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ABSTRACT
Attackers can get physical control of a computer in sleep
(S3/suspend-to-RAM), if it is lost, stolen, or the owner is
being coerced. High-value memory-resident secrets, includ-
ing disk encryption keys, and private signature/encryption
keys for PGP, may be extracted (e.g., via cold-boot or DMA
attacks), by physically accessing such a computer. Our goal
is to alleviate threats of extracting secrets from a computer
in sleep, without relying on an Internet-facing service.

We propose Hypnoguard to protect all memory-resident
OS/user data across S3 suspensions, by first performing an
in-place full memory encryption before entering sleep, and
then restoring the plaintext content at wakeup-time through
an environment-bound, password-based authentication pro-
cess. The memory encryption key is effectively “sealed” in a
Trusted Platform Module (TPM) chip with the measure-
ment of the execution environment supported by CPU’s
trusted execution mode (e.g., Intel TXT, AMD-V/SVM).
Password guessing within Hypnoguard may cause the mem-
ory content to be permanently inaccessible, while guessing
without Hypnoguard is equivalent to brute-forcing a high-
entropy key (due to TPM protection). We achieved full
memory encryption/decryption in less than a second on a
mainstream computer (Intel i7-4771 CPU with 8GB RAM,
taking advantage of multi-core processing and AES-NI), an
apparently acceptable delay for sleep-wake transitions. To
the best of our knowledge, Hypnoguard provides the first
wakeup-time secure environment for authentication and key
unlocking, without requiring per-application changes.

1. INTRODUCTION
Most computers, especially laptops, remain in sleep

(S3/suspend-to-RAM), when not in active use (e.g., as in
a lid-close event); see e.g., [49]. A major concern for unat-
tended computers in sleep is the presence of user secrets in
system memory. An attacker with physical access to a com-
puter in sleep (e.g., when lost/stolen, or by coercion) can
launch side-channel memory attacks, e.g., DMA attacks [37,
53, 6, 57] by exploiting vulnerable device drivers; common
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mitigations include: bug fixes, IOMMU (Intel VT-d/AMD
Vi), and disabling (FireWire) DMA when screen is locked
(e.g., Mac OS X 10.7.2 and later, Windows 8.1 [37]). A so-
phisticated attacker can also resort to cold-boot attacks by
exploiting DRAM memory remanence effect [25, 22]. Sim-
pler techniques also exist for memory extraction (e.g., [16]);
some tools (e.g., [14]) may bypass OS lock screen and extract
in-memory full-disk encryption (FDE) keys.

Some proposals address memory-extraction attacks by
making the attacks difficult to launch, or by reducing ap-
plicability of known attacks (e.g., [47, 45, 56, 23, 63, 24];
see Section 8). Limitations of these solutions include: be-
ing too application-specific (e.g., disk encryption), not being
scalable (i.e., can support only a few application-specific se-
crets), and other identified flaws (cf. [5]). Most solutions also
do not consider re-authentication when the computer wakes
up from sleep. If a regular re-authentication is mandated
(e.g., OS unlock), a user-chosen password may not provide
enough entropy against guessing attacks (offline/online).

Protecting only cryptographic keys also appears to be fun-
damentally inadequate, as there exists more privacy/secu-
rity sensitive content in RAM than keys and passwords. Full
memory encryption can be used to keep all RAM content
encrypted, as used in proposals for encrypted execution (see
XOM [36], and a comprehensive survey [27]). However, most
such proposals require hardware architectural changes.

Microsoft BitLocker can be configured to provide cold
boot protection by relying on S4/suspend-to-disk instead of
S3. This introduces noticeable delays in the sleep-wake pro-
cess. More importantly, BitLocker is not designed to with-
stand coercion and can provide only limited defence against
password guessing attacks (discussed more in Section 8).

We propose Hypnoguard to protect all memory-resident
OS/user data across S3 suspensions, against memory ex-
traction attacks, and guessing/coercion of user passwords
during wakeup-time re-authentication. Memory extraction
is mitigated by performing an in-place full memory encryp-
tion before entering sleep, and then restoring the plaintext
content/secrets after the wakeup process. The memory en-
cryption key is encrypted by a Hypnoguard public key, the
private part of which is stored in a Trusted Platform Mod-
ule (TPM v1.2) chip, protected by both the user password
and the measurement of the execution environment sup-
ported by CPU’s trusted execution mode, e.g., Intel Trusted
Execution Technology (TXT [30]) and AMD Virtualization
(AMD-V/SVM [2]). The memory encryption key is thus
bound to the execution environment, and can be released
only by a proper re-authentication process.
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Guessing via Hypnoguard may cause the memory content
to be permanently inaccessible due to the deletion of the
TPM-stored Hypnoguard private key, while guessing with-
out Hypnoguard, e.g., an attacker-chosen custom wakeup
procedure, is equivalent to brute-forcing a high-entropy key,
due to TPM protection. A user-defined policy, e.g., three
failed attempts, or a special deletion password, determines
when the private key is deleted. As a result, either the pri-
vate key cannot be accessed due to an incorrect measurement
of an altered program, or the adversary takes a high risk to
guess within the unmodified environment.

By encrypting the entire memory space, except a few
system-reserved regions, where no OS/user data resides, we
avoid per-application changes. We leverage modern CPU’s
AES-NI extension and multi-core processing to quickly en-
crypt/decrypt commonly available memory sizes (up to
8GB, under a second), for avoiding degraded user experi-
ence during sleep-wake cycles. For larger memory systems
(e.g., 32/64GB), we also provide two variants, for encrypt-
ing memory pages of user selected applications, or specific
Hypnoguard-managed pages requested by applications.

Due to the peculiarity of the wakeup-time environment,
we face several challenges in implementing Hypnoguard. Un-
like boot-time (when peripherals are initialized by BIOS)
or run-time (when device drivers in the OS are active), at
wakeup-time, the system is left in an undetermined state,
e.g., empty PCI configuration space and uninitialized I/O
controllers. We implement custom drivers and reuse dor-
mant (during S3) OS-saved device configurations to restore
the keyboard and VGA display to facilitate easy user in-
put/output (inadequately addressed in the past, cf. [46]).

Several boot-time solutions (e.g., [31, 64, 70]) also per-
form system integrity check, authenticate the user, and may
release FDE keys; however, they do not consider memory at-
tacks during sleep-wake cycles. For lost/stolen computers,
some remote tracking services may be used to trigger remote
deletion, assuming the computer can be reached online (with
doubtful effectiveness, cf. [13, 62]).

Contributions:

1. We design and implement Hypnoguard, a new approach
that protects confidentiality of all memory regions con-
taining OS/user data across sleep-wake cycles. We pro-
vide defense against memory attacks when the computer
is in the wrong hands, and severely restrict guessing of
weak authentication secrets (cf. [70]). Several propos-
als and tools exist to safeguard data-at-rest (e.g., disk
storage), data-in-transit (e.g., network traffic), and data-
in-use (e.g., live RAM content); with Hypnoguard, we fill
the gap of securing data-in-sleep.

2. Our primary prototype implementation in Linux uses full
memory encryption to avoid per-application changes. The
core part of Hypnoguard is decoupled from the under-
lying OS and system BIOS, for better portability and
security. Leveraging modern CPU’s AES-NI extension
and multi-core processing, we achieve around 8.7GB/s
encryption/decryption speed for AES in the CTR mode
with an Intel i7-4771 processor, leading to under a second
additional delay in the sleep-wake process for 8GB RAM.

3. For larger memory systems (e.g., 32GB), where full mem-
ory encryption may add noticeable delay, we provide pro-
tection for application-selected memory pages via the
POSIX-compliant system call mmap() (requiring minor
changes in applications, but no kernel patches). Alter-

natively, Hypnoguard can also be customized to take a
list of applications and only encrypt memory pages per-
taining to them (no application changes).

