LURK: Server-Controlled TLS Delegation

Ioana Boureanu®, Daniel Migault*, Stere Preda, Hyame Assem Alamedinef, Sanjay Mishra¥, Frederic Fieau®,
and Mohammad Mannan¥
*University of Surrey, 'Ericsson Security, ¥Verizon, $Orange, YConcordia University

Abstract—By design, TLS (Transport Layer Security) is a 2-
party, end-to-end protocol. Yet, in practice, TLS delegation is
often deployed: that is, middlebox proxies inspect and even modify
TLS traffic between the endpoints. Recently, industry-leaders
(e.g., Akamai, Cloudflare, Telefonica, Ericcson), standardization
bodies (e.g., IETF, ETSI), and academic researchers have pro-
posed numerous ways of achieving safer TLS delegation. We
present LURK the LURK (Limited Use of Remote Keys) extension
for TLS 1.2, a suite of designs for TLS delegation, where the TLS-
server is aware of the middlebox. We implement and test LURK.
We also cryptographically prove and formally verify, in Proverif,
the security of LURK. Finally, we comprehensively analyze
how our designs balance (provable) security and competitive
performance.

Index Terms—Internet security, Middleboxes, Cryptographic
protocols, Transport protocols, TLS, Proverif

I. INTRODUCTION

Decades ago, Internet protocols were designed such that the
application logic operated only at the endpoints. However, to-
day, this end-to-end paradigm is impeded primarily by the fact
that traffic is now processed by a series of middleboxes before
it is presented to the end user, normally in a personalised form
(e.g., via user-customised web-acceleration and compression).
Content delivery networks (CDN) have traditionally been at
the core of this, but now they are just one of the many
players in the field, alongside massive IoT (Internet of Things)
and the rising 5G networks enabled by edge computing. We
shall refer to this internet-traffic mediation by middleboxes
as “collaborative content-delivery”. The latter is forecast [39]
to increase even further the number of players collaborating
in the delivery of content and services over the Internet.
To this end, tech giants (Akamai, Cloudflare, Telefonica,
Ericcson) and standardisation bodies (ETSI, IETF) alike have
recently devoted considerable attention to third-party-driven
security [38].

For unencrypted traffic, collaborative content-delivery fits
the following architecture. A third party which is “on path”
between the end-client and the end-server simply processes
packets, and in this way, using a principle called implicit
signalling [15]. The endpoints are largely unaware of the
mediated content-delivery by the third party. Since this design
implies a high level of trust placed on the mediating point,
we will refer to it as a TTP (trusted third party). On the
other hand, encryption of application-data, e.g., via TLS has
become much more common. Normally, the record layer of
TLS follows a design of end-to-end encryption between two
purported interlocutors, e.g., a client and a server. Yet, as
we already mentioned, collaborative content-delivery and/or
traffic servicing is both a chronic and an acute need. As such,

collaborative delivery over TLS-encrypted traffic is already
largely adopted, e.g., by CDNSs. This is most often referred to
as SSL inspection or TLS delegation. Their edge servers hold
a valid X.509 certificate for the domain(s) and an associated
private key on behalf of the web-servers for which they deliver
content. In this way, the CDN-owned TTP is still invisible to
the end-user, as it impersonates the end web-server in a manner
akin to that of implicit signaling.

At the same time as collaborative delivery with implicit
signaling has become ubiquitous, the Internet Architecture
Board (IAB) calls for making all proxies collaborating in
traffic delivery visible to the endpoints [15]. Meanwhile, there
exist architectures that meet somewhere in the middle: they
are more practical than fully visible proxying, and side with
the IAB on reducing the TTP’s invisibility. Concretely, in
these cases, the mediating party is still invisible to the client,
but not to the web-server, at least during the secure-channel
establishment, e.g., the TLS handshake. We refer to these
as server-controlled TLS delegations. Such designs appeared
first in a patent by the CDN-giant Akamai [14]. In this modus
operandi, the CDN provisions the public key and associated
X.509 certificate for the domain it delivers, but the associated
private key remains on the web-servers’ side. The CDN queries
the web-server via an API for operations where designated
private key is needed. In 2015, Cloudflare commercialized a
version of this, in a product called Keyless SSL [34]. However,
these designs obviously require modifications to the TLS
server and sometimes even the TLS handshake (i.e., the secure-
channel establishment part of TLS). Also, the resulting three-
party “TLS-like” protocol arguably raises questions w.r.t. what
it should guarantee and what it does actually guarantee. To
this end, in 2017, Bhargavan et al. [4] used a provable-security
approach to show several vulnerabilities on Keyless SSL. They
also advanced 3(S)ACCE-K-SSL, an alternative design of a 2
party Authenticated and Confidential Channel Establishment
(ACCE) where the handshake is run in the presence of
middleboxes such as CDN edge servers. 3(S)ACCE-K-SSL
provably achieves stronger security goals than Keyless SSL,
albeit with reduced design-efficiency.

Contributions

1. We propose a suite of new designs for practical and
provably secure server-controlled TLS delegation, in which the
mediating party has limited and remote access to end-server.
We call our designs LURK that meets in the middle between
the (insecure) Keyless SSL [34] and the (provably secure
but inefficient) 3(S)ACCE-K-SSL [4]. In fact, LURK has
different variants which offer a balance between security and
practicality. For instance, we remove the content-soundness
requirement in 3(S)ACCE-K-SSL [4], as it needs an expensive

PKI. Similarly, for efficiency reasons, only certain LURK
variants attain a new TLS-delegation property called account-
ability [4]. Meanwhile, all LURK designs require channel
security and entity authentication in the collaborative, 3-party
setting. Also, LURK does takes into account recommendations
made for KeylessSSL w.r.t. its replay-driven insecurities based
on corruption of content-delivery party [4], by building in new
mechanisms to avoid replay attacks.

2. LURK is a generic design to accommodate most authen-
ticated key-exchange (AKE) protocols. In this paper, we
instantiated it with TLS 1.2, which we call LURK.

3. Using the recent 3(S)ACCE formal security model for
proxied AKE [4], we provide cryptographic proofs that LURK
achieves its security goals.

4. In LURK, we include a “freshness mechanism” to counter
replay attacks '. As such, we encode LURK in RSA mode
in the automatic protocol-verifier ProVerif and we formally
check that perfect forward secrecy holds in LURK in RSA
mode. With a further formalisation in ProVerif, we show that
the elusion of our “freshness mechanism” would in fact lead to
the same type of attacks as found in Keyless SSL. Thus, we
formally prove that our “freshness mechanism” does indeed
aid to ensure perfect forward secrecy in LURK in RSA mode.
5. We implement the more efficient variants of LURK and
test them in practice.

Why LURK? The purpose of LURK based on TLS 1.2 is
to provide the necessary agility required during the transition
from TLS 1.2 to TLS 1.3, all the while preventing that
bespoke TLS 1.2 communications operate insecurely. While
TLS 1.3 has seen a remarkably fast adoption from large
companies (Facebook, Google, Microsoft, Akamai) as well
as standardization bodies such as 3GPP, TLS 1.2 is the de-
facto version of TLS used worldwide. It is likely that the
transition from TLS 1.2 to TLS 1.3 “in the wild” will take
some time. In fact, many services rely on so-called legacy
devices, such as video on demand being provided by Customer
Premises Equipment (CPE); for these, the move to TLS 1.3 is
expected to take significantly longer. One of LURK’s aim is to
bridge this gap and improve the security of existing TLS 1.2
deployment.

II. LURK’s USE CASES

Our proposed architecture, LURK, practically splits a TLS
server into two micro-services: the LURK Engine and the
Cryptographic Service (Crypto Service). This enables that
the ownership of long-term cryptographic credentials and the
execution of the bulk of the TLS handshake be operated by
independent parties. The following use-cases could grasp the
benefits of such an architecture.

