
Leveraging Personal Devices for

Stronger Password Authentication from

Untrusted Computers∗

Mohammad Mannan†

Dept. of Electrical and Computer Engineering

University of Toronto, Canada

and

P.C. van Oorschot

School of Computer Science

Carleton University, Canada

Abstract

Internet authentication for popular end-user transactions, such as on-
line banking and e-commerce, continues to be dominated by passwords
entered through end-user PCs. Most users continue to prefer (typically
untrusted) PCs over smaller personal devices for actual transactions, due
to usability features related to keyboard and screen size. However most
such transactions and their underlying protocols are vulnerable to at-
tacks including keylogging, phishing, and pharming. We propose Mobile
Password Authentication (MP-Auth) to counter such attacks, which cryp-
tographically separates a user’s long-term secret input from the client PC,
and offers transaction integrity. The PC continues to be used for most of
the interaction but has access only to temporary secrets, while the user’s
long-term secret is input through an independent personal device, e.g., a
cellphone which makes it available to the PC only after encryption under
the intended far-end recipient’s public key. MP-Auth expects users to
input passwords only to a personal device, and be vigilant while confirm-
ing transactions from the device. To facilitate a comparison to MP-Auth,
we also provide a comprehensive survey of web authentication techniques
that use an additional factor of authentication; this survey may be of
independent interest.

Keywords: password authentication, untrusted computers, phishing, session
hijacking, personal device

∗Version: August 12, 2010. This paper extends an earlier publication [40], and is published
with permission of IFCA, the copyright holder of the preliminary paper; see also the first
author’s Ph.D. thesis [39] at Carleton University.

†Corresponding author. Email: m.mannan@utoronto.ca

1

1 Introduction

In the current Internet environment, most consumer computers are infected with
one or more forms of spyware or malware. Internet connected PCs are not ‘safe’
anywhere; an improperly patched home or public computer generally survives
only minutes.1 Semantic attacks such as phishing also widely target general
Internet users. Software keyloggers are typically installed on a user PC along
with common malware and spyware [50]. An increasing number of phishing sites
also install keyloggers on user PCs, even when users do not explicitly download
or click any link on those sites [59]. Many of these attacks attempt to extract
user identity and sensitive account information for unauthorized access to users’
financial accounts; for example, user names and passwords for thousands of
bank accounts have been found on an online storage site reportedly gathered by
a botnet [60]. Passwords enjoy ubiquitous use for online authentication even in
such an environment, although many more secure (typically also more complex
and costly) authentication protocols have been proposed. Due to the usability
and ease of deployment, most North American financial transactions over the
Internet are still authenticated through only a password. Hence passwords are
a prime target of attackers, for economically-motivated exploits including those
targeting online bank accounts and identity theft.

As one example of highly sensitive Internet services, online banking often
requires only a bank card number (as userid) and password for authentication.
Users input these credentials to a bank website to access their accounts. An
attacker can easily collect these long-term secrets by installing a keylogger pro-
gram on a client PC, or embedding a JavaScript keylogger [61] on a compromised
website. As plaintext sensitive information is input to a client PC, malware on
the PC has instant access to these (reusable) long-term secrets. We argue (as do
others – e.g., see Laurie and Singer [38], Kursawe and Katzenbeisser [37]) that
for some common applications, passwords are too important to input directly
to a typical user PC on today’s Internet; and that the user PC should no longer
be trusted with such plaintext long-term secrets, which are intended to be used
for user authentication to a remote server. Additionally, phishing attacks can
collect plaintext reusable userid-password pairs through e.g., domain name hi-
jacking [30], or DNS flaws [35, 14], even if user PCs (or other devices used for
web browsing, including iPads) remain malware-free. This motivates our design
choice of using a secondary personal device with a PC.

To safeguard a long-term password, we build on the following simple idea:
use a hand-held personal device, e.g., a cellphone or PDA (personal digital assis-
tant) to encrypt the password (combined with a server generated random chal-
lenge) under the public key of an intended server, and relay through a (possibly
untrusted) PC only the encrypted result in order to login to the server website.
This simple challenge-response effectively turns a user’s long-term password into
a one-time password in such a way that long-term passwords are not revealed
to phishing websites, or keyloggers on the untrusted PC.