4. We enable wakeup-time secure processing, previously un-
explored, which can be leveraged for other use-cases, e.g.,
OS/kernel integrity check.

2. TERMINOLOGIES, GOALS AND
THREAT MODEL

We explain the terminologies used for Hypnoguard, and
our goals, threat model and operational assumptions. We
use CPU’s trusted execution mode (e.g., Intel TXT, AMD-
V/SVM), and the trusted platform module (TPM) chip. We
provide brief description of some features as used in our
proposal and implementation; for details, see, e.g., Parno et
al. [48], Intel [30], and AMD [2].

2.1 Terminologies
Hypnoguard key pair (HGpub, HGpriv): A pair of public
and private keys generated during deployment. The pri-
vate key, HGpriv, is stored in a TPM NVRAM index, pro-
tected by both the measurement of the environment and the
Hypnoguard user password. HGpriv is retrieved through the
password evaluated by TPM with the genuine Hypnoguard
program running, and can be permanently deleted in ac-
cordance with a user-set policy. The public key, HGpub, is
stored unprotected in TPM NVRAM (for OS/file system
independence), and is loaded in RAM after each boot.

Memory encryption key (SK): A high entropy symmetric
key (e.g., 128-bit), randomly generated each time before en-
tering sleep, and used for full memory encryption. Before
the system enters sleep, SK is encrypted using HGpub and
the resulting ciphertext is stored in the small non-encrypted
region of memory.

Hypnoguard user password: A user-chosen password to un-
lock the protected key HGpriv at wakeup-time. It needs to
withstand only a few guesses, depending on the actual un-
locking policy. This password is unrelated to the OS unlock
password, which can be optionally suppressed.

TPM “sealing”: For protecting HGpriv in TPM, we use
the TPM_NV_DefineSpace command, which provides envi-
ronment binding (similar to TPM_Seal, but stores HGpriv

in an NVRAM index) and authdata (password) protec-
tion. We use the term “sealing” to refer to this mechanism
for simplicity.

2.2 Goals
We primarily consider attacks targeting extraction of se-

crets through physical access to a computer in S3 sleep
(unattended, stolen, or when the owner is under coercion).
We want to protect memory-resident secrets against side-
channel attacks (e.g., DMA/cold-boot attacks), but we do
not consider compromising a computer in S3 sleep for evil-
maid type attacks (unbeknownst to the user).

More specifically, our goals include: (G1) Any user or OS
data (secrets or otherwise), SK, and HGpriv must not remain
in plaintext anywhere in RAM before resuming the OS to
make memory attacks inapplicable. (G2) The protected con-
tent (in our implementation, the whole RAM) must not be
retrieved by brute-forcing SK or HGpriv, even if Hypnoguard
is not active, e.g., via offline attacks. (G3) No guessing at-
tacks should be possible against the Hypnoguard user pass-



word, unless a genuine copy of Hypnoguard is loaded as the
only program in execution. (G4) The legitimate user should
be able to authenticate with routine effort, e.g., memoriza-
tion of strong passwords is not required. (G5) Guessing the
user password when Hypnoguard is active should be severely
restricted by the penalty of having the secrets deleted.

An additional goal for coercion attacks during wakeup
(similar to the boot-time protection of [70]): (AG1) when
deletion is successful, there should be a cryptographic ev-
idence that convinces the adversary that the RAM secrets
are permanently inaccessible.

2.3 Threat model and assumptions
1. The adversary may be either an ordinary person with

skills to mount memory/guessing attacks, or an organi-
zation (non-state) with coercive powers, and considerable
but not unbounded computational resources. For exam-
ple, the adversary may successfully launch sophisticated
cold-boot attacks (e.g., [25, 22]), but cannot brute-force
a random 128-bit AES key, or defeat the TPM chip and
CPU’s trusted execution environment (for known imple-
mentation bugs and attacks, see e.g., [59, 68, 54]); see
also Item (f) in Section 7.

2. Before the adversary gains physical control, the computer
system (hardware and OS) has not been compromised.
After the adversary releases physical control, or a lost
computer is found, the system is assumed to be untrust-
worthy, i.e., no further use without complete reinitial-
ization. We thus only consider directly extracting se-
crets from a computer in sleep, excluding any attacks
that rely on compromising first and tricking the user to
use it later, the so-called evil-maid attacks, which can
be addressed by adapting existing defenses, e.g., [20] for
wakeup-time. However, no known effective defense exists
for more advanced evil-maid attacks, including hardware
modifications as in NSA’s ANT catalog [21]. Note that,
our AES-GCM based implementation can restrict modi-
fication attacks on encrypted RAM content.

3. The host OS is assumed to be general-purpose, e.g., Win-
dows or Linux; a TXT/SVM-aware kernel is not needed.
Also, the Hypnoguard tool may reside in an untrusted file
system and be bootstrapped from a regular OS.

4. We assume all user data, the OS, and any swap space
used by the OS are stored encrypted on disk, e.g., us-
ing a properly configured software/hardware FDE sys-
tem (cf. [44, 12]). A secure boot-time solution should be
used to enforce strong authentication (cf. [70]). The FDE
key may remain in RAM under Hypnoguard’s protection.
This assumption can be relaxed, only if the data on disk
is assumed non-sensitive, or in the case of a diskless node.

5. Any information placed in memory by the user/OS is
treated as sensitive. With full memory encryption, it
is not necessary to distinguish user secrets from non-
sensitive data (e.g., system binaries).

6. The adversary must not be able to capture the computer
while it is operating, i.e., in Advanced Configuration and
Power Interface (ACPI [1]) S0. We assume the computer
goes into sleep after a period of inactivity, or through user
actions (e.g., lid-close of a laptop).

7. The adversary may attempt to defeat Hypnoguard’s pol-
icy enforcement mechanism (i.e., when to delete or unlock
HGpriv during authentication). With physical access, he
may intervene in the wakeup process, e.g., by tampering

Figure 1: Memory layout and key usage of Hypnoguard.
Shaded areas represent encrypted/protected data; different
patterns refer to using different schemes/key types.

with the UEFI boot script for S3 [67], and may attempt
to observe the input and output of our tool and influence
its logic. In all cases, he will fail to access HGpriv, unless
he can defeat TXT/SVM/TPM (via an implementation
flaw, or advanced hardware attacks).

8. In the case of coercion, the user never types the correct
password but provides only deletion or incorrect pass-
words, to trigger the deletion of HGpriv. Coercion has
been considered recently during boot-time [70], requir-
ing the computer to be in a powered-off state before the
coercive situation. We consider coercion during wakeup;
ideally, both systems should be used together.

9. We require a system with a TPM chip and a TXT/SVM-
capable CPU with AES-NI (available in many consumer-
grade Intel and AMD CPUs). Without AES-NI, full
memory encryption will be slow, and users must resort
to partial memory encryption.

3. DESIGN
In this section, we detail the architecture of Hypnoguard,

and demonstrate how it achieves the design goals stated in
Section 2.2. Technical considerations not specific to our cur-
rent implementation are also discussed.

Overview. Figure 1 shows the memory layout and key
usage of Hypnoguard across sleep-wake cycles; the transition
and execution flows are described in Section 4.1. User secrets
are made unavailable from RAM by encrypting the whole
system memory, regardless of kernel or user spaces, with a
one-time random symmetric key SK before entering sleep.
Then SK is encrypted using HGpub and stored in system
memory. At this point, only HGpriv can decrypt SK. HGpriv

is sealed in the TPM chip with the measurements of the
genuine copy of Hypnoguard protected by a user password.