I'Since TLS 1.2 RSA mode does not ensure forward secrecy, placing a
mediating party in between the client and the server can lead to replay
attacks. This was shown for Keyless SSL TLS 1.2 in RSA mode, and a repair
was proposed via the 3(S)ACCE-K-SSL design [4]; our replay-prevention
mechanism differs from this design.

A. COMPLEX CDN-ING

Firstly, the Streaming Video Alliance (SVA) [35] brings
together content providers, commercial CDN operators and
network operators to collaborate on a partnership that allows
to seamlessly provide abilities to offload video-based content
to caches deep into the network-operator’s edge. Secondly,
leveraging work of the IETF CDN Interconnection Work-
ing Group (CDNI) [11], the Open Caching Working Group
(OCWG) [28] has specified an architecture as well as an API
to enable the delegation of content from between CDNs. An
upstream CDN (uCDN) is a CDN that is willing to delegate
content to a downstream CDN (dCDN). CDNI and OCWG
look at making this type of uCDN-to-dCDN delegation more
workable. However, in this case of complex CDN-ing, placing
trust on possibly unknown dCDNs to handle private keys on
behalf of the content-owner is a big ask. So, this type of
CDN-ing can benefit from the LURK architecture to enable
delegation of encrypted content without sharing the private
keys. Concretely, the LURK architecture allows uCDNs to
delegate across the different administrative domains to dCDNSs,
without sharing long-term security credentials.

Current implementations of this architecture, in the absence
of LURK, are forced to implement inferior solutions. For
instance, they use short expiry of keys which cause operations
overheads. Or, they create dedicated sub-domains for the
dCDN’s use, which cause security risks. Lastly, sometimes
the usage of the dCDN’s domain is enforced, simply to avoid
sharing long-term security credentials.

The LURK framework allows for encrypted TLS handshake
without sharing the private key to the delegated CDN. This
makes LURK a natural fit for delegation of video streaming
sessions across different administrative domains. The latency
overhead could be solved by leveraging TEE and extending
the trusted domain of the delegating CDN into the delegated
CDN’s infrastructure.

B. SERVICE-TO-SERVICE PLATFORMS

In service-based architectures, there are often service-mesh
technologies called upon to create representation of a service
as the interconnection of micro-services. In middle parties in
these interconnections are called mesh proxies or sidecars. A
recurrent feature is the interconnection of sidecars with TLS
based on short lived private keys. An example is Istio [22],
running on the Kubernetes Engine. In Istio, a particular
component in the service-mesh control-plane is in charge of
frequently triggering private-key rotation (e.g., Istio Citadel).
It is a fact that such component plays a critical role and its
corruption may lead to exposure of the managed secrets.

To solve the problem of the large amount of trust placed
on the service-mesh control-plane, we could look at the
LURK Crypto Service be deployed in virtual multi-tenant
environments. To solve the issue, in fact, we would need an
in-extremis solution where we colocate the Crypto Service
with the TLS Engine. Bearing in mind that the latter can
be deployed on untrusted platforms, a requirement is the
availability of a root-of-trust, such as TEEs (Trusted Execution

Environments, e.g., Intel SGX [21], in order to instantiate the
Crypto Service inside it.

At an initial assessment, we expect that a LURK deploy-
ment with the Crypto Service inside a TEE and the Engine
implemented by sidecars: (1) enables a tighten control over the
private keys alongside the necessary cryptographic operations
on it; and (2) reduces the critical role of entities in charge
of frequent key rotation and certificate renewal. Nonetheless,
a challenge remains provisioning of TEE and managing the
lifecycle of the Crypto Service inside it. IETF created the
Trusted Execution Environment Provisioning Working Group
(TEEP) [36] which we follow closely.

III. RELATED WORK
A. Client-Invisible, Server-Controlled TLS Delegation

By server-controlled and client-invisible delegation, we
mean that the TLS client is unaware of the middlebox and
the latter is mandated/commissioned to delegate traffic by the
TLS server.

Up to date, there are seven comprehensive such mecha-
nisms, all used for or by CDNs. In Table I, we summarise
these as well as LURK , from the viewpoint of: a) the
changes needed to the TLS Client; b) the important credentials
over which the TLS Server (content owner) maintains control
during the delegation; c) the ability of the TLS Server (content
owner) to audit the delegated TLS session.

From LURK ’s stance, as we envisage this used with legacy
clients, the TLS Client must not be updated. For security
reasons, the ability to audit the middlebox is clearly also vital.
As such, we see from Table I, that LURK is a competitive
solution on this desirable space of secure, backwards-aware
TLS delegation. More details on every mechanism listed in
Table I are provided in Appendix D of the long version of the
paper [8].

Impact Cco*
Mechanism on TLS CO* control capabilities audit ca-
Client pabilities
Shared long-term B N N
private key [25]
X.509 Name X.509 long-term private key, B
Constraints [7] parsing name
Delegated TLS ext name -
Credentials [2] :
STAR [31] - name -
DANE [17] DNSSEC name -
Stickler [24] br0w§er long-term private key, B
plugin name, content
KeylesSSL [34] B long-term private key, B
name
3(S)ACCE-K- B long-term private key, es
SSL [4] name y
LURK B long-term private key, yes
name

TABLE I: Client-Invisible, Server-Controlled TLS Delegation
for CDNs —(*) CO: Content Owner

We also carried out the same type of comparison with
TLS-delegation mechanisms where the client is aware of the
middlebox, i.e, Client-visible TLS Delegation.

B. Keyless SSL and 3(S)ACCE-K-SSL

As we can see from Table I, LURK aligns itself most
with KeylessSSL [34] and 3(S)ACCE-K-SSL [4]. In fact,
these CDN-driven architectures appeared first in a patent by
Akamai [14]: i.e., TLS-delegation systems where the TLS
long-term private key stays on the server-side and the asso-
ciated certificate goes with the middlebox, who can therefore
impersonate the server in a way invisible to the client. In 2015,
Cloudflare commercialised a version of this, in a product called
KeylessSSL [34]. However, KeylessSSL obviously required
modifications to the TLS handshake (i.e., the secure-channel
establishment part of TLS). Also, the resulting three-party
“TLS-like” protocol arguably raises questions w.r.t. what it
should guarantee and what it does actually guarantee. To
this end, in 2017, Bhargavan et al. [4] used a provable-
security approach to show several vulnerabilities on Key-
lessSSL: e.g., forward-secrecy attacks, signing oracle attacks
or cross-protocol attacks, etc. So, Bhargavan et al. [4] ad-
vanced an alternative design, called 3(S)ACCE-K-SSL, that
provably achieves stronger security goals than KeylessSSL,
albeit with reduced design-efficiency.

By cherry-picking just the security guarantees achievable
in the real-world’> and by some different design choices?,
LURK offers a more efficient design than 3(S)ACCE-K-
SSL. Concretely, just to fix the forward-secrecy attack in
KeylessSSL, the 3-(S)ACCE-K-SSL design requires 3 RTTs,
which is prohibitive for the provided benefit. LURK addresses
this concern by providing similar level of security with a
single RTT. What is more, unlike 3(S)ACCE-K-SSL, we
implemented and extensively tested LURK ’s performance, to
aid further still with particular option/implementation choices.

Note that 3-(S)ACCE-K-SSL aims to achieve a strong
property called content-soundness, for which it requires one
certificate per every content-unit (e.g., 1 HTML page, 1
HTTP header, etc.) delivered. This is arguably un-achievable
in real life. Yet, the content-soundness property is interesting
in that it cryptographically certifies each content-unit that the
middlebox is allowed to deliver; but, in practice, the solutions
are weaker, based on CDN configurations and access-control
policies.