1An average time between attacks of 5 minutes, as of Aug. 10, 2010, is reported at http:

//isc.sans.edu/survivaltime.html.

2

The resulting protocol, called MP-Auth (short for M obile Password
Authentication), is proposed primarily to protect a user’s long-term password
input through an untrusted (or untrustworthy) client PC. The use of a mo-
bile device in MP-Auth is intended to protect user passwords from easily being
recorded and forwarded to malicious parties, e.g., by keyloggers installed on
untrustworthy commodity PCs. For usability and other reasons, the client PC
is used for the resulting interaction with the website, and performs most com-
putations (e.g., session encryption, HTML rendering etc.) but has access only
to temporary secrets. The capabilities we require from a mobile device include
encryption, alpha-numeric keypad, short-range network connection (wire-line or
Bluetooth), and a small display. Although we highlight the use of a cellphone,
the protocol can be implemented using any similar “trustworthy” device (e.g.,
PDAs or smart-phones), i.e., one free of malware. There are known attacks
against mobile devices [27], but the trustworthiness of such devices is currently
more easily maintained than a PC (see Section 3.3 for further discussion on
mobile device security). Note that, despite our use of a personal device in
conjunction with a PC, MP-Auth is essentially a single-factor (password-only)
authentication protocol; MP-Auth uses no on-device secrets unlike standard
two-factor techniques.

To protect a password from being revealed to a phishing site, the password
is encrypted with the “correct” public key of an intended website (e.g., a bank).
Thus MP-Auth protects passwords from keyloggers and various forms of phish-
ing attacks (including deceptive malware, DNS-based attacks or pharming, as
well as false bookmarks). MP-Auth also protects against session hijacking, by
providing transaction integrity through a transaction confirmation step.

Phishing attacks have been discussed in the literature since 1997 (see [23]);
however, few, if any, anti-phishing solutions exist today that are effective in
practice. In addition to several anti-phishing proposals (e.g., [61]), there exist
many software tools for detecting spoofed websites (e.g., eBay toolbar, Spoof-
Guard, Spoofstick, Netcraft toolbar). However, most of these are susceptible
to keylogging attacks,2 and phishing toolbars are barely effective in reality [77].
On the other hand, several authentication schemes which use a trusted personal
device, generally prevent keyloggers, but do not help against phishing or ses-
sion hijacking attacks. Several malware programs (bank-stealing Trojans, e.g.,
Win32.Grams [10], Trojan.Silentbanker [66]; see also web-rootkits [33]) attempt
to perform fraudulent transactions in real-time after a user has logged in, in-
stead of collecting userids and passwords for later use. Most existing or proposed
techniques are susceptible to these attacks, including e.g., Phoolproof [56] and
two-factor authentication such as a password and a passcode generator token
(e.g., SecurID). In contrast, the primary goals of MP-Auth are twofold: pro-
tect passwords from both keyloggers and phishing sites, and provide transaction
integrity.

2PwdHash [61] can protect passwords from JavaScript keyloggers, but not software key-
loggers on client PCs.

3

Our contributions. We propose MP-Auth, a protocol for online authentica-
tion using a personal device such as a cellphone in conjunction with a PC. The
protocol offers the following benefits.

1. Keylogging Protection. A client PC does not have access to long-
term user secrets. Consequently keyloggers (software or hardware) on the
PC cannot access critical passwords.

2. Phishing Protection. Even if a user is directed to a spoofed website,
the website will be unable to decrypt a user password. Highly targeted
phishing attacks (spear phishing) are also ineffective against MP-Auth.

3. Pharming Protection. In the event of domain name hijacking [30, 35],
MP-Auth does not reveal a user’s long-term password to attackers. It also
protects passwords when the DNS cache of a client PC is poisoned.

4. Transaction Integrity. With the transaction confirmation step (see
Section 2) in MP-Auth, a user can detect any (critical) unauthorized trans-
action during a login session, even when an attacker has complete control
over the user PC.

We also provide a comprehensive survey of related authentication schemes used
in practice and/or proposed to date, and compare these to MP-Auth; this survey
may be of independent interest. MP-Auth has been analyzed using AVISPA [4];
no attacks were found. A formal proof sketch of MP-Auth using the Protocol
Composition Logic (PCL) [15, 29, 63] is also provided. A prototype of MP-Auth
for performance testing has also been implemented.