At wakeup-time, Hypnoguard takes control in a trusted
execution session (TXT/SVM), and prompts the user for
the Hypnoguard user password. Only when the correct pass-



word is provided in the genuine Hypnoguard environment,
HGpriv is unlocked from TPM (still in TXT/SVM). Then,
HGpriv is used to decrypt SK and erased from memory im-
mediately. The whole memory is then decrypted with SK
and the system exits from TXT/SVM back to normal OS
operations. SK is not reused for any future session.

3.1 Design choices and elements
Trusted execution mode. We execute the unlocking pro-
gram in the trusted mode of modern CPUs (TXT/SVM),
where an unforgeable measurement of the execution envi-
ronment is generated and stored in TPM (used to access
HGpriv). The use of TXT/SVM and TPM ensures that
the whole program being loaded and executed will be re-
flected in the measurement; i.e., neither the measurement
can be forged at the load time nor can the measured pro-
gram be altered after being loaded, e.g., via DMA attacks.
The memory and I/O space of the measured environment
is also protected, e.g., via Intel VT-d/IOMMU, from any
external access attempt.

We choose to keep Hypnoguard as a standalone module
separate from the OS for two reasons. (a) Small trusted
computing base (TCB): If Hypnoguard’s unlocking program
is integrated with the OS, then we must also include OS
components (at least the kernel and core OS services) in
the TPM measurement; this will increase the TCB size sig-
nificantly. Also, in a consumer OS, maintaining the cor-
rect measurements of such a TCB across frequent updates
and run-time changes, will be very challenging. Unless mea-
suring the entire OS is the purpose (cf. Unicorn [38]), a
TXT/SVM-protected application is usually a small piece of
code, not integrated with the OS, to achieve a stable and
manageable TCB (e.g., Flicker [40]). In our case, only the
core Hypnoguard unlock logic must be integrity-protected
(i.e., bound to TPM measurement). The small size may also
aid manual/automatic verification of the source code of an
implementation. (b) Portability: We make Hypnoguard less
coupled with the hosting OS except for just a kernel driver,
as we may need to work with different distributions/versions
of an OS, or completely different OSes.

TPM’s role. TPM serves three purposes in Hypnoguard:

1. By working with TXT/SVM, TPM’s platform configura-
tion registers (PCRs) maintain the unforgeable measure-
ment of the execution environment.

2. We use TPM NVRAM to store HGpriv safely with two
layers of protection. First, HGpriv is bound to the Hypno-
guard environment (e.g., the Intel SINIT module and
the Hypnoguard unlocking program). Any binary other
than the genuine copy of Hypnoguard will fail to ac-
cess HGpriv. Second, an authdata secret, derived from
the Hypnoguard user password, is also used to protect
HGpriv. Failure to meet either of the above two condi-
tions will lead to denial of access.

3. If HGpriv is deleted by Hypnoguard (e.g., triggered via
multiple authentication failures, or the entry of a deletion
password), we also use TPM to provide a quote, which is a
digest of the platform measurement signed by the TPM’s
attestation identity key (AIK) seeded with an arbitrary
value (e.g., time stamp, nonce). Anyone, including the
adversary, can verify the quote using TPM’s public key
at a later time, and confirm that deletion has happened.

4. For generation of the long-term key pair HGpriv and
HGpub, and the per-session symmetric key SK, we need a

reliable source of randomness. We use the TPM_GetRandom
command to get the required number of bytes from the
random number generator in TPM [60] (and optionally,
mix them with the output from the RDRAND instruction
in modern CPUs).

Necessity of HGpriv and HGpub. Although we use ran-
dom per sleep-wake cycle symmetric key (SK) for full mem-
ory encryption, we cannot directly seal SK in TPM (un-
der the Hypnoguard password), i.e., avoid using (HGpriv,
HGpub). The reason is that we perform the platform-bound
user re-authentication only once at the wakeup time, and
without involving the user before entering sleep, we cannot
password-seal SK in TPM. If the user is required to enter the
Hypnoguard password every time before entering sleep, the
user experience will be severely affected. We thus keep SK
encrypted under HGpub in RAM, and involve the password
only at wakeup-time to release HGpriv (i.e., the password
input is similar to a normal OS unlock process).

3.2 Unlock/deletion policy and deployment
Unlocking policy. A user-defined unlocking policy will
determine how Hypnoguard reacts to a given password, i.e.,
what happens when the correct password is entered vs. when
a deletion or invalid password is entered. If the policy al-
lows many/unlimited online (i.e., via Hypnoguard) guessing
attempts, a dictionary attack might be mounted, violating
goal G5 ; the risk to the attacker in this case is that he might
unknowingly enter the deletion password. If the composition
of the allowed password is not properly chosen (e.g., differ-
ent character sets for the correct password and the deletion
password), an adversary may be able to recognize the types
of passwords, and thus avoid triggering deletion.

Static policies can be configured with user-selected pass-
words and/or rule-based schemes that support evaluating an
entered password at run-time. Security and usability trade-
offs should be considered, e.g., a quick deletion trigger vs.
tolerating user mistyping or misremembering (cf. [11]). Dur-
ing setup, both unlocking and deletion passwords are cho-
sen by the user, and they are set as the access passwords for
corresponding TPM NVRAM indices: the deletion password
protects an index with a deletion indicator and some random
data (as dummy key), and the unlocking password protects
an index containing a null indicator and HGpriv (similar
to [70]). Note that, both the content and deletion indicator
of an NVRAM index are protected (i.e., attackers cannot
exploit the indicator values). Multiple deletion passwords
can also be defined. We also use a protected monotonic
counter to serve as a fail counter, sealed under Hypnoguard,
and initialized to 0. We use a regular numeric value sealed
in NVRAM (i.e., inaccessible outside of Hypnoguard); the
TPM monotonic counter facility can also be used. The fail
counter is used to allow only a limited number of incorrect
attempts, after which, deletion is triggered; this is specifi-
cally important to deal with lost/stolen cases.

At run-time, only when the genuine Hypnoguard program
is active, the fail counter is incremented by one, and a typed
password is used to attempt to unlock the defined indices,
sequentially, until an index is successfully opened, or all the
indices are tried. In this way, the evaluation of a password
is performed only within the TPM chip and no information
about any defined plaintext passwords or HGpriv is leaked
in RAM—leaving no chance to cold-boot attacks. If a typed
password successfully unlocks an index (i.e., a valid pass-



word), the fail counter is decremented by one; otherwise,
the password entry is considered a failed attempt and the
incremented counter is not decremented. When the counter
reaches a preset threshold, deletion is triggered. The counter
is reset to 0 only when the correct password is entered (i.e.,
HGpriv is successfully unlocked). Thus, a small thresh-
old (e.g., 10) may provide a good balance between security
(quick deletion trigger) and usability (the number of incor-
rect entries that are tolerated). For high-value data, the
threshold may be set to 1, which will trigger deletion imme-
diately after a single incorrect entry.

Deployment/setup phase. With a setup program in the
OS, we generate a 2048-bit RSA key pair and save HGpub

in TPM NVRAM (unprotected), and ask the user to create
her passwords for both unlocking and deletion. With the
unlocking password (as authdata secret), HGpriv is stored
in an NVRAM index, bound to the expected PCR values
of the Hypnoguard environment at wakeup (computed ana-
lytically); similarly, indices with deletion indicators are al-
located and protected with the deletion password(s). There
is also certain OS-end preparation, e.g., loading and initial-
izing the Hypnoguard device drivers; see Section 4.1.