Last but not least, we offer several variants of LURK,
each with different options (e.g., LURK Variant 1 can support
session ID resumption if needed, whereas LURK Variant 2
does not and does attain accountability like 3-(S)ACCE-K-
SSL). To this end, it could be considered that our LURK
Variant 1 is a secure version of KeylessSSL, whereas our
LURK Variant 2 is an even more secure, being real-life
alternatives to 3-(S)ACCE-K-SSL.

Some further comparisons with KeylessSSL and 3-
(S)ACCE-K-SSL are given in the long version of this pa-
per [8].

2We do not require 3(S)ACCE-K-SSL’s content-soundness.

3To add Perfect Forward Secrecy (PFS) to LURK in RSA mode, we do not
run the whole handshake on behalf of the Engine (which 3(S)ACCE-K-SSL
did to repair KeylessSSL).

IV. LURK: DELEGATED SECURE DELIVERY WITH SERVER
CONTROL

LURK is a suite of designs to delegate TLS 1.2 credentials
without any changes on the TLS Client, whilst it does split the
standard TLS Server into two services: 1). a Cryptographic
Service (“Crypto Service” for short), denoted by S, which
performs cryptographic operations associated to the private
key of the TLS Server; 2). a LURK Engine (“Engine” for
short), denoted by E, which performs the remainder of the
TLS server-side process. The Crypto service and the LURK
Engine can be collocated* services or not. These two ser-
vices communicate using the LURK protocol. In other words,
LURK facilitates “oracle”-like calls that the Engine F makes
to Crypto Service S, needed for the signing or decryption
operations that a TLS-server normally does. The queries from
the LURK Engine to the Crypto Service are performed over a
mutually-authenticated and secure channel with exported keys
(e.g., EAP-TLS or other “TLS-like” protocol), which —as
shown by [10]—can be transformed into a provably secure
authenticated key exchange protocol where the exported keys
are indistinguishable from random. Whilst the limited and
restricted use of the Crypto Service is akin to that of an HSM
(Hardware Security Module), the enforcement mechanisms in
place to achieve such restricted usage in LURK differ from
those in an HSM.

A. THE LURK DESIGNS

LURK instantiated with TLS 1.2, called LURK, is paramet-
ric in a security parameter s, as well as on a function® called
the “freshness function” and denoted . This is a pseudoran-
dom function (PRF). There is a fresh key k, indistinguishable
from random, exported from the AKE protocol run between
the Engine and the Crypto Service, at each run of LURK. In
each such run, the key k is also used to key an instance of
the PRF (. In that sense, when we sometimes write “p(-)” we
mean ¢ (-), where both ¢ and k are re-chosen/re-established
at every new session.

LURK in RSA Mode. Figure 1 presents the LURK proto-
col®. based on TLS 1.2 in RSA-mode. We propose two slightly
different variants of LURK in RSA mode.

As per Fig. 1, the handshake starts as expected on the
client side. Thereafter, there are some differences. First, the
server-nonce, here denoted Npg, is computed by the LURK
Engine in a different manner than in TLS 1.2. RSA mode. The
LURK Engine generates a nonce N; at random; the length
of N, is parametric in a security parameter. In practice, in
line with TLS parameters, this length can be chosen to be,
e.g., 28 x 8 bits. Second, the LURK Engine applies the ¢
function to N;. It is the result of ©(N;), i.e., Ng = ¢(IV;),
that stands in for the “TLS server random” and is sent back by

4In CDN, the LURK Engine is hosted by the CDN provider at the edge
node, while the Cryptographic Service is hosted by the content owner.

SWe do not hard code this function in the design as per the guidelines
of [18]. In this way, if concrete implementations have already allocated the
space for different possibilities, then deprecation of specific choices and
replacements are more easily made.

Please see Appendix A of the long version of the paper [8] for details
on TLS 1.2

the LURK Engine to the Client. Third, the TLS Client then
sends the client key-exchange message KE containing the
encrypted pre-master secret pmk, alongside the client-finished
messages Finc. Fourth, the LURK Engine forwards these
(with or without the Fin¢), along with IV; and all elements of
the transcript 7 to the Crypto Service. Then, the Crypto Service
computes Np as ¢(N;), retrieves the pmk, verifies the Fing
message (if it was sent) and then computes the master secret
msk. Note that the sending by the Engine of the Fin message
to be verified by the Crypto Service is optional and we also
refer to it as the Proof of Handshake (PoH).

Henceforth, LURK branches out in two variants. In Variant
1, the Crypto Service sends back the master-secret msk to the
LURK Engine, whereas in Variant 2, the channel key ck is
sent back to the LURK Engine. Either message, msk or ck,
is sent encrypted with the exported key. Then, the protocol
between the Engine and the TLS Client follows the normal
TLS interaction and record-layer communication.

LURK in RSA Extended Mode. LURK in RSA Extended
mode only differs from LURK in RSA in that the master secret
msk is generated using the transcripts of the handshake instead
of the nonces N¢ and Ng.

LURK in DHE Mode. W.r.t. LURK in DHE mode, we also
propose two variants. The first is presented in Figure 2, and the
second in Figure 9 —found in Appendix C of the long version
of the paper [8]. In the first variant of LURK in DHE mode
(Fig. 2), the LURK Engine generates the DHE keypair (v, g*
mod p) and KEg. It sends the key share KEg to the Crypto
Service together with N and NNV;, as well as —optionally —a
Proof of Ownership of v, denoted PoO(v); the latter can be
seen as a non-interactive proof of knowledge of the secret
exponent v.

The Crypto Service would only accept a specific data-
structure for the messages received at this step and it will
decline the communication otherwise. Then, the Crypto Ser-
vice verifies the PoO (if it was sent), it then computes
the hash sv, and signs this hash. Then, the Crypto Service
returns this signature to the LURK Engine. From here on, the
Crypto Service continues the TLS handshake with the Client
as expected. After the use of the DHE keypair and the N;
nonce, the LURK Engine deletes them off its memory.

In the second variant of LURK in DHE mode (Fig. 9 in
Appendix C of the long version of the paper [8]), the Crypto
Service executes more operations on behalf of the Engine
than in Variant 1. Namely, the Crypto Service generates the
ephemeral DHE exponent v, it therefore generates the pmk
value and it only returns to the LURK Engine the channel
key. In fact, our Variant 2 of LURK in DHE mode is an
efficiency-driven variation of the 3(S)ACCE-K-SSL design
proposed in [4]. Concretely, our Variant 2 of LURK in DHE
mode does not require the heavy PKI that 3(S)ACCE-K-SSL
needs for the content-soundness property (i.e., one certificate
per each fragment delivered), as we do not aim to achieve this
property —see section III-B.

Note: A detailed specification of LURK , to the level of the
network layer, packet formats, inner options, etc. is available
at [27]. Section VI will also provide detail in this regard.