Organization. The MP-Auth protocol, threat model and operational assump-
tions are discussed in Section 2. A brief informal analysis of protocol messages,
discussion on how MP-Auth prevents common attacks, and circumstances under
which MP-Auth fails to provide protection are outlined in Section 3. Discussion
on usability and deployment issues related to MP-Auth are provided in Sec-
tion 4. The performance and basic implementability of MP-Auth is discussed in
Section 5. Related work, including commercial one-time password generators,
and a number of web authentication techniques proposed in the literature, is
discussed in Section 6. Section 7 concludes. Appendix A provides AVISPA test
code for MP-Auth and related discussion. The PCL analysis of MP-Auth is
provided in Appendix B.

2 MP-Auth Protocol for Online Authentication

In this section, we describe the MP-Auth protocol, including threat model as-
sumptions.

Threat model and operational assumptions. The primary goals of MP-
Auth are to protect user passwords from malware and phishing websites, and
to provide transaction integrity. We assume that a bank’s “correct” public
key is available to users (see below for discussion on public key installation),
and mobile devices are malware-free. Public keys of each target website must

4

be installed on the device. (We assume that there are only a few financially
critical websites that a typical user deals with.) A browser on a PC uses a
bank’s SSL certificate to establish an SSL connection with the bank website
(as per common current practice). The browser may be duped to go to a
spoofed website, or have a wrong SSL certificate of the bank or the verifying
certificating authority. The protocol does not protect user privacy (of other than
the user’s password) from an untrusted PC; the PC can record all transactions,
generate custom user profiles etc. Visual information displayed to a user on
a PC screen is also not authenticated by MP-Auth, i.e., a malicious PC can
display misleading information to a user without being (instantly) detected.
Denial-of-service (DoS) attacks are not addressed. A communication channel
between a personal device and PC is needed, in such a way that malware on the
PC cannot infect the personal device.3 However, MP-Auth does not rely on the
security of this channel, i.e., attackers can modify or insert messages between
the device and PC.

U,M,B, S User, a cellphone, a browser on the untrusted user PC, and the
server, respectively.

IDS , IDU Server ID and user ID, respectively. IDU is unique in the server
domain.

P Long-term (pre-established) password shared between U and S.
RS , RM Random nonces generated by S and M , respectively.
{data}K Symmetric (secret-key) authenticated encryption (see e.g., [26],

[7]) of data using key K.
{data}ES

Asymmetric (public-key) encryption of data using S’s long-term
public key ES .

X.Y Concatenation of X and Y .
KBS Symmetric encryption key shared between B and S (e.g., an

SSL key).
f(·) A cryptographically secure hash function.

Table 1: Notation used in MP-Auth

Protocol steps in MP-Auth. For notation see Table 1. Before the protocol
begins, we assume that user U ’s cellphone M is connected to B (via wire-line
or Bluetooth). The protocol steps are described below (see also Fig. 1).

1. U launches a browser B on the untrusted PC, and visits the bank website S.

2. B and S establish an SSL session; let KBS be the established SSL secret key.

3. S generates a random nonce RS , and sends the following message to B.

B ← S : {IDS.RS}KBS
(1)

4. B decrypts message (1) and forwards it to M .

M ← B : IDS .RS (2)

3The first crossover virus was reported [47] in February 2006.

5

Untrusted Client

Browser (B)

Cellphone (M)

User (U)

Server (S)

1
2. SSL tunnel

4
6

5 8

3

7

9

Figure 1: MP-Auth protocol steps

5. M displays IDS, and prompts the user to input the userid and password for
S. A userid (e.g., bank card number) may be stored on the cellphone for
convenience; the password should not be stored or auto-remembered.

6. M generates a random secret nonce RM and encrypts RM using ES . M
calculates the session key KMS and sends message (4) to B (here, the userid
IDU is, e.g., a bank card number).

KMS = f(RS .RM) (3)

M → B : {RM}ES
.{f(RS).IDU .P}KMS

(4)

7. B (via SSL) encrypts message (4) with KBS , and forwards the result to S.

8. From message (4), after SSL decryption, S decrypts RM using its corre-
sponding private key, calculates the session key KMS (as in equation (3)),
decrypts the rest of message (4), and verifies P , IDU and RS . Upon success-
ful verification, S grants access to B on behalf of U . S sends the following
message for M to B (indicating login success).