3.3 How goals are achieved
Hypnoguard’s goals are defined in Section 2.2. G1 is ful-

filled by Hypnoguard’s full memory encryption, i.e., replace-
ment of all plaintext memory content, with corresponding
ciphertext generated by SK. As the OS or applications are
not involved, in-place memory encryption can be performed
reliably. SK resides in memory encrypted under HGpub

(right after full memory encryption is performed under SK).
HGpriv can only be unlocked with the correct environment
and password at wakeup-time, and is erased from RAM right
after its use in the trusted execution mode.

A random SK with adequate length generated each time
before entering sleep, and a strong public key pair (HGpub,
HGpriv) generated during setup guarantee G2.

TPM sealing (even with a weak Hypnoguard user pass-
word) helps achieve G3. Without loading the correct binary,
the adversary cannot forge the TPM measurement and trick
TPM to access the NVRAM index (cf. [30, 60]); note that,
learning the expected PCR values of Hypnoguard does not
help the attacker in any way. The adversary is also unable
to brute-force the potentially weak user password, if he is
willing to program the TPM chip without Hypnoguard, as
TPM ensures the consistent failure message for both incor-
rect passwords and incorrect measurements.

The user is required to memorize a regular password for
authentication. If the adversary keeps the genuine environ-
ment but does not know the correct password, he may be
only left with a high risk of deleting HGpriv. The legitimate
user, however, knows the password and can control the risk
of accidental deletion, e.g., via setting an appropriate dele-
tion threshold. Therefore G4 is satisfied.

When the adversary guesses within Hypnoguard, the pass-
word scheme (unlocking policy) makes sure that no (or only
a few, for better usability) guessing attempts are allowed
before deletion is triggered. This achieves G5.

The additional goal for coercion attacks is achieved through
the TPM Quote operation. The quote value relies on mainly
two factors: the signing key, and the measurement to be
signed. An RSA key pair in TPM called AIK (Attestation
Identity Key) serves as the signing key. Its public part is

signed by TPM’s unique key (Endorsement Key, aka. EK,
generated by the manufacturer and never leaves the chip in
any operations) and certified by a CA in a separate process
(e.g., during setup). This ensures the validity of the signa-
ture. The data to be signed is the requested PCR values. In
TXT, the initial PCR value is set to 0, and all subsequent
extend operations will update the PCR values in an unforge-
able manner (via SHA1). As a result, as long as the quote
matches the expected one, the genuine copy of the program
must have been executed, and thus AG1 is achieved.

4. IMPLEMENTATION
In this section, we discuss our implementation of Hypno-

guard under Linux using Intel TXT as the trusted exe-
cution provider. Note that Hypnoguard’s design is OS-
independent, but our current implementation is Linux spe-
cific; the only component that must be developed for other
OSes is HypnoOSService (see below). We also performed
an experimental evaluation of Hypnoguard’s user experi-
ence (for 8GB RAM); no noticeable latency was observed
at wakeup-time (e.g., when the user sees the lit-up screen).
We assume that a delay under a second before entering sleep
and during wakeup is acceptable. For larger memory sizes
(e.g., 32GB), we implement two variants to quickly encrypt
selected memory regions.

4.1 Overview and execution steps
The Hypnoguard tool consists of three parts: Hypno-

Core (the unlocking logic and cipher engine), HypnoDrivers
(device drivers used at wakeup-time), and HypnoOSService
(kernel service to prepare for S3 and HypnoCore). Hyp-
noCore and HypnoDrivers operate outside of the OS, and
HypnoOSService runs within the OS. The approximate code
size of our implementation is: HypnoCore, 7767 LOC (in
C/C++/assembly, including reused code for TPM, AES, RSA,
SHA1); HypnoDrivers, 3263 LOC (in C, including reused
code for USB); HypnoOSService, 734 LOC in C; GCM,
2773 LOC (in assembly, including both the original and our
adapted constructions); and a shared framework between
the components, 639 LOC in assembly.

Execution steps. Figure 2 shows the generalized exe-
cution steps needed to achieve the designed functionalities
on an x86 platform. (a) The preparation is done by Hyp-
noOSService at any time while the OS is running before S3
is triggered. HypnoCore, HypnoDrivers, ACM module for
TXT, and the TXT policy file are copied into fixed mem-
ory locations known by Hypnoguard (see Section 4.3). Also,
HypnoOSService registers itself to the OS kernel so that if
the user or a system service initiates S3, it can be invoked.
(b) Upon entry, necessary parameters for S3/TXT are pre-
pared and stored (those that must be passed from the active
OS to Hypnoguard), and the kernel’s memory tables are re-
placed with ours, mapped for HypnoCore and HypnoDrivers.
(c) Then, HypnoCore encrypts the whole memory in a very
quick manner through multi-core processing with AES CTR
mode using SK. SK is then encrypted by HGpub (an RSA-
2048 key). Before triggering the actual S3 action by sending
commands to ACPI, Hypnoguard must replace the original
OS waking vector to obtain control back when the machine
is waken up. (d) At S3 wakeup, the 16-bit realmode entry,
residing below 1MB, of Hypnoguard waking vector is trig-
gered. It calls HypnoDrivers to re-initialize the keyboard
and display, and prepares TXT memory structures (TXT



Figure 2: Simplified execution steps of Hypnoguard

heap) and page tables. (e) Then the user is prompted for
a password, which is used to unlock TPM NVRAM indices
one by one. Based on the outcome and the actual unlocking
policy, either deletion of HGpriv happens right away and a
quote is generated for further verification (and the system
is restarted), or if the password is correct, HGpriv is un-
locked into memory. After decrypting SK, HGpriv is erased
promptly from memory. HypnoCore then uses SK to de-
crypt the whole memory. (f) TXT is torn down, and the OS
is resumed by calling the original waking vector.

Machine configuration. We use an Intel platform running
Ubuntu 15.04 (kernel version: 3.19.0). The development
machine’s configuration includes: an Intel Core i7-4771 pro-
cessor (3.50 GHz, 4 physical cores), with Intel’s integrated
HD Graphics 4600, Q87M-E chipset, 8GB RAM (Kingston
DDR3 4GBx2, clock speed 1600 MHz), and 500GB Seagate
self-encrypting drive. In theory, our tool should work on
most machines with TPM, AES-NI and Intel TXT (or AMD
SVM) support, with minor changes, such as downloading the
corresponding SINIT module.

4.2 Instrumenting the S3 handler
Hypnoguard needs to gain control at wakeup-time before

the OS resume process begins. For simplicity, we follow
the method as used in a similar scenario in Intel tboot [31].
An x86 system uses ACPI tables to communicate with the
system software (usually the OS) about power management
parameters. The firmware waking vector, contained in the
Firmware ACPI Control Structure (FACS), stores the ad-
dress of the first instruction to be executed after wakeup;
and to actually put the machine to sleep, certain platform-
specific data, found in the Fixed ACPI Description Table
(FADT), must be written to corresponding ACPI registers.

We must register Hypnoguard with an OS callback for re-
placing the waking vector, so as not to interfere with normal
OS operations. In Linux, the acpi os prepare sleep() call-
back can be used, which will be invoked in the kernel space
before entering sleep. However, we cannot just replace the
waking vector in this callback and return to the OS, as Linux
overwrites the waking vector with its own at the end of S3
preparation, apparently, to ensure a smooth resume. Fortu-
nately, the required data to be written to ACPI registers is
already passed in as arguments by the kernel, and as the OS
is ready to enter sleep, we put the machine to sleep without
returning to the OS.

4.3 Memory considerations
To survive across various contexts (Linux, non-OS native,

initial S3 wakeup and TXT), and not to be concerned with
paging and virtual memory addressing, we reserve a region
from the system memory by providing a custom version of
the e820 map, so that Linux will not touch it afterwards.
This is done by appending a kernel command line param-
eter memmap. In Windows, this can be done by adding
those pages to BadMemoryList. 1 MB space at 0x900000 is
allocated for HypnoCore, HypnoDrivers and miscellaneous
parameters to be passed between different states, e.g., the
SINIT module, original waking vector of Linux, policy data,
stack space for each processor core, and Intel AES-NI library
(see Section 5).