TLS Client C' LURK Engine

Crypto Service S

Mutually-auth.,
Secure Channel

N¢ with Exported Key k
Generate Nog {0, 117 — 4)
‘Generate N;+—x{0, 1}”‘
‘Compute Ng < @r(N;)
Ng,Certs
T =
pmk(—R{U,l}’” [NC; sy KEC]; Ni7
KEc Encp(pmk) KE¢,Finc opt. : Fing
msk — ’ pmk <— Decy(KE()
PRFpmik(L1,N¢|[Ng)
ck <= PRFmsk(L2, Np|[N¢)
Finc — PRFmSk(Lg, T)
Np = (V)
msk < PRFpmi (L1, No|[Np) |
Var.2: ck < PRFmsk(La, N£[[No) |
opt.: Verify Fin¢; a.k.a. PoH ‘
Varl— msk @ k
Var2 — ck & k
Var.1: Read msk
Var.1: ck <+ PRFmSk<L2, NE“NC>
Var.2: Read ck
Calculate Fing < PRFmek (L3,)
AEck(FinE)
Decrypt and check Fing ‘ A==
AE4(—)

Record layer: application data

Record layer: application data

Fig. 1: LURK based on TLS 1.2 in RSA mode: Two Variants

B. LURK’S SECURITY GOALS

TLS is a 2-party authenticated key exchange (AKE) proto-
col and LURK is a 3-party AKE protocol. The security of
AKEs like TLS, i.e., AKEs with a key confirmation step,
is formalised via the authenticated and confidential channel
establishment (ACCE) model [23]. Meanwhile, [4] put for-
ward 3(S)ACCE, an ACCE-based model with formalisms and
security requirements for “server-side delegated authenticated
key-exchanges”. So, for assessing LURK’s security, we use the
3(S)ACCE model. We describe below the threat model and
security requirements at the high-level; for the formal version,
please refer to Appendix C in the long version of the paper [8],
where we recall both the ACCE and the 3(S)ACCE models.

Threat Model. To recall, ACCE models are session-based:
i.e., Clients, Engines and Services are parties which have
multiple instances/sessions running, and the security defini-
tions rest on “data agreements” and no “bad” event occurring
in the interleaving of these sessions, even in the presence
of an adversary. Our attacker is a 3(S)ACCE adversary who
can compromise the LURK Engine, as well as the different
end-points, i.e., the Client and the Crypto Service. Not all
3 parties can be compromised in the same LURK execution.
The attacker also controls the network, within the realms of
the type of channel (i.e., he cannot change a secure channel
into an insecure one). In the 3(S)ACCE model (recalled in

Appendix C in the long version of the paper [8]), these adver-
sarial actions are formalised via oracle calls to a challenger
simulating the protocol-execution.

Security Requirements for LURK. The 3(S)ACCE formal-
ism introduces four security requirements for proxied AKE
protocols as described below (given formally in the long
version of the paper [8]).

Entity Authentication (EA) [4]. An EA attacker can corrupt
parties (i.e., making them do arbitrary actions), can open new
sessions, can probe the results of sessions and can send its
own messages. We say that there is an EA attack by an EA
attacker if there exists a session of type X ending correctly,
but there is no honest session of type Y that was started with
X. Above, X,Y can either be Client or Crypto Service and X
is different from Y. In most cases, we are interested in the case
where X is “Client” and Y is “Crypto Service”, i.e., the EA
views the authentication of the Crypto Service being forged to
a given Client. We say a server-side delegated authenticated
key exchange achieves entity-authentication if there is no EA
attack onto the protocol.

In the 3(S)ACCE formal model [4], the notion of “mixed-
2-ACCE entity authentication” also appears; it is called mixed
because “to the left” of the Engine —there is an unilateral
authentication protocol, and “to the right” of the Engine
—there is a mutually authenticated protocol, and the attacker
needs to play the EA game both to the left and to the right at

TLS Client C' LURK Engine I/

Crypto Service S

Mutually-auth.,
Secure Channel
/with Exported Key k\
N 7

N¢
Generate N ¢4—g{0,1}"
‘Generate N;+g{0,1}"
Np + o(IV;)
Ng,
Certyg
Generate v<—gZ,
Check Certg KEg < (pllgllg® mod p)
KEp,
PSign
‘Check PSign against N¢:, N, KEE‘ <
Generate u<—RZ, KE¢

N¢, Ny, KE g,
optional: PoK (v)

optional:

Check PoK
or proof of ownership (PoO)
Ng + o(IV;)
[sv < H(N¢|Ng|[KEg)]

PSign < Sign,,(sv)

PSign

KE¢ + ¢" (mod p)

——— [pmk « (KE¢)" mod p]

pmk < (KEg)" mod p

msk < PRFpmk(Ll, N(’HNF)
ck + pl:(.l:‘mg,((Lg7 NEHNC>

msk PRFpmk(L] N NC”NE>
ck « PRFMSK(LQ, NEHNC)

AE(Finc) Decrypt and check Fing
| Fing « PRFmak(Ls, 7) | Fiic;ryg ?’II;»F;S;?(CL47:1)C
AECk(FinE)
‘Decrypt and check Fin E‘ e
AE(—)

Record layer: application data

Record layer: application data

Fig. 2: LURK based on TLS 1.2 in DHE mode: Variant 1

the same time.

Channel Security. We say a server-side delegated authen-
ticated key exchange achieves channel security if no channel
attacker can find the channel key of a session belonging to
a party it did not corrupt. Notably, the attacker can corrupt
a LURK Engine at a time ¢ and thus can learn its full state
at that time, and use it henceforth to find the channel key of
sessions that took place before time . This type of attack is
known as an attack against perfect forward secrecy (PFS). It
is well-known that TLS 1.2 in RSA mode does not achieve
perfect forward secrecy, and nor does Keyless SSL in RSA
mode [4].

Accountability [4]. We say a server-side delegated authen-
ticated key exchange achieves accountability if the Crypto
Service is able to compute the channel keys used by the Client
and the middle party, which in our case is the LURK Engine.
This empowers the Crypto Service to audit the activity of the
LURK Service at the record layer, should this be required.

So, the LURK designs are expected to achieve channel
security, entity authentication and accountability. Our position
is that the first two requirements are essential (and should

be demanded of all LURK designs); meanwhile, we view
accountability as an optional security requirement, which one
can consider trading off for the sake of efficiency.

Note: In the long version of the paper found at [8], at this
point, we discuss the design choices of LURK in relation to
the above requirements and efficiency.

V. FORMAL SECURITY PROOFS & ANALYSES

We now discuss our formal security analysis of LURK
in two parts. First, in Subsection V-A, we provide the
computational-security results 7 for Variants 1 and 2 of LURK
in RSA mode and for Variant 1 of LURK in DHE mode. This is

7Computational or provable-security formalisms for security analysis con-
sider messages as bitstrings, attackers to be probabilistic polynomial-time
algorithms who will attempt to subvert cryptographic primitives, and attacks to
have a probabilistic dimension the security parameters; e.g., [4] is a provable-
security model for server-side delegated authenticated key exchange. Con-
trarily, symbolic models for security analysis abstract messages to algebraic
terms, cryptographic primitives to be ideal and not subject to subversion by
the adversary, and the attacks be possibilistic flaws mounted via a set of
Dolev-Yao rules [13] applied over interleaved protocol executions.

done w.r.t. all security requirements mentioned in Section IV,
including accountability.

Secondly, in Subsection V-B, we use symbolic verification
to show that LURK in RSA mode achieves PFS within its
channel-security property.

A. CRYPTOGRAPHIC-ANALYSIS OF LURK

In what follows, we state our provable-security results w.r.t.
LURK. Using the 3(S)ACCE model in [4], we present the
formal theorems and proofs of these statements in Appendix
E of the long version of the paper [8].

Entity-Authentication Result.

If TLS 1.2 is secure w.r.t. unilateral entity authentication,
if the protocol between the Engine and the Service is a
secure AKE protocol with exported keys indistinguishable from
random [10], if the two protocols ensure 3(S)ACCE mixed
entity authentication [4], if the signature and hash in TLS 1.2
DHE mode are secure in their respective threat models, if the
encryption in TLS 1.2 RSA mode is secure, then Variant 1 of
LURK in DHE mode and Variants 1 and 2 of LURK in RSA
mode are entity-authentication secure in the 3(S)ACCE model.