B ← S : {{f(RM)}KMS
}KBS

(5)

9. B forwards {f(RM)}KMS
to M . M decrypts to recover f(RM) and verifies

its local copy of RM . Then M displays success or failure to U .

Transaction integrity confirmation. In MP-Auth, M and S establish a
session key KMS known only to them; malware on a user PC has no access to
KMS . Attackers may modify or insert transactions through the untrusted PC.
To detect and prevent such transactions, MP-Auth requires explicit transaction
confirmation by U (through M). The following messages are exchanged (after
step 9) for confirmation of a transaction with summary details T (RS1 is a server

6

generated random nonce, used to prevent replay).

M oo

{T.RS1}KMS

B oo

{{T.RS1}KMS
}KBS

S (6)

M
{f(T.RS1)}KMS

// B
{{f(T.RS1)}KMS

}KBS
// S (7)

M displays T to U in a human-readable way (e.g., “Pay $10 to Vendor V
from checking account C”), and asks for confirmation (yes/no). When the user
confirms T , the confirmation message (7) is sent from M to S (via B). From
message (7), S retrieves f(T.RS1), and verifies with its local copy of T and RS1.
Upon successful verification, T is committed. Instead of initiating a confirmation
step after each transaction, transactions may be confirmed in batches (e.g., four
transactions at a time); then, T will represent a batch of transactions in the
above message flows. The user-interface (UI) design of the confirmation step is
extremely important to reduce dangerous errors; a user study [2] on SMS-based
transaction authorization methods reported that 21% of participants failed to
detect modified transaction details as displayed on a cellphone. Uzun et al. [69]
provides a comparative study and user-testing of different approaches to such
UI design in the context of secure device pairing.

Some transactions may not require confirmation from the mobile device. For
example, adding a new user account or setting up an online bill payment for a
phone company should require user confirmation, but when paying a monthly
bill to that account, omitting the confirmation step would seem to involve little
risk. Similarly, fund transfers between user accounts without transaction con-
firmation may be an acceptable risk. A bank may configure the set of sensitive
transactions that will always require the confirmation step. Deciding to omit
the requirement of explicit confirmation should be done with hesitation. As
reported in a Washington Post article [72], attackers compromised customers’
trading accounts at several large U.S. online brokers, and used the customers’
funds to buy thinly traded shares. The goal is to boost the price of a stock
they already have bought and then to sell those shares at the higher price. This
incident indicates that seemingly innocuous transactions may be exploited by
attackers if transactions requiring confirmation are not diligently selected by
banks.

Password setup/renewal. In order to secure passwords from keyloggers dur-
ing password renewal, we require that the password is entered through the
cellphone keypad. We assume that the initial password is set up via a trust-
worthy out-of-band method (e.g., regular phone, postal mail), and U attempts
a password renewal after successfully logging into S (i.e., KMS has been estab-
lished between M and S). The following message is forwarded from M to S
(via B) during password renewal (Pold and Pnew are the old and new passwords
respectively).

M
X , where X = {IDU .Pold.Pnew}KMS

// B
{X}KBS

// S (8)

7

Public key installation. One of the greatest practical challenges of deploying
public key systems is the distribution and maintenance (e.g., revocation, up-
date) of public keys. MP-Auth requires a service provider’s public key to be
distributed (and updated as needed) and installed into users’ cellphones. The
distribution process may vary depending on service providers; we recommend
that it not be primarily Internet-based. Considering banking as an example, we
visualize the following key installation methods (but emphasize that we have
not user-tested these for usability):

1. at a bank branch, during an account setup (see Section 4 for usability
issues);

2. through in-branch ATM interfaces (hopefully free of “fake” ATMs);

3. through a cellphone service (authenticated download) as data file transfer;
and

4. for web-only banks: through removable flash memory card for cellphones
(e.g., microSD card) mailed to users, containing the public key. In this
case, one might consider the cost of an attack involving fake mailings o
users.