Full memory coverage in 64-bit mode. To support
more than 4GB memory sizes, we need to make Hypnoguard
64-bit addressable. However, we cannot simply compile the
Hypnoguard binary into 64-bit mode as most other mod-
ules, especially those for TXT and TPM access, are only
available in 32-bit mode, and adapting them to 64-bit will
be non-trivial (if possible), because of the significantly dif-
ferent nature of 64-bit mode (e.g., mandatory paging).

We keep HypnoCore and HypnoDrivers unchanged, and
write a trampoline routine for the 64-bit AES-NI library,
where we prepare paging and map the 8GB memory before
switching to the long mode (64-bit). After the AES-NI li-
brary call, we go back to 32-bit mode. Also, the x86 calling
conventions may be different than x86-64 (e.g., use of stack
space vs. additional registers). A wrapper function, before
the trampoline routine goes to actual functions, is used to
extract those arguments from stack and save them to corre-
sponding registers. In this way, the 64-bit AES-NI library
runs as if the entire HypnoCore and HypnoDrivers binary is
64-bit, and thus we can access memory regions beyond 4GB,
while the rest of Hypnoguard still remains in 32-bit mode.

4.4 User interaction
In a regular password-based wakeup-time authentication,

the user is shown the password prompt dialog to enter the
password. In addition to the password input, we also need
to display information in several instances, e.g., interacting
with the user to set up various parameters during deploy-
ment, indicating when deletion is triggered, and displaying
the quote (i.e., proof of deletion). Providing both standard
input and output is easy at boot-time (with BIOS support),
and within the OS. However, resuming from S3 is a special
situation: no BIOS POST is executed, and no OS is ac-
tive. At this time, peripherals (e.g., PCI, USB) are left in
an uninitialized state, and unless some custom drivers are
implemented, display and keyboard remain nonfunctional.



For display, we follow a common practice as used in Linux
for S3 resume (applicable for most VGA adapters). Hypn-
oDrivers invoke the legacy BIOS video routine using “lcallw
0xc000,3” (0xc0000 is the start of the VGA RAM where the
video BIOS is copied to; the first 3 bytes are the signature
and size of the region, and 0xc0003 is the entry point).

For keyboard support, the S3 wakeup environment is more
challenging (PS/2 keyboards can be easily supported via a
simple driver). Most desktop keyboards are currently con-
nected via USB, and recent versions of BIOS usually have
a feature called “legacy USB support”. Like a mini-OS, as
part of the power-on check, the BIOS (or the more recent
UEFI services) would set up the PCI configuration space,
perform USB enumeration, and initialize the class drivers
(e.g., HID and Mass Storage). But when we examined the
USB EHCI controller that our USB keyboard was connected
to, we found that its base address registers were all zeros at
wakeup-time, implying that it was uninitialized (same for
video adapters). As far as we are aware, no reliable mecha-
nisms exist for user I/O after wakeup. TreVisor [46] resorted
to letting the user input in a blank screen (i.e., keyboard was
active, but VGA was uninitialized). Note that the actual
situation is motherboard-specific, determined mostly by the
BIOS. We found that only one out of our five test machines
has the keyboard initialized at wakeup-time.

Loading a lightweight Linux kernel might be an option,
which would increase the TCB size and (potentially) intro-
duce additional attack surface. Also, we must execute the
kernel in the limited Hypnoguard-reserved space. Instead,
we enable USB keyboard support as follows:

1. Following the Linux kernel functions pci save state() and
pci restore config space(), we save the PCI configuration
space before entering S3, and restore it at wakeup-time
to enable USB controllers in Hypnoguard.

2. We borrow a minimal set of functions from the USB stack
of the GRUB project, to build a tiny USB driver only for
HID keyboards operating on the “boot protocol” [61].

3. There are a few unique steps performed at boot-time
for USB initialization that cannot be repeated during S3
wakeup. For instance, a suspended hub port (connect-
ing the USB keyboard) is ready to be waken up by the
host OS driver and does not accept a new round of enu-
meration (e.g., getting device descriptor, assigning a new
address). We thus cannot reuse all boot-time USB ini-
tialization code from GRUB. At the end, we successfully
reconfigure the USB hub by initiating a port reset first.

With the above approach, we can use both the USB key-
board and VGA display at wakeup-time. This is hardware-
agnostic, as restoring PCI configuration simply copies exist-
ing values, and the USB stack as reused from GRUB follows
a standard USB implementation. We also implement an
i8042 driver (under 100 LOC) to support PS/2 keyboards.
Our approach may help other projects that cannot rely on
the OS/BIOS for input/output support, e.g., [46, 15].

4.5 Moving data around
Hypnoguard operates at different stages, connected by

jumping to an address without contextual semantics. Con-
ventional parameter passing in programming languages and
shared memory access are unavailable between these stages.
Therefore, we must facilitate binary data transfer between
the stages. To seamlessly interface with the host OS, we
apply a similar method as in Flicker [40] to create a sysfs

object in a user-space file system. It appears in the directory
“/sys/kernel” as a few subdirectories and two files: data (for
accepting raw data) and control (for accepting commands).
In HypnoOSService, the sysfs handlers write the received
data to the 1MB reserved memory region. When S3 is trig-
gered, HypnoDrivers will be responsible for copying the re-
quired (portion of) binary to a proper location, for instance,
the real-mode wakeup code to 0x8a000, SINIT to the BIOS-
determined location SINIT.BASE and the LCP policy to the
OsMleData table, which resides in the TXT heap prepared
by HypnoDrivers before entering TXT.

4.6 Unencrypted memory regions
In our full memory encryption, the actual encrypted ad-

dresses are not contiguous. We leave BIOS/hardware re-
served regions unencrypted, which fall under two categories.
(a) MMIO space: platform-mapped memory and registers of
I/O devices, e.g., the TPM locality base starts at 0xfed40000.
(b) Platform configuration data: memory ranges used by
BIOS/UEFI/ACPI; the properties of such regions vary sig-
nificantly, from read-only to non-volatile storage.

Initially, when we encrypted the whole RAM, including
the reserved regions, we observed infrequent unexpected sys-
tem behaviors (e.g., system crash). As much as we are aware
of, no user or OS data is stored in those regions (cf. [33]), and
thus there should be no loss of confidentiality due to keep-
ing those regions unencrypted. Hypnoguard parses the e820
(memory mapping) table to determine the memory regions
accessible by the OS. In our test system, there is approxi-
mately 700MB reserved space, spread across different ranges
below 4GB. The amount of physical memory is compensated
by shifting the addresses, e.g., for our 8GB RAM, the actual
addressable memory range goes up to 8.7GB.

5. HIGH-SPEED FULL MEMORY ENCRYP-
TION AND DECRYPTION

The adoptability of the primary Hypnoguard variant based
on full memory encryption/decryption mandates a minimal
impact on user experience. Below, we discuss issues related
to our implementation of quick memory encryption.

For all our modes of operation with AES-NI, the process-
ing is 16-byte-oriented (i.e., 128-bit AES blocks) and han-
dled in XMM registers. In-place memory encryption/de-
cryption is intrinsically supported by taking an input block
at a certain location, and overwriting it with the output of
the corresponding operation. Therefore, no extra memory
needs to be reserved, and thus no performance overhead for
data transfer is incurred.

