Financial Cryptography - Feb 27, 2006

A Protocol for Secure Public Instant Messaging

Mohammad Mannan and Paul C. van Oorschot

Digital Security Group
Carleton University, Canada

Outline

- IM overview and motivation
- Instant Messaging Key Exchange (IMKE) the protocol
- Security comments

Figure 1: IM in action

IM communication model

- → Client–Server Communications (e.g. login, profile)
- ← - ► Client–Client Direct Communications (e.g. file data transfer)
- Client-Client Server-mediated Communications (e.g. text message)

Do we need secure IM?

- IM is a popular application
 - instant communication (home users)
 - instant collaboration (enterprise users)
- Number of users: MSN 185m, Yahoo! 82m, AOL 61m^a
- 13 of Fortune 50 companies were affected by IM-related security incidents in the last 6 months^b
- IMlogic was bought by Symantec (Jan. 2006)

^aSource: ComScore Media Metrix, Aug. 2005

^bSource: IMlogic, Nov. 2005

IMKE - motivation

- 1. Existing solutions have drawbacks
 - SSL: relayed user messages are visible to IM server
 - client plug-ins: client-server messages are plaintext
 - secure protocols: not designed for integration
- 2. Strong password protocols do not fit
 - efficiency
 - simplicity

IMKE - goals

- 1. Mutual assurance of identity
- 2. Secure communications ("C.I.A.")
- 3. Forward secrecy
- 4. Repudiation (!)
- 5. Replay detection
 - authentication phase: √
 - text message / file transfers: standard techniques

IMKE - notation

A, B, S IM users *Alice* and *Bob*, and IM server

 ID_A User ID of A

 P_A Password shared by A and S

 R_A Random number generated by A

 $\{data\}_K$ Secret-key encryption of data using key K

 $\{data\}_{E_A}$ Public-key encryption of data using A's public key KU_A

 K_{AS}^{s} Symmetric (s) session encryption key shared by A and S

 $[X]_{AS}$ MAC output of X under the symmetric MAC key shared by A and S

IMKE - features

- Comparing IMKE re: offline dictionary attack avoidance
 - 1. password-only (eg. EKE): $\{KU_A\}_{P_A}$
 - 2. known server public key (eg. Halevi-Krawczyk): $\{P_A,R\}_{E_S}$
 - 3. IMKE: $\{K_{AS}\}_{E_S}, \{P_A\}_{K_{AS}}$
- Public key protocol independence
- IM server works as an online public key distribution center
- Secure communications between users who share no long-term secret
- Dynamic client public keys

IMKE - message summary (1)

Phases	Message	Messages
	Labels	
Authentication and Key Exchange		${\cal A}$ generates a dynamic public/private key pair
		A, S authenticate each other using shared password
		A,S establish a session key
		A's public key is sent to and stored by S
Public Key Distribution		${\cal A}$ communicates to ${\cal S}$ a desire to talk to ${\cal B}$
		S forwards B 's public key to A (and A 's to B)
Session Key Transport		$A,\ B$ authenticate each other using the received
		public keys
		A,B establish a session key

IMKE - message summary (2)

Phases	Message Labels	Messages
Authentication	a1	$A \to S : ID_A, \{K_{AS}\}_{E_S}, \{KU_A, f_1(P_A)\}_{K_{AS}}$
and	a2	$A \leftarrow S : \{R_S\}_{E_A}, \{f_2(P_A)\}_{K_{AS}}$
Key Exchange	a3	$A \to S: f_3(R_S)$
Public Key	<i>b</i> 1	$A \leftarrow S : \{KU_B, ID_B\}_{K_{AS}^s}, [KU_B, ID_B]_{AS}$
Distribution	b2	$B \leftarrow S : \{KU_A, ID_A\}_{K_{BS}^s}, [KU_A, ID_A]_{BS}$
Session	c1	$A \to B : \{K_{AB}\}_{E_B}, \{R_A\}_{K_{AB}}$
	c2	$A \leftarrow B : \{R_B\}_{E_A}, \{f_6(R_A)\}_{K_{AB}}$
Key Transport	c3	$A \rightarrow B: f_7(R_A, R_B)$

$$K_{AS}^{s} = f(K_{AS}, R_S), \quad K_{AB}^{s} = f(K_{AB}, R_B)$$

IMKE - security

- Formal proofs: X
- BAN-like analysis (outline): ✓
- AVISPA protocol analysis tool: ✓

http://www.scs.carleton.ca/~mmannan/avispa-imke/

IMKE - attacks not addressed

- 1. Keyloggers can collect passwords
- 2. A false public key of S on client allows offline dictionary attacks
- 3. Malicious IM server may forward false client public keys (MIM)
- 4. IM worms

IMKE - implementation

- 1. Integrated with Jabber
- 2. Usable performance
 - authentication time doubles, but still less than 0.5 second
 - little effect on text messaging and bulk data transfer
- 3. Incrementally deployable

Concluding remarks

- 1. Secure IM: becoming increasingly important
- 2. IMKE: simple, integratable
- 3. Main lesson from IMKE implementation: practical today