A challenge-response protocol or integrity cross-checks (using a different chan-
nel, e.g., see [70]) should ideally be used to verify the public key installed on
a cellphone, in addition to the above procedures. For example, the bank may
publish its public key on the bank website, and users can cross-check the re-
ceived public key, e.g., comparing visual hashes [57] or public passwords [28]; to
reduce usability issues, an automated cross-check would be preferable. The pub-
lic key may also be distributed as a trusted third-party-signed certificate (e.g.,
similar to current SSL certificates as verified by root certificates pre-installed
in browsers). However, we do not expect users to “verify” a certificate on their
own, e.g., through UI cues as used in PC browsers. The public key, as a key
file or certificate, must be installed in a secure fashion (as outlined in the above
example methods).

Authentication without a personal device. It may happen that while
traveling, a user may lose her cellphone, and cannot use MP-Auth to log in to
her bank. As a secondary authentication technique in such emergency situations,
one-time codes could be used. For example, banks may provide users a list of
pass-codes (e.g., 10 digit numbers) printed on a paper which can be used for
secondary login; i.e., a userid and pass-code entered directly on a bank login
page allows emergency access to a user’s account. However, such logins should be
restricted to a limited set of transactions, excluding any sensitive operations such
as adding a payee or changing postal address (cf. TwoKind authentication [5]).

3 Security and Attack Analysis

In this section, we first consider an informal security analysis of MP-Auth. We
motivate a number of design choices in MP-Auth messages and their security im-

8

plications, and discuss several attacks that MP-Auth is resistant to. Successful
but less likely attacks against MP-Auth are also listed.

As a confidence building step, we have tested MP-Auth using the AVISPA
(Automated Validation of Internet Security Protocols and Applications) [4] anal-
ysis tool, and found no attacks. AVISPA is positioned as an industrial-strength
technology for the analysis of large-scale Internet security-sensitive protocols
and applications. AVISPA test code for MP-Auth and discussion are provided
in Appendix A. The test code is also available online.4 A formal proof sketch
of MP-Auth using the Protocol Composition Logic (PCL) [15, 29, 63] is also
provided in Appendix B.

3.1 Partial Message Analysis and Motivation

Here we provide motivation for various protocol messages and message parts.
In message (1), S sends a fresh RS to B, and B forwards IDS, RS to M . IDS is
included in message (2) so that M can choose the corresponding public key ES .
When U starts a session with S, a nearby attacker may start a parallel session
from a different PC, and grab M ’s response message (4) (off-the-air, from the
Bluetooth connection) to login as U . However, as S generates a new RS for
each login session (i.e., U and the attacker receive different RS from S), sending
message (4) to S by any entity other than B would cause a login failure.

The session keyKMS shared between M and S, is known only to them. Both
M and S influence the value of KMS (see equation (3)), and thus a sufficiently
random KMS is expected if either of the parties is honest (as well as capable
of generating secure random numbers); i.e., if a malicious party modifies RS

to be 0 (or other values), KMS will still be essentially a random key when
M chooses RM randomly (i.e., RM has enough entropy). To retrieve P from
message (4), an attacker must guess KMS (i.e., RM) or S’s private key. If
both these quantities are sufficiently large (e.g., 160-bit RM and 1024-bit RSA
key ES) and random, an offline dictionary attack on P becomes computationally
infeasible. We encrypt only a small random quantity (e.g., 160-bit) by ES , which
should always fit into one block of a public key cryptosystem (including elliptic
curve). Thus MP-Auth requires only one public key encryption. BrowserB does
not have access to KMS although B helps M and S establish this key. With
the transaction integrity confirmation step, all (important) transactions must
be confirmed from M using KMS ; therefore, any unauthorized (or modified)
transaction by attackers will fail as attackers do not have access to KMS .

Analysis of simplified authentication messages. For the authentication
phase in MP-Auth, the browser simply forwards messages between the personal
device and the web server. Therefore for analysis, we simplify the MP-Auth
authentication messages (steps 1 through 9 in MP-Auth, see Section 2) in the

4http://people.scs.carleton.ca/~mmannan/mpauth/

9

following way.

M ← S : IDS .RS (9)

M → S : {RM}ES
.{f(RS).IDU .P}KMS

, where KMS = f(RS .RM) (10)

M ← S : {f(RM)}KMS
(11)

We assume that before the protocol run, M and S establish a shared secret
P , and M has an authentic copy of S’s public key ES (e.g., obtained using
an out-of-band method). At the end of the protocol run, the goals are to
achieve mutual authentication between M and S, and establish a fresh session
key known only to M and S. We assume that all protocol messages can be
intercepted, modified, and stored by an attacker. Also the attacker can attempt
to impersonate either M or S. However, none other than M and S knows P ,
and the private key corresponding to ES is known only to S.