5.1 Enabling techniques
Native execution. We cannot perform in-place memory
encryption when the OS is active, due to OS memory pro-
tection and memory read/write operations by the OS. Thus,
the OS must be inactive when we start memory encryption.
Likewise, at wakeup-time in TXT, there is no OS run-time
support for decryption. We need to perform a single-block
RSA decryption using HGpriv to decrypt the 128-bit AES
memory encryption key SK. On the other hand, we need fast
AES implementation to encrypt the whole memory (e.g.,
8GB), and thus, we leverage new AES instructions in mod-
ern CPUs (e.g., Intel AES-NI). AES-NI offers significant per-
formance boost (e.g., about six times in one test [8]). Al-



though several crypto libraries now enable easy-to-use sup-
port for AES-NI, we cannot use such libraries, or the kernel-
shipped library, as we do not have the OS/run-time sup-
port. We use Intel’s AES-NI library [52], with minor but
non-trivial modifications (discussed in our tech report [71]).

OS-less multi-core processing. Outside the OS, no easy-
to-use parallel processing interface is available. With one
processor core, we achieved 3.3–4GB/s with AES-NI, which
would require more than 2 seconds for 8GB RAM (still less
satisfactory, considering 3 cores being idle). Thus, to lever-
age multiple cores, we develop our own multi-core processing
engine, mostly following the Intel MultiProcessor Specifica-
tion [32]. Our choice of decrypting in TXT is non-essential,
as SK is generated per sleep-wake cycle and requires no TXT
protection; however, the current logic is simpler and requires
no post-TXT cleanup for native multi-core processing.

Modes of operation. Intel’s AES-NI library offers ECB,
CTR and CBC modes. We use AES in CTR mode as the
default option (with a random value as the initial counter);
compared to CBC, CTR’s performance is better, and sym-
metric between encryption and decryption speeds (recall
that CBC encryption cannot be parallelized due to chain-
ing). In our test, CBC achieves 4.5GB/s for encryption and
8.4GB/s for decryption. In CTR mode, a more satisfac-
tory performance is achieved: 8.7GB/s for encryption and
8.5GB/s for decryption (approximately).

When ciphertext integrity is required to address content
modification attacks, AES-GCM might be a better trade-off
between security and performance. We have implemented a
Hypnoguard variant with a custom, performance-optimized
AES-GCM mode; for implementation details and challenges,
see our tech report [71].

5.2 Performance analysis
Relationship between number of CPU cores and per-
formance. For AES-CTR, we achieved 3.3–4GB/s (3.7GB/s
on average), using a single core. After a preliminary evalua-
tion, we found the performance is not linear to the number
of processor cores, i.e., using 4 cores does not achieve the
speed of 16GB/s, but at most 8.7GB/s (8.3GB/s on 3 cores
and 7.25GB/s on 2 cores).

A potential cause could be Intel Turbo Boost [9] that
temporarily increases the CPU frequency when certain lim-
its are not exceeded (possibly when a single core is used).
Suspecting the throughput of the system RAM to be the
primary bottleneck (DDR3), we performed benchmark tests
with user-space tools, e.g., mbw [28], which simply measures
memcpy and variable assignment for an array of arbitrary
size. The maximum rate did not surpass 8.3GB/s, possibly
due to interference from other processes.

During the tests with GCM mode, our observation demon-
strates the incremental improvement of our implementation:
2.5GB/s (1-block decryption in C using one core), 3.22GB/s
(1-block decryption in C using four cores), 3.3GB/s (4-block
decryption in C using four cores), 5GB/s (4-block decryp-
tion in assembly using four cores), and 6.8GB/s (4-block
decryption in assembly with our custom AES-GCM [71]).
The encryption function in assembly provided by Intel al-
ready works satisfactorily, which we do not change further.
The performance numbers are listed in Table 1.

At the end, when ciphertext integrity is not considered
(the default option), 8.7GB/s in CTR mode satisfies our

requirement of not affecting user experience, specifically, for
systems up to 8GB RAM. When GCM is used for ciphertext
integrity, we achieve 7.4GB/s for encryption and 6.8GB/s
for decryption (i.e., 1.08 seconds for entering sleep and 1.18
seconds for waking up, which is very close to our 1-second
delay limit). Note that, we have zero run-time overhead,
after the OS is resumed.

6. VARIANTS
For systems with larger RAM (e.g., 32GB), Hypnoguard

may induce noticeable delays during sleep-wake cycles, if the
whole memory is encrypted. For example, according to our
current performance (see Section 5), if a gaming system has
32GB RAM, it will take about four seconds for both enter-
ing sleep and waking up (in CTR mode), which might be
unacceptable. To accommodate such systems, we propose
two variants of Hypnoguard, where we protect (i) all mem-
ory pages of selected processes—requires no modifications
to applications; and (ii) selected security-sensitive memory
pages of certain processes—requires modifications. Note
that, these variants require changes in HypnoOSService, but
HypnoCore and HypnoDrivers remain unchanged (i.e., un-
affected by the OS-level implementation mechanisms).

(i) Per-process memory encryption. Compared to the
design in Section 3, this variant differs only at the choice
of the encryption scope. It accepts a process list (e.g.,
supplied by the user) and traverses all memory pages al-
located to those processes to determine the scope of encryp-
tion. We retrieve the virtual memory areas (VMA, of type
vm area struct) from task −−> mm −−> mmap of each pro-
cess. Then we break the areas down into memory pages (in
our case, 4K-sized) before converting them over to physical
addresses. This is necessary even if a region is continuous
as VMAs, because the physical addresses of corresponding
pages might not be continuous. We store the page list in
Hypnoguard-reserved memory.

Our evaluation shows that the extra overhead of mem-
ory traversal is negligible. This holds with the assumption
that the selected apps are allocated a small fraction of a
large memory; otherwise, the full memory or mmap-based
variant might be a better choice. For smaller apps such as
bash (38 VMAs totaling 1,864 pages, approximately 7MB),
it takes 5 microseconds to traverse through and build the
list. For large apps such as Firefox (723 VMAs totaling
235,814 pages, approximately 1GB), it takes no more than
253 microseconds. Other apps we tested are Xorg (167 mi-
croseconds) and gedit (85 microseconds). We are yet to fully
integrate this variant into our implementation (requires a
more complex multi-core processing engine).

(ii) Hypnoguard-managed memory pages via mmap().
There are also situations where a memory-intensive appli-
cation has only a small amount of secret data to protect.
Assuming per-application changes are acceptable, we imple-
ment a second variant of Hypnoguard that exposes a file
system interface compliant with the POSIX call mmap(),
allowing applications to allocate pages from a Hypnoguard-
managed memory region.

The mmap() function is defined in the file operations struc-
ture, supported by kernel drivers exposing a device node in
the file system. An application can request a page to be
mapped to its address space on each mmap call, e.g., instead
of calling malloc(). On return, a virtual address mapped



CTR (1-core) CTR CBC GCM-C1 (1-core) GCM-C1 GCM-C4 GCM-A4 GCM-A4T
Encryption 3.7GB/s 8.7GB/s 4.5GB/s — — — — 7.4GB/s
Decryption 3.7GB/s 8.7GB/s 8.4GB/s 2.5GB/s 3.22GB/s 3.3GB/s 5GB/s 6.8GB/s

Table 1: A comparative list of encryption/decryption performance. Column headings refer to various modes of operation,
along with the source language (when applicable; A represents assembly); the trailing number is the number of blocks processed
at a time. A4T is our adapted GCM implementation in assembly processing 4 blocks at a time, with delayed tag verification
(see [71]); — means not evaluated.

into the application’s space is generated by Hypnoguard us-
ing remap pfn range(). An application only needs to call
mmap(), and use the returned memory as its own, e.g., to
store its secrets. Then the page is automatically protected
by Hypnoguard the same way as the full memory encryption,
i.e., encrypted before sleep and decrypted at wakeup. The
application can use multiple pages as needed. We currently
do not consider releasing such pages (i.e., no unmap()), as
we consider a page to remain sensitive once it has been used
to store secrets. Note that, no kernel patch is required to
support this variant. We tested it with our custom appli-
cation requesting pages to protect its artificial secrets. We
observed no latency or other anomalies.

