 2493 https://github.com/microweber/microweber
nopCommerce 4298 7579 https://github.com/nopSolutions/nopCommerce
OpenCart 4592 6592 https://github.com/opencart/opencart
Prestashop 4480 6760 https://github.com/PrestaShop/PrestaShop
Saleor 4732 16972 https://github.com/saleor/saleor
Shopware 774 2011 https://github.com/shopware/platform
Sylius 1978 7017 https://github.com/Sylius/Sylius
WooGraphql 102 528 https://github.com/wp-graphql/wp-graphql-woocommerce

Table 5: List of open source e-commerce platforms with the number of forks and stars indicating platform’s popularity. Saleor
and Shopware are both open source as well as SaaS based.

	Abstract
	1 Introduction
	2 E-commerce Entities, Threat Model
	3 Security Analysis Framework
	3.1 Broken Authentication and Access Control
	3.2 Cross-Site Request Forgery (CSRF)
	3.3 Insecure GraphQL

	4 Analysis Results
	4.1 Store Takeover
	4.2 Shopping for free
	4.3 Store defacement
	4.4 Sensitive information disclosure

	5 Discussion
	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Common E-commerce operations
	A.2 Auxiliary vulnerabilities
	A.3 Minor attacks
	A.4 Platforms