At the end of message (9), S believes that it has sent a fresh nonce RS to M .
M receives RS , but it has no assurance of the true identity of S. For message
(10), M generates a fresh nonce RM , and an encryption key KMS from RM and
RS . M believes that KMS is a fresh encryption key as RM is freshly generated
by M . M encrypts RM using ES so that none other than S can generate
KMS and learn P . When S verifies P from message (10), i.e., P matches the
expected pre-shared secret, M is authenticated to S. Also, f(RS) indicates to S
that the current protocol run is fresh, as S knows that RS is freshly generated.
S believes that KMS is a fresh encryption key as RS is freshly generated by S
in the current protocol run. S also believes that M knows KMS as M is able to
encrypt P with the key. Hence for S the protocol goals have been established,
i.e., S learns the authenticated identity of M (i.e., the user U), and S and M
share a fresh encryption key KMS . When M receives message (11) and verifies
f(RM), M believes the following: the communication involves the authenticated
(true) party S, as none other than S can retrieve RM in message (10); that S
knows KMS ; and that the current protocol run is fresh. Hence the protocol
goals for M are also established. Messages (9) and (10) are cryptographically
linked by RS , and messages (10) and (11) are cryptographically linked by RM .
This chaining prevents replay and interleaving attacks [17].

In message (9), S generates RS and stores it for future use in decrypting
message (10). Attackers can initiate a large number of login attempts (e.g.,
through a botnet), and force S to generate and store many unwanted values of
RS , and thus exhaust resources on S. To limit this attack, a suitable time-out
value must be chosen after which S will drop a protocol run (i.e., stop waiting
for message (10)).

We now make a few additional comments regarding possible alternatives.
Apparently f(RS) could be removed from message (10), as verification of P
requires use of KMS , thereby indicating freshness of the current protocol run to
S; however, verification of P would generally require a database access (where
userid and password pairs are stored). Using f(RS) in message (10) enables S
to determine freshness of the current protocol run directly from this message;
thus the preference to retain f(RS) in message (10). Note that the use of f(RM)

10

in message (11) is intended to allow verification by M that S knows KMS ; thus
alternately f(RM) might be replaced by any constant in this message. Also,
while calculating f(RS) and f(RM), f(·) can be as simple as an identity function
instead of a cryptographically secure hash function.

3.2 Unsuccessful Attacks Against MP-Auth

We list several potential attacks against MP-Auth, and discuss how MP-Auth
prevents them. We also discuss some MP-Auth steps in greater detail, and
further motivate various protocol components/steps.

a) Remote desktop attacks. A malicious browser B can collect message (4)
and then deny access to U . B can use message (4) to login to S, and provide
an attacker a remote desktop, e.g., a Virtual Network Computing (VNC) ter-
minal, in real-time to the user PC. However, this attack will be detected by the
transaction integrity confirmation step of MP-Auth.

b) Session hijacking attacks. In a session hijacking attack, malware may
take control of a user session after the user successfully establishes a session
with the legitimate server; e.g., B may leak KBS to malware. The malware may
actively alter user transactions, or perform unauthorized transactions without
immediately being noticed by the user. However, such attacks will be detected
by the transaction integrity confirmation step of MP-Auth.

Untrusted Host’s

Browser (B)
Remote

server (S)

Attacker (A)

Malware in B

communicates with A

A’s SSL session

B’s SSL session

Figure 2: Setup for a parallel session attack

c) Parallel session attacks. In a parallel session attack [17], messages from
one protocol run are used to form another successful run by running two or
more protocol instances simultaneously. Generally a parallel session attack may
effectively be prevented through the proper chaining of protocol messages. How-
ever, in MP-Auth, there is no authentication between M and B, making such
an attack possible even when protocol messages are linked correctly. An attack
against MP-Auth is the following (see Fig. 2). When U launches B to visit

11

S’s site, malware from U ’s PC notifies a remote attacker A. A starts another
session with S as U , and gets message (1) from S, which the attacker relays to
U ’s PC. The malware on U ’s PC drops the message (1) intended for U when
B attempts to send the message to M , and forwards the attacker’s message to
M instead. The malware then relays back U ’s response (i.e., from M) to A.
Now A can login as U for the current session, although A is unable to learn P .
However, the transaction integrity confirmation step in MP-Auth makes such
parallel session attacks view-only.