7. SECURITY ANALYSIS
Below, we discuss potential attacks against Hypnoguard;

see also Sections 2.3 and 3.3 for related discussion.

(a) Cold-boot and DMA attacks. As no plaintext se-
crets exist in memory after the system switches to sleep
mode, cold-boot or DMA attacks cannot compromise mem-
ory confidentiality; see Section 3.3, under G1. Also, the
password evaluation process happens inside the TPM (as
TPM receives it through one command and compares with
its preconfigured value; see Section 3.2), and thus the cor-
rect password is not revealed in memory for comparison.
At wakeup-time, DMA attacks will also fail due to memory
access restrictions (TXT/VT-d).

(b) Reboot-and-retrieve attack. The adversary can
simply give up on waking back to the original OS session,
and soft-reboot the system from any media of his choice, to
dump an arbitrary portion of the RAM, with most content
unchanged (the so-called warm boot attacks, e.g., [10, 66,
65]). Several such tools exist, some of which are applicable
to locked computers, see e.g., [16]. With Hypnoguard, as
the whole RAM is encrypted, this is not a threat any more.

(c) Consequence of key deletion. The deletion of HGpriv

severely restricts guessing attacks on lost/stolen computers.
For coercive situations, deletion is needed so that an attacker
cannot force users to reveal the Hypnoguard password after
taking a memory dump of the encrypted content. Although
we use a random AES key SK for each sleep-wake cycle,
simply rebooting the machine without key deletion may not
suffice, as the attacker can store all encrypted memory con-
tent, including SK encrypted by HGpub. If HGpriv can be
learned afterwards (e.g., via coercion of the user password),
the attacker can then decrypt SK, and reveal memory con-
tent for the target session.

If a boot-time anti-coercion tool, e.g., Gracewipe [70] is
integrated with Hypnoguard, the deletion of HGpriv may
also require triggering the deletion of Gracewipe secrets.
Hypnoguard can easily trigger such deletion by overwrit-
ing TPM NVRAM indices used by Gracewipe, which we
have verified in our installation. From a usability perspec-
tive, the consequence of key deletion in Hypnoguard is to
reboot and rebuild the user secrets in RAM, e.g., unlock-

ing an encrypted disk, password manager, or logging back
into security-sensitive websites. With Gracewipe integra-
tion, triggering deletion will cause loss of access to disk data.

(d) Compromising the S3 resume path. We are un-
aware of any DMA attacks that can succeed when the system
is in sleep, as such attacks require an active protocol stack
(e.g., that of FireWire). Even if the adversary can use DMA
attacks to alter RAM content in sleep, bypassing Hypno-
guard still reveals no secrets, due to full memory encryption
and the unforgeability of TPM measurements. Similarly,
replacing the Hypnoguard waking vector with an attacker
chosen one (as our waking vector resides in memory unen-
crypted), e.g., by exploiting vulnerabilities in UEFI resume
boot script [33, 67] (if possible), also has no effect on memory
confidentiality. Any manipulation attack, e.g., insertion of
malicious code via a custom DRAM interposer, on the en-
crypted RAM content to compromise the OS/applications
after wakeup is addressed by our GCM mode implementa-
tion (out of scope for the default CTR implementation).

(e) Interrupting the key deletion. There have been a
few past attacks about tapping TPM pins to detect the dele-
tion when it is triggered (for guessing without any penalty).
Such threats are discussed elsewhere (e.g., [70]), and can be
addressed, e.g., via redundant TPM write operations.

(f) Other hardware attacks. Ad-hoc hardware attacks
to sniff the system bus for secrets (e.g., [7]) are generally
inapplicable against Hypnoguard, as no secrets are processed
before the correct password is entered. For such an example
attack on Xbox, see [29], which only applies to architectures
with LDT (HyperTransport) bus, not Intel’s FSB.

However, more advanced hardware attacks may allow di-
rect access to the DRAM bus, and even extraction of TPM
secrets with an invasive decapping procedure (e.g., [59], see
also [26] for more generic physical attacks on security chips).
Note that the PC platform (except the TPM chip to some
extent) cannot withstand such attacks, as components from
different manufactures need to operate through common in-
terfaces (vs. more closed environment such as set-top boxes).
With TPMs integrated into the Super I/O chip, and specif-
ically, with firmware implementation of TPM v2.0 (fTPM
as in Intel Platform Trust Technology), decapping attacks
may be mitigated to a significant extent (see the discussion
in [50] for discrete vs. firmware TPMs). Hypnoguard should
be easily adapted to TPM v2.0.

8. RELATED WORK
In this section, we primarily discuss related work on mem-

ory attacks and preventions. Proposals for addressing change
of physical possession (e.g., [55, 17]) are not discussed, as
they do not consider memory attacks.

Protection against cold-boot and DMA attacks. So-
lutions to protecting keys exposed in system memory have
been extensively explored in the last few years, apparently,
due to the feasibility of cold-boot attacks [25]. There have



been proposals based on relocation of secret keys from RAM
to other “safer” places, such as SSE registers (AESSE [43]),
debug registers (TRESOR [45]), MSR registers (Amne-
sia [56]), AVX registers (PRIME [18]), CPU cache and debug
registers (Copker [23]), GPU registers (PixelVault [63]), and
debug registers and Intel TSX (Mimosa [24]).

A common limitation of these solutions is that specific
cryptographic operations must be offloaded from the pro-
tected application to the new mechanism, mandating per-
application changes. They are also focused on preventing
leakage of only cryptographic keys, which is fundamentally
limited in protecting RAM content in general. Also, some
solutions do not consider user re-authentication at wakeup-
time (e.g., [18, 23]). Several of them (re)derive their master
secret, or its equivalent, from the user password, e.g., [43,
45]; this may even allow the adversary to directly guess the
master secret in an offline manner.

Memory encryption. An ideal solution for memory ex-
traction attacks would be to perform encrypted execution:
instructions remain encrypted in RAM and are decrypted
right before execution within the CPU; see XOM [36] for an
early proposal in this domain, and Henson and Taylor [27]
for a comprehensive survey. Most proposals for memory en-
cryption deal with data in use by an active CPU. Our use
of full memory encryption involves the sleep state, when the
CPU is largely inactive. Most systems require architectural
changes in hardware/OS and thus remain largely unadopted,
or designed for specialized use cases, e.g., bank ATMs. Us-
ing dedicated custom processors, some gaming consoles also
implement memory encryption to some extent, e.g., Xbox,
Playstation. Similar to storing the secrets in safer places,
memory encryption schemes, if implemented/adopted, may
address extraction attacks, but not user re-authentication.

Forced hibernation. YoNTMA [34] automatically hiber-
nates the machine, i.e., switch to S4/suspend-to-disk, when-
ever it detects that the wired network is disconnected, or
the power cable is unplugged. In this way, if the attacker
wants to take the computer away, he will always get it in a
powered-off state, and thus memory attacks are mitigated.
A persistent attacker may preserve the power supply by us-
ing off-the-shelf hardware tools (e.g., [39]). Also, the at-
tacker can perform in-place cold-boot/DMA attacks.