This is formalised and proven in Theorem 1 of Appendix
E of the long version of the paper [8].

Channel Security Result.

If TLS 1.2 is secure w.rt. unilateral entity authentication,
if the protocol between the Engine and the Service is a
secure AKE protocol with exported keys indistinguishable from
random [10], if the two protocols ensure 3(S)ACCE mixed
entity authentication [4], if the signature in TLS 1.2 DHE
mode is secure in its threat models plus, respectively, if the
encryption in TLS 1.2 in RSA mode is secure and the freshness
function is a non-programmable PRF [9], then Variant I of
LURK in DHE mode and, respectively, Variants 1 and 2 of
LURK in RSA mode attain channel security in the 3(S)ACCE
model.

This is formalised and proven in Theorem 2 of Appendix
E of the long version of the paper [8].

Accountability Result.

If TLS 1.2 is secure w.r.t. unilateral entity authentication,
if the protocol between the Engine and the Service is a
secure AKE protocol with exported keys indistinguishable from
random [10], if the two protocols ensure 3(S)ACCE mixed
entity authentication, and the freshness function is a non-
programmable PRF [9], then Variant 2 of LURK in RSA mode
attains accountability in the 3(S)ACCE model.

This is formalised and proven in Theorem 3 in Appendix E
of the long version of the paper [8].

B. SYMBOLIC VERIFICATION OF LURK IN RSA MODE

In Appendix E of the long version of the paper [8] and
Subsection V-A, we prove and respectively recount that LURK
in RSA mode attains channel security. Now, we aim to focus
on the PFS side of the channel security property. Namely,
we use computer-assisted analysis to show that the bespoke
way in which LURK in RSA mode introduces and uses the
freshness function ¢ —which henceforth we call the “freshness
mechanism”— does indeed attain channel security with PFS.

We use the ProVerif [5] symbolic verifier given that it is
fully automated, supports an unlimitted number of protocol
sessions and can prove various security properties such as
secrecy and correspondence [6]. ProVerif is based on applied
pi-calculus [1]. As such, the protocol entities in our protocol
(i.e., the Client, the LURK Engine, the Crypto Service) are
modelled as applied-pi processes executing in parallel. The
attacker is a separate process modelling a Dolev-Yao adver-
sary [13].

Weak LURK. To reach our goal, we also model and check
a modified version of LURK in RSA mode, in which the
freshness function is not present. In simple terms, in this
version the Engine chooses the nonce Ny directly and sends it
to the client and the Crypto Service, without locally generating
N; and inputting it to the freshness function ¢ to compute Ng.
These differences, which yield what we refer to as “weak-
LURK?”, are presented in Figure 3.

Symbolic Formalisation of LURK’s Requirements. First,
recall that if an attacker corrupting the Engine can get hold
of the master secret msk from an old session and he has
observed the handshake of said session, then the attacker can
compute the channel key for that session. This would be failing
the property of channel security with PFS. Second, we need
to formalise the property of channel security (with PFS) in
ProVerif.

In the verification process, part of the aspects above would
be abstracted into property over execution-traces, encoding
that a master secret msk cannot be learnt by an attacker who
corrupts the Engine. More generally, in symbolic-verification
tools, this would be a secrecy property, which allows one
to verify that particular sensitive data is never inferred by
the attacker in any protocol execution. But, we are also
interested in seeing if ProVerif would find an actual replay
attack whereby an attacker who corrupts the Engine learns
not any msk but specifically an old msk. In ProVerif, this
can be done via a correspondence property, which allows one
to verify associations between stages in protocol executions,
such as links between event occurring. That is, we formalise
the verification of channel security (with PFS) via a secrecy
property w.r.t. (old) master secrets, together with a correspon-
dence property which checks if it is possible to re-query the
Crypto Server on past cryptographic material such as old client
or server random values. We check these properties in “weak
LURK” vs (Variant 1 of) LURK in RSA mode, both encoded
in ProVerif.

Symbolic Analysis of Channel Security with PFS in
“Weak LURK”. Our results show that “weak LURK” fails to
achieve security against corrupted Engines performing replay
attacks. Failure of the anti-replay properties implies PFS
failure: the attacker is able to query the Crypto Service and
retrieve old master secrets. This is also confirmed by violating
the secrecy property over the client master secret. ProVerif
is able to show an attack trace with the attacker acting as
an Engine and retrieving an old master secret as a result of
querying the Crypto Service with captured data on the public
channel.

Symbolic Analysis of Channel Security with PFS in
LURK. As opposed to “weak LURK”, LURK introduces the

TLS Client C'

LURK Engine F

Crypto Service S

) ‘-authenticated AKE

AY

\
4

N¢
‘Generate N¢<—r{0,1}" —_—
‘Generate Ng+r{0, 1}"‘
Ng,Certg
Check Certg
KE(),FinC

~

T:[Nc,...7 KEc], NE, Finc

Fig. 3: “Weak LURK”: LURK in RSA mode stripped of the freshness mechanism

freshness mechanism. We model the freshness function ¢ as
a pseudorandom function which cannot be inverted by the
attacker (i.e., we rely on the “private” attribute in ProVerif).
The results of the analysis show that, in LURK, clear server
random values can be accessed only by legitimate parties, i.e.,
received by the Crypto Service. In addition, the correspon-
dence property holds for LURK, guaranteeing that retrieval
of past master secrets is no longer possible by querying the
Crypto Service with cryptographic material inferred from the
public channel. This formally proves that LURK employing the
freshness mechanism is resilient against replay attacks from
corrupted Engines.

As by product, our ProVerif-based demonstration that Weak
LURK fails to ensure PFS (PFS) is also a new and automatic
way of showing that Keyless SSL in RSA mode has a replay
attack and does not attain PFS; this was only shown with
“pen and paper” before, in [4]. To this end, the two analyses
above also prove that our freshness mechanism represents a
viable alternative to the solution proposed in [4] to patch the
Keyless SSL protocol’s PFS problems (which was to have the
end-server generate the server random for the middlebox).

Analysis of Channel Security with PFS: Summary.
Table II gives details on the property-encoding and summarises
the results of the verification. Our ProVerif code can be found
at [29].

VI. SYSTEM IMPLEMENTATION

pylurk [30], a Python implementation of LURK , follows
a modular Python implementation depicting a client/server
setup between a LURK client (i.e., engine) and a LURK
server (i.e., crypto service). We implemented Variants 1 of
LURK in RSA and DHE mode. Our implementation supports
UDP, TCP, TCP+TLS, HTTP and HTTPS for the interaction
between the engine and the crypto service. UDP + DTLS has
not been implemented because we were not able to find a
suitable DTLS library in Python. Furthermore, UDP+DTLS
would end up in a stateful protocol which removes the main
characteristics of UDP. As a result, we followed the similar
design as DoT [20] and DoH [16] and limited our scope for
the CDN use case to TCP+TLS and HTTPS. UDP is left to the
usage of LURK in a TEE (Trusted Execution Environment) or
in containerised environments where exchanges are performed
on a given platform without exposure to the network.

We leveraged the socketserver module [32] for TCP and
UDP implementation, the http . server [19] module for the

HTTP implementation and SSL [33] as a TLS/SSL wrapper
for socket objects to enable packets protection. We modified
the TCPServer module implementation to allow multiple re-
quests exchange per established session, eventually protected
by TLS, with the client, which improves the performance.
However, we left the http. server class unchanged. Hence,
when HTTP is used in combination with TLS, a TLS exchange
is performed for each TCP session per request which results
in a non optimal case.