3.3 Remaining Attacks Against MP-Auth

Although MP-Auth can protect user passwords from malware installed on a
PC or phishing websites, here we discuss some other possible attacks against
MP-Auth which, if successful, may expose a user’s plaintext password.

a) Mobile malware. We have stated the requirement that the personal (mo-
bile) device be trusted. An attack could be launched if attackers can compromise
mobile devices, e.g., by installing a (secret) keylogger. Malware in mobile net-
works is increasing as high-end cellphones (smart-phones) contain millions of
lines of code. For example, a Sept. 2006 study [27] reported that the number of
known malware programs targeting mobile devices is nearly 162; in comparison,
the number of such programs has reportedly crossed the one million mark in
the PC world in 2007 [13]. Worms such as Cabir [20] are designed to spread
in smart-phones by exploiting vulnerabilities in embedded operating systems.
Regular cellphones which are capable of running J2ME MIDlets have also been
targeted, e.g., by the RedBrowser Trojan [21]. However, currently cellphones
remain more trustworthy than PCs, thus motivating our proposal.

The number of applications available for cellphones is rapidly increasing as
evident from the popularity of application stores for iPhone, Android, Black-
Berry and Symbian devices. Perhaps due to the closed (or less open, compared
to PC) nature of software distribution in these platforms, malware threat is still
limited. In the future, as mobile devices increasingly contain much more soft-
ware, the requirement of trustworthy cellphones may become more problematic,
and their use for sensitive purposes such as online banking may make them a
more attractive target. Limited functionality devices (with less software, imply-
ing more trustworthy, see e.g., Laurie and Singer [38], ZTIC [73]) may then pro-
vide an option for use with MP-Auth. Even if MP-Auth is implemented in such
a special-purpose or lower functionality device (e.g., an EMV CAP reader5),
the device can hold several public keys for different services; in contrast, users
may require a separate passcode generator for each service they want to access

5EMV is a commercial standard (Europay, MasterCard and Visa) for interoperation of
chip cards. EMV CAP (Chip Authenticator Program) is a two-factor authentication system
for bank customers with chip cards where a card is used to generate a one-time password; see
https://emvcap.com. A chip card is inserted into a small CAP reader (which includes a small
display, keypad and a low-end processor), and using the PIN associated with the card, a user
can generate one-time passwords, respond to a server’s challenge and MAC over transaction
data.

12

securely in standard two-factor authentication proposals. Another possibility of
restricting mobile malware may be the use of ARM’s TrustZone6 security tech-
nology (allowing e.g., secure PIN/password entry, DRM) as available in certain
ARM processors. A microkernel-based embedded hypervisor such as OKL47

which allows running multiple mobile operating systems (as virtual machines)
on the same device can also be used; users can choose any popular OS with most
features for their regular use, and switch to a custom OS (e.g., provided by a
bank) for secure applications. Additionally, industry standards such as Trusted
Computing Group’s (TCG’s) specification for trusted mobile module [49] may
positively influence secure applications in mobile devices.

In version 9 of the Symbian OS (a widely used cellphone OS), Symbian
has introduced capabilities and data caging [64]. A capability allows access
to a set of APIs for an application, which is managed through certification,
e.g., Symbian Signed.8 About 60% of APIs are available to all applications
without any capabilities. Some capabilities are granted at installation time by
a user. Some sensitive APIs (e.g., ReadDeviceData, TrustedUI) are granted
only after passing Symbian Signed testing. Capabilities such as DRM must
be granted by the device manufacturer, e.g., Nokia. Controlled capabilities
may restrict functionality of unauthorized applications (or malware). Access
to the file system for applications and users is restricted through data caging.
Caging enforces data privacy so that an application can access only its private
directories and directories marked as ‘open’.