BitLocker. Microsoft’s drive encryption tool BitLocker
can seal the disk encryption key in a TPM chip, if avail-
able. Components that are measured for sealing include:
the Core Root of Trust Measurement (CRTM), BIOS, Op-
tion ROM, MBR, and NTFS boot sector/code (for the full
list, see [42]). In contrast, Hypnoguard measures compo-
nents that are OS and BIOS independent (may include the
UEFI firmware in later motherboard models). In its most
secure mode, Microsoft recommends to use BitLocker with
multi-factor authentication such as a USB device containing
a startup key and/or a user PIN, and to configure the OS to
use S4/suspend-to-disk instead of S3/suspend-to-RAM [41].
In this setting, unattended computers would always resume
from a powered-off state (cf. YoNTMA [34]), where no se-
crets remain in RAM; the user needs to re-authenticate with
the PIN/USB key to restore the OS.

BitLocker’s limitations include the following. (1) It un-
dermines the usability of sleep modes as even with faster
SSDs it still takes several seconds to hibernate (approx. 18
seconds in our tests with 8GB RAM in Windows 10 ma-

chine with Intel Core-i5 CPU and SSD). Wakeup is also
more time-consuming, as it involves the BIOS/UEFI POST
screen before re-authentication (approx. 24 seconds in our
tests). On the other hand, RAM content remains unpro-
tected if S3 is used. (2) It is still vulnerable to password
guessing to some extent, when used with a user PIN (but
not with USB key, if the key is unavailable to the attacker).
Based on our observation, BitLocker allows many attempts,
before forcing a shutdown or entering into a TPM lockout
(manufacturer dependent). A patient adversary can slowly
test many passwords. We have not tested if offline password
guessing is possible. (3) BitLocker is not designed for coer-
cive situations, and as such, it does not trigger key deletion
through a deletion password or fail counter. If a user is cap-
tured with the USB key, then the disk and RAM content
can be easily accessed. (4) Users also must be careful about
the inadvertent use of BitLocker’s online key backup/escrow
feature (see e.g., [4]).

Recreating trust after S3 sleep. To re-establish a se-
cure state when the system wakes up from S3, Kumar et
al. [35] propose the use of Intel TXT and TPM for recreat-
ing the trusted environment, in the setting of a VMM with
multiple VMs. Upon notification of the S3 sleep, the VMM
cascades the event to all VMs. Then each VM encrypts
its secrets with a key and seal the key with the platform
state. The VMM also encrypts its secrets and seals its con-
text. Thereafter, the VMM loader (hierarchically higher
than the VMM) encrypts the measurement of the whole
memory space of the system with a key that is also sealed.
At wakeup-time, all checks are done in the reversed order.
If any of the measurements differ, the secrets will not be
unsealed. This proposal does not consider re-authentication
at wakeup-time and mandates per-application/VM modifi-
cations. More importantly, sealing and unsealing are per-
formed for each sleep-wake cycle for the whole operating
context: VMM loader, VMM, VMs. Depending on how the
context being sealed is defined, this may pose a severe perfor-
mance issue, as TPM sealing/unsealing is time-consuming;
according to our experiment, it takes more than 500ms to
process only 16 bytes of data.

Unlocking with re-authentication at S2/3/4 wakeup.
When waking up from one of the sleep modes, a locked de-
vice such as an FDE hard drive, may have already lost its
security context (e.g., being unlocked) before sleep. Ro-
driguez and Duda [51] introduced a mechanism to securely
re-authenticate the user to the device by replacing the origi-
nal wakeup vector of the OS with a device specific S3 wakeup
handler. The user is prompted for the credential, which is di-
rectly used to decrypt an unlock key from memory to unlock
the device (e.g., the hard drive). This approach does not use
any trusted/privileged execution environment, such as Intel
TXT/AMD SVM. Without the trusted measurement (i.e.,
no sealed master key), the only entropy comes from the user
password, which may allow a feasible guessing attack.

Secure deallocation. To prevent exposure of memory-
bound secrets against easy-to-launch warm-reboot attacks,
Chow et al. [10] propose a secure deallocation mechanism
(e.g., zeroing freed data on the heap) to limit the lifetime
of sensitive data in memory. This approach avoids modifi-
cations in application source, but requires changes in com-
pilers, libraries, and OS kernel in a Linux system (and also
cannot address cold-boot attacks). Our solution is also effec-



tive against warm-reboot attacks, but requires no changes
in applications and the OS stack.

Relevant proposals on mobile platforms. Considering
their small sizes and versatile functionalities, mobile devices
are more theft-prone and more likely to be caught with sen-
sitive data present when the user is coerced. CleanOS [58] is
proposed to evict sensitive data not in active use to the cloud
and only retrieve the data back when needed. Sensitive in-
formation is pre-classified and encapsulated into sensitive
data objects (SDOs). Access to SDOs can be revoked in the
case of device theft and audited in normal operations. Tin-
Man [69] also relies on a trusted server, but does not decrypt
confidential data in the device memory to avoid physical
attacks. Keypad [19], a mobile file system, provides fine-
grained access auditing using a remote server (which also
hosts the encryption keys). For lost devices, access can be
easily revoked by not releasing the key from the server. All
these proposals require a trusted third party. Also, under
coercion, if the user is forced to cooperate, sensitive data
will still be retrieved. Moreover, the protected secrets in
Hypnoguard might not be suitable for being evicted as they
may be used often, e.g., an FDE key.

Gracewipe. For handling user secrets in the trusted
execution environment, we follow the methodology from
Gracewipe [70], which operates at boot-time and thus can
rely on BIOS and tboot. In contrast, Hypnoguard oper-
ates during the sleep-wake cycle, when no BIOS is active,
and tboot cannot be used for regular OSes (tboot assumes
TXT-aware OS kernel). Gracewipe assumes that the at-
tacker can get physical possession of a computer, only when
it is powered-off, in contrast to Hypnoguard’s sleep state,
which is more common. Gracewipe securely releases sensi-
tive FDE keys in memory, but does not consider protecting
such keys against memory extraction attacks during sleep-
wake. Gracewipe addresses an extreme case of coercion,
where the data-at-rest is of utmost value. We target unat-
tended computers in general, and enable a wakeup-time se-
cure environment for re-authentication and key release.

Intel SGX. Intel Software Guard Extensions (SGX [3]) al-
lows individual applications to run in their isolated context,
resembling TXT with similar features but finer granular-
ity (multiple concurrent secure enclaves along with the in-
secure world). Memory content is fully encrypted outside
the CPU package for SGX-enabled applications. Consider-
ing the current positioning of Hypnoguard, we believe that
TXT is a more preferable choice, as running either the pro-
tected programs or the entire OS in SGX would introduce
per-application/OS changes. TXT also has the advantage
of having been analyzed over the past decade, as well as its
counterpart being available in AMD processors (SVM).

9. CONCLUDING REMARKS
As most computers, especially, laptops, remain in sleep

while not actively used, we consider a comprehensive list
of threats against memory-resident user/OS data, security-
sensitive or otherwise. We address an important gap left
in existing solutions: comprehensive confidentiality protec-
tion for data-in-sleep (S3), when the attacker has physical
access to a computer in sleep. We design and implement
Hypnoguard, which encrypts the whole memory very quickly
before entering sleep under a key sealed in TPM with the
integrity of the execution environment. We require no per-

application changes or kernel patches. Hypnoguard enforces
user re-authentication for unlocking the key at wakeup-time
in a TXT-enabled trusted environment. Guessing attacks
bypassing Hypnoguard are rendered ineffective by the prop-
erties of TPM sealing; and guessing within Hypnoguard will
trigger deletion of the key. Thus, Hypnoguard along with
a boot-time protection mechanism with FDE support (e.g.,
BitLocker, Gracewipe [70]) can enable effective server-less
guessing resistance, when a computer with sensitive data is
lost/stolen. We plan to release the source code of Hypno-
guard at a later time, and for now it can be obtained by
contacting the authors.
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