As LURK server provides cryptographic services, we use
the Cryptodome [12] package to allow the server to enforce
cryptography primitives, while specific elliptic curve opera-
tions, such as the proof of ownership (PoO) of the DHE
exponent, are enabled through tinyec [37]. Our implemen-
tation allows the use of SHA256, SHA384 and SHAS512 for
the generation of the master secret. The freshness function ¢
is specified as SHA256. Other options can easily be added.

In RSA mode, the TLS Handshake is provided to the
crypto service which also enforces the usage of specific cipher
suites. In our case, we enforced the following cipher suites:
TLS_RSA_WITH_AES_128_GCM_SHA256 and
TLS_RSA_WITH_AES_256_GCM _SHA384. Encryption of
the premaster secret was performed using a 2048-bit public
key.

In DHE mode, namely ECDHE (Elliptic Curve Diffie
Hellman), we enforced the use of secure hash functions in
the signature scheme (SHA256 and SHAS512) for both RSA
and ECDSA. Similarly, secure elliptic curves (secp256rl,
secp384rl, secp521rl) have been implemented for the genera-
tion of ECDHE, as well as for ECDSA signature. Experiments
have limited the test to an RSA signature with SHA256
using a 2048-bit public key. ECDHE was performed using
secp256rl. Again, other options can easily be added to the
implementation.

Lastly, in RSA mode, the last message between the crypto
service and the engine is sent (e.g., msk) instead of its
encryption under the exported key k. This is because the
channel is already secure and the said encryption is simply
needed for strong 3(S)ACCE provable-security results but adds
nothing to practical security. Note that more details on the
system implementation can be found in Section 3 of our long
version of this manuscript [8].

Sﬁ;uggs Code Excerpt Comments
“Weak LURK”, without the freshness mechanism
Secrecy query secret mastersecretclient. Result: False. Both properties fail. Attack: an attacker assuming the role of the Engine
query secret srv_rnd. obtains an old master secret with a replay attack.
query encpremaster:bitstring,
Antireplay | srvrand:bitstring; Result: False. The query asserts that reception by the Crypto Service of a distinct
/ Corresp. inj-event (keyserver_received_— pair of encrypted premaster secret with a server random Ng occurring only once
encpremaster in the same protocol run. The property fails, Attack: trace showing a replay of the
(encpremaster, srvrand)) = same encrypted premaster Enc(pmk) and same server random Ng in two distinct
inj-event (edge_resent_encpremaster instances of the Crypto Service process.
(encpremaster, srvrand)).
LURK in RSA mode (Variant 1 encoded), with freshness mechanism
Secrecy query secret mastersecretclient. Result: True. Both properties hold. Server random values may now be accessed
query secret clearSrvRnd. only by legitimate parties and old master secrets cannot be obtained/inferred by the
attacker.

. query srvRand:bitstring; Result: T Th ts that tion by the Crypio Servi ; .
Antireplay | jnj-event (keyserver_recvd_srvrnd_— esult: True. The query asserts that reception by the Crypto Service of one given
/ Corresp. server random Ng occurs only once, as a result of an Engine transmitting this value.

P clear(srvRand)) = . : :
s The property holds, guaranteeing that retrieval of old master secrets is no longer
inj-event(edge_sent_srvrnd_clear
possible by re-querying Crypto Service with cryptographic material inferred from the
(srvRand)). .
public channel.

TABLE II: ProVerif Analysis of Channel Security of “Weak LURK” and LURK in RSA Mode.

VII. PERFORMANCE EVALUATION

We now investigate the performance of LURK vs. that
of a classical TLS 1.2 handshake, and study how different
design and implementation choices in LURK impact its overall
performance in terms of latency and CPU overhead. Further,
we provide a comprehensive comparison of LURK with other
works in the literature in Section 6 of our long version of
this manuscript [8], given the space limitation herein. For
all experiments, we use the Variants 1 of LURK in the
pylurk [30] implementation (Section VI). Our prototype
runs on Xubuntu 18.04, on an Intel i7-2820QM CPU (2.3GHz)
with 16GB RAM. All our results are derived by averaging over
50 iterations.

A. Latency

For a given configuration, lpyrx = Preq + RTT + Dresp,
is the measured latency where p,.., and p,.s, represent
the latency introduced by the treatment of the request and
response, respectively, at various layers such as application
(parsing, building, processing the LURK messages) and trans-
port (handling HTTP, TCP, TLS with associated interruption
or processing). RTT is the round-trip time between the Engine
and the Crypto Service. We measure RTT on a local network,
approximating the latency within a data center. The overhead
of LURK compared to a standard TLS handshake can roughly
be approximated as the latency between the Engine and the
Crypto Service and can be estimated to: § = %UJ Note that
such overhead is negligible if a UDP exchange is performed
on a local host between the LURK Engine and the Crypto
Service.

Figure 4a shows the latency in seconds for different LURK
modes (i.e., RSA, RSA-extended and ECDHE) for different
transport configurations (i.e., local UDP, UDP, TCP, HTTP).
Figure 4b depicts the latency ratio of having LURK in RSA
mode over TCP+TLS and HTTPS, compared to LURK in RSA

mode over TCP, HTTP. In these cases, the PRF function in
TLS and the ¢ freshness function we introduced in LURK
are set to SHA256. Figures 5a — 6b show the latency ratio of
LURK with particular options enabled vs. the average-times of
a reference implementation without those options in place. We
also consider a particular instantiation of ¢ freshness function,
the PRF used in generating the master secret, the use of a
PoH, the use of a specific PoO vs. the respective lack of
such choices. The measurements shown in Figures 5a — 6b
are performed over UDP.

On transport protocols The increased latency overhead intro-
duced by TCP over UDP (i.e., a factor of 1.02 in RSA mode,
1.16 in RSA-Extended mode, and 1.02 in ECHDE mode) is
a result of the TCP session establishment between an engine
and the Crypto Service for all the requests (Figure 4a). In
contrast, the additional latency overhead observed by HTTP
over TCP (i.e., a factor of 1.46 in RSA mode, 1.25 in RSA-
Extended mode and 1.50 for LURK in ECDHE mode) and by
HTTPS over TCP+TLS depicted in Figure 4a and Figure 4b
respectively, is due to the TCP session establishment for each
new request between an engine and the Crypto Service.

While UDP provides optimal performance, the lack of
delivery control makes it a poor candidate for LURK. Further,
we identify no clear benefit from using HTTP instead of TCP,
as for instance, the use of HTTP generates larger payloads.
TLS does not impose measurable latency. As a result, we rec-
ommend that the engine and the Crypto Service be connected
via a long term TCP session protected by TLS.

Further, we note that the latency overhead introduced by
LURK over TLS is limited in ECDHE mode but not in RSA
mode, given that LURK implied more changes to TLS 1.2 in
RSA mode (e.g., use of freshness function, more interaction
between the engine and the Crypto Service) than that in DHE
mode. Figure 4b shows that in RSA mode, the additional costs
added onto TLS (e.g., via the introduction of the freshness
function) are negligible for TCP+TLS; however, for HTTPS,

LURK (vs. TLS) increases the latency by a factor of 1.3. With
TCP+TLS, the overhead of using LURK over the standard
TLS 1.2 is estimated to be: drsa = 1.27, drsapz. = 1.24,
5ECDHE = 1.05.

T
0.08
0 0.06 o
: e
- ==|
> T
g I
[[
= g)
&o.04 T @T
0.02 ? = LocalUDP
&@ o UDP
%? T vZ] TCP
fzees HTTP
RSA RSA_Extended ECDHE
Athentication Methods
(a) LURK over secure transport protocols.
2.0
1.8
-]
5 1.6
]
-4
>
214
[]
£
-
1.2
0.8 !
TCP+TLS HTTPS

Transport Protocol

(b) LURK in RSA mode over secure transport.

Fig. 4: Latency Measurements

On TLS modes Figure 4a depicts that the latency of LURK
varies with the underlying TLS mode. In fact, increased
latency overhead is observed when using RSA extended and
ECDHE modes in comparison to RSA mode. For example,
LURK increases the latency by a factor of 2.2 and 3.73, in
RSA Extended and ECDHE modes respectively, in comparison
to RSA mode for TCP connections. The difference between
RSA and RSA Extended is due to the additional processing
and communication of the full TLS handshake. Whereas, the
difference between ECDHE and RSA is mostly due to the
cryptographic operations involved (e.g., more costly mathe-
matical computations in ECHDE).

Other choices Figure 5a shows the latency ratio of ¢ being
set to SHA256 vs. being non-existent. The measured ratio

I
>

=
w

=
N

=
HA

Latency Ratio
=
o

4
©

0.8
0.7
Fx*xi pfs = sha256
RSA RSA_Extended ECDHE
Authentication Methods
(a) Freshness function overhead.
1.4
1.2
.2
]
©
e
>
v
$10
]
©
-
0.8
o %4 prf = sha384
0.6 g prf = sha512

RSA RSA_Extended ECDHE
Authentication Methods

(b) TLS PRF overhead.

Fig. 5: Latency Measurements (cont’d)

is 1.016, 0.99 and 1.00 for RSA, RSA Extended and ECDHE
modes, respectively which implies that the impact of ¢ on
the overall latency is negligible. Figure 5b depicts the RTT-
degradation when TLS 1.2’s PRF is being set to SHA384 and
SHAS512, compared to the more-standard SHA256; this choice
has negligible impact on the overall latency.

Figure 6a shows that our added PoH has negligible im-
pact (1.066) on RSA-Extended, given that a full handshake-
transcript is already provided. In contrast, our added PoH
increases the latency by 2.39 for RSA mode. However, note
that the latency of LURK in RSA mode with added PoH
is comparable to that of TLS 1.2 in RSA-Extended mode.
Figure 6b depicts the impact of our added PoO of the DHE
exponent over the average ECDHE latency. The impact ob-
served is relatively negligible.

3.5
3.0
025
2
]
4
g
€ 2.0
o
o
= 1
-
1.5
1.0
9 With PoH
RSA RSA_Extended
Authentication Methods
(a) PoH overhead.
1.15
1.10 T
2 T
T 1.05
5L
>
v
c
7]
® 1.00
"1
0.95
0.90 o With PoO

sha256_128 sha256_256
o

Po

(b) PoO overhead.

Fig. 6: Latency Measurements (cont’d)

B. CPU Overhead

We load the Crypto Service with a rate of 100 requests
per second, with a number of blocking clients operating in
parallel. The results, shown in Fig. 7, confirm that the use of
TLS over TCP has little impact on the performance of just
TCP itself, which is due to an efficient TLS library. HTTP
and HTTPS seem to perform better than TCP, especially for
LURK in RSA-Extended mode. This is due to the efficient
input/output processing managed by the HTTP libraries used,
on one hand. On the other hand, the TCP implementation
requires additional processing given the increased interactions
between the user and the kernel (i.e., reading the LURK Header
and the remaining bytes of the LURK request)

CPU consumption for LURK in ECDHE mode remained
quite stable for different transport protocols. This is in part
due to the fact that the additional processing required for
handshakes is quite minimal compared to the cryptographic
operations. But, processing the handshakes yield additional

vZ2 UDP
£=e] TCP
17.
5 == TCP+TLS
T XX] HTTP
15.0 [ZA HTTPS
°_\°_ 12.5
3 E
o
210.0
[
]
>
O ;75 é
=]
o
o (4
5.0
2.5 .
0.0 T 4 f

RSA RSA_Extended ECDHE

Athentication Methods

Fig. 7: CPU Overheads of the Crypto Service in different
LURK modes.

CPU overhead in the case of using LURK in RSA and RSA-
Extended modes. Concretely, the Crypto Service in RSA-
Extended mode requires 1.39 times more resources than for
LURK in RSA mode. In ECDHE mode, it requires 2.08 times
more than for LURK in RSA mode.

VIII. DisCcUSSIONS, FUTURE WORK & CONCLUSIONS

Our suite of designs, called LURK, aim to offer provably
secure server-controlled TLS delegation, in a manner that
achieves competitive performance. Our drive for this was mo-
tivated in real-life use-cases calling for server-controlled TLS
delegation, such as complex CDN-delegations and service-to-
service platforms. On the one hand, one can see LURK as a
way to improve the security of KeylessSSL [34], in a spirit
similar to that of the recent 3(S)ACCE-KSL protocol in [3]. On
the other hand, unlike the 3(S)ACCE-KSL scheme, we do not
require that LURK attains the expensive, content-soundness
requirement w.r.t. TLS-delegation, which —in turn— does away
with the need for an arguably infeasible PKI infrastructure.
Meanwhile, in some of its variants, LURK attains all other
relevant security requirements of 3(S)ACCE-KSL, i.e., channel
security, entity authentication and accountability; for these,
in the long version [8], we provide cryptographic proofs in
a suited 3-party authenticated key-exchange formal model.
Moreover, we use protocol-verification (in ProVerif) to show
that design-mechanisms that specifically separate LURK from
KeylessSSL while achieving their intended, specific goals,
i.e., enforce forward secrecy. Our studies focus on LURK
instantiated with TLS 1.2, as this is still the most widely
used version of TLS and will likely remain so for some
foreseeable future, especially for legacy devices. Our speci-
fications go down to the API level, providing details down to
network and packet level for the communications within the
TLS delegation. This delegation, in LURK, is envisaged as a

modular design, where the middle entity and the end-server
operate in a service-to-service fashion. Lastly, our Python
implementation and performance-testing of LURK show that
it is a competitive solution for TLS-delegation. Overall, in this
paper, our LURK constructs show that server-controlled TLS
delegation is possible with both provable guarantees of real-
world security and competitive efficiency.

W.rt. future directions, we are actively working towards
LURK based on TLS 1.3 [26]. In the long version of this
paper [8], there are more details on this.

Also, the primary objective of our implementation,
pylurk, was to build an initial testbed. Immediate future
work involves, for instance, the extension of the interface to
gRPC to better fit containerised environments. In addition, the
integration of Curve25519 and Curve448 for both signatures
(Ed25519, Ed448) as well as ECDHE (X25519, X448) are
expected to be supported. One parallel line focuses on a C
implementation of the Crypto Service, in line with the most
notable TLS libraries.

REFERENCES

[1] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” in POPL’01: Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM
Press, 2001, pp. 104-115.

[2] R. Barnes, S. Iyengar, N. Sullivan, and E. Rescorla, “Delegated Cre-
dentials for TLS,” Internet Engineering Task Force, Internet-Draft draft-
draft-ietf-tls-subcerts, Jun. 2020, work in Progress.

[3] K. Bhargavan, 1. Boureanu, A. Delignat-Lavaud, P.-A. Fouque, and
C. Onete, “A Formal Treatment of Accountable Proxying over TLS,”
in Proceedings of IEEE S&P. 1EEE, 2018.

[4] K. Bhargavan, 1. Boureanu, P. Fouque, C. Onete, and B. Richard,
“Content delivery over TLS: a cryptographic analysis of Keyless SSL,”
in Proceedings of Euro S&P, 2017.

[5] B. Blanchet, “An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules,” in IEEE Computer Security Foundations Workshop.
Nova Scotia, Canada: IEEE Computer Society Press, 2001, pp. 82-96.

[6] B. Blanchet, Modeling and Verifying Security Protocols with the Applied
Pi Calculus and ProVerif, 2016.

[7]1 S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, May 2008.

[8] I. Boureanu, D. Migault, S. Preda, H. A. Alamedine, S. Mishra,
F. Fieau, and M. Mannan, “LURK: Server-Controlled TLS Delegation,”
Cryptology ePrint Archive, Report 2020/1366, 2020, https://eprint.iacr.
0rg/2020/1366.

[9] 1. Boureanu, A. Mitrokotsa, and S. Vaudenay, “On the pseudoran-

dom function assumption in (secure) distance-bounding protocols,” in

Progress in Cryptology — LATINCRYPT 2012. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 100-120.

C. Brzuska, H. kon Jacobsen, and D. Stebila, “Safely exporting keys

from secure channels: on the security of EAP-TLS and TLS key

exporters,” in EuroCrypt, 2016.

“IETF Content Delivery Networks Interconnection Working Group

(CDNI),” https://datatracker.ietf.org/wg/cdni/about/, 2019.

“PyCryptodome: a self-contained Python package of low-level crypto-

graphic primitives,” https://pycryptodome.readthedocs.io, 2019.

D. Dolev and A. Yao, “On the Security of Public-Key Protocols,” IEEE

Transactionson Information Theory 29, vol. 29, no. 2, 1983.

[10]

(11]
[12]

[13]

[14]

[15]
[16]

[17]

(18]
[19]

[20]

[21]
(22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]
[30]

[31]

(32]
[33]

[34]

[35]
[36]

(37]
[38]

[39]

C. Gero, J. Shapiro, and D. Burd, “Terminating ssl connections
without locally-accessible private keys,” Jun. 20 2013, wO Patent
App. PCT/US2012/070075. [Online]. Available: http://www.google.co.
uk/patents/WO2013090894A17cl=en

T. Hardie, “Transport Protocol Path Signals,” RFC 8558, Apr. 2019.

P. E. Hoffman and P. McManus, “DNS Queries over HTTPS (DoH),”
RFC 8484, Oct. 2018.

P. E. Hoffman and J. Schlyter, “The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol:
TLSA,” RFC 6698, Aug. 2012.

R. Housley, “Guidelines for Cryptographic Algorithm Agility and Se-
lecting Mandatory-to-Implement Algorithms,” RFC 7696, Nov. 2015.
“http.server: HTTP Servers,” https://docs.python.org/3.4/library/http.
server.html, 2018.

Z.Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. E. Hoffman,
“Specification for DNS over Transport Layer Security (TLS),” RFC
7858, May 2016.

Intel, “SGX: Software Guard Extensions,” https://software.intel.com/en-
us/sgx, 2019.

Istio, “An Open Platform to Connect, Manage, and Secure Microser-
vices,” https://github.com/istio/istio, 2019.

T. Jager, F. Kohlar, S. Schige, and J. Schwenk, “On the security of
TLS-DHE in the standard model,” in Proceedings of CRYPTO 2012,
ser. LNCS, vol. 7417, 2012, pp. 273-293.

A. Levy, H. Corrigan-Gibbs, and D. Boneh, “Stickler: Defending against
Malicious Content Distribution Networks in an Unmodified Browser,”
IEEE Security Privacy, vol. 14, no. 2, pp. 22-28, 2016.

J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu, “When HTTPS
Meets CDN: A Case of Authentication in Delegated Service,” in 2014
IEEE Symposium on Security and Privacy, May 2014, pp. 67-82.

D. Migault, “LURK Extension version 1 for (D)TLS 1.3 Authentication,”
Internet Engineering Task Force, Internet-Draft draft-draft-mglt-lurk-
tls13, Apr. 2020, work in Progress.

D. Migault and I. Boureanu, “LURK Extension version 1 for (D)TLS 1.2
Authentication,” Internet Engineering Task Force, Internet-Draft draft-
draft-mglt-lurk-tls12, Jul. 2020, work in Progress.

“SVA Open Caching Working Group,” https://www.
streamingvideoalliance.org/technical-work/working- groups/
open-caching/, 2019.

“Symbolic analysis of LURKI1.2 with ProVerif,” https://github.com/
anon-data/anon_src/tree/master/pv, 2019.

“pylurk — a Python implementation of LURK,” https://github.com/mglt/
pylurk, 2019.

Y. Sheffer, D. Lopez, O. G. de Dios, A. Pastor, and T. Fossati, “Support
for Short-Term, Automatically Renewed (STAR) Certificates in the
Automated Certificate Management Environment (ACME),” RFC 8739,
Mar. 2020.

“socketserver: A framework for network servers,” https://docs.python.
org/3.4/library/socketserver.html, 2018.

“SSL: TLS/SSL wrapper for socket objects,” https://docs.python.org/3.
4/library/ssl.html, 2018.

D. Stebila and N. Sullivan, “An Analysis of TLS Handshake Proxying,”
in Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 1, Aug 2015, pp. 279-
286.

“Streaming Video Alliance (SVA),” https://www.streamingvideoalliance.
org/technical-work/working- groups/open-caching/, 2019.

“IETF Trusted Execution Environment Provisioning Working Group
(TEEP),” https://datatracker.ietf.org/wg/teep/about/, 2019.

“tinyec,” https://github.com/alexmgr/tinyec, 2018.

“CYBER; Middlebox Security Protocol; Part 2: Transport layer MSP,
profile for fine grained access control,” in DTS/CYBER-0027-2, no. TS
103 523-2, October 2020. [Online]. Available: https://portal.etsi.org/
webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=52930

R. van der Meulen, “What Edge Computing Means
for Infrastructure and Operations Leaders,” October 2018.
[Online]. Available: https://www.gartner.com/smarterwithgartner/

what-edge-computing-means- for-infrastructure- and- operations-leaders

https://eprint.iacr.org/2020/1366
https://eprint.iacr.org/2020/1366
https://datatracker.ietf.org/wg/cdni/about/
https://pycryptodome.readthedocs.io
http://www.google.co.uk/patents/WO2013090894A1?cl=en
http://www.google.co.uk/patents/WO2013090894A1?cl=en
https://docs.python.org/3.4/library/http.server.html
https://docs.python.org/3.4/library/http.server.html
https://github.com/istio/istio
https://www.streamingvideoalliance.org/technical-work/working-groups/open-caching/
https://www.streamingvideoalliance.org/technical-work/working-groups/open-caching/
https://www.streamingvideoalliance.org/technical-work/working-groups/open-caching/
https://github.com/anon-data/anon_src/tree/master/pv
https://github.com/anon-data/anon_src/tree/master/pv
https://github.com/mglt/pylurk
https://github.com/mglt/pylurk
https://docs.python.org/3.4/library/socketserver.html
https://docs.python.org/3.4/library/socketserver.html
https://docs.python.org/3.4/library/ssl.html
https://docs.python.org/3.4/library/ssl.html
https://www.streamingvideoalliance.org/technical-work/working-groups/open-caching/
https://www.streamingvideoalliance.org/technical-work/working-groups/open-caching/
https://github.com/alexmgr/tinyec
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=52930
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=52930
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders

	Introduction
	LURK's Use Cases
	Complex CDN-ing
	Service-to-Service Platforms

	Related Work
	Client-Invisible, Server-Controlled TLS Delegation
	Keyless SSL and 3(S)ACCE-K-SSL

	LURK: Delegated Secure Delivery with Server Control
	The LURK Designs
	LURK's Security Goals

	Formal Security Proofs & Analyses
	Cryptographic-Analysis of LURK
	Symbolic Verification of LURK in RSA Mode

	System Implementation
	Performance Evaluation
	Latency
	CPU Overhead

	Discussions, Future Work & Conclusions
	References