Enforcement of capabilities and data caging is done by Symbian Trusted
Computing Base (TCB). TCB is a collection of software including the kernel,
file system, and software installer. However, TCB will become an attractive
attack target, and it may contain bugs in itself. Secure hardware, e.g., Trusted
Platform Module (TPM) may help achieve goals of Symbian Platform Security.
Similar or more advanced security features are available in other popular mobile
phone operating systems, e.g., iPhone, Android [18].

Anti-virus software for mobile platforms (e.g., Trend Micro) may also help
maintain trustworthiness of cellphones. Malware targeting mobile phones is still
limited, and leveraging the experience of working to secure traditional PC plat-
forms may help us achieve a relatively secure mobile computing environment.
However, considering the current state of mobile phone security, MP-Auth would
perform better on devices whose software upgrade is tightly controlled (e.g., only
allowing applications which are digitally signed by a trustworthy vendor).

b) Common-password attacks. Users often use the same password for differ-
ent websites. To exploit such behavior, in a common-password attack, attackers
may break into a low-security website to retrieve userid/password pairs, and
then try those in financially critical websites, e.g., for online banking. MP-
Auth itself does not address the common-password problem (but see e.g., Pwd-
Hash [61]).

6http://www.arm.com/products/security/trustzone/
7http://www.ok-labs.com/products/okl4-microvisor
8www.symbiansigned.com

13

c) Social engineering. Some forms of social engineering remain a challenge to
MP-Auth (and apparently, other authentication schemes using a mobile device).
For example, malware might prompt a user to enter the password directly into
an untrusted PC, even though MP-Auth requires users to enter passwords only
into a cellphone. In a “mixed” phishing attack, emails are sent instructing users
to call a phone number which delivers, by automated voice response, a message
that mimics the target bank’s own system, and asks callers for account number
and PIN. Fraudsters may also exploit transaction integrity confirmation using
similar payee names, e.g., Be11 Canada instead of Bell Canada, or modifying
a transaction amount e.g., from $100 to $1000. User habit or user instruction
may provide limited protection against these. However, we argue that phishing
attacks against transaction confirmation may be more easily detected than those
attacks against financial sites; for example, users may better understand the
consequences of “pay $1000 to party X” than the security cues of a given site
(e.g., detecting correct URLs, and comprehending SSL site certificates).

d) Private key disclosure. It would be disastrous if the private key of a bank
is compromised. This would require, e.g., that the bank generate and distribute
a new public key. However, this threat also exists for currently deployed SSL
(server site) certificates, and root keys present in current browsers. If a user
has multiple bank accounts that use MP-Auth, compromising one of those bank
private keys may expose passwords for other accounts. The attack9 may work
in the following way. Assume a user has accounts in banks S1 and S2 with
server IDs IDS1 and IDS2, and the private key for S1 has been compromised.
The user goes to S2’s website for online banking. Malware in the user’s PC
forwards IDS1 to the cellphone while displaying S2’s website on the PC. If
the user inputs the userid and password for her S2 account without carefully
checking the displayed server ID on her cellphone, the attacker can now access
the user’s password for S2 (using S1’s private key). Displaying a distinct image
of the requesting server on the cellphone may reduce such risks.

e) Shoulder surfing attacks. A nearby attacker may observe (shoulder surf)
while a user enters a password to a mobile device. Video recorders or cellphones
with a video recording feature can also easily record user passwords/PINs in a
public location, e.g., in an ATM booth. MP-Auth does not stop such attackers.
Methods resilient against shoulder surfing have been proposed (e.g., [62]), and
may be integrated with MP-Auth, although their practical viability remains an
open question.

f) Online password guessing. Since MP-Auth assumes passwords as the only
shared secret between a user and a server, online password guessing attacks
can be launched against MP-Auth. Current techniques, e.g., locking online
access to an account after a certain number of failed attempts, or CAPTCHA
challenges [58, 71] can be used to restrict such attacks. Alternatively, tools
for improving entropy of user-chosen passwords (e.g., ObPwd [41]) may also be
used.

9An anonymous FC 2007 referee pointed us this attack.

14

4 Usability and Deployment

In this section, we discuss usability and deployment issues related to MP-Auth.
Usability is a great concern for any protocol supposed to be used by general
users, e.g., for Internet banking and ATM transactions. In MP-Auth, users
must connect a cellphone to a client PC. This step is more user-friendly when
the connection is wireless, e.g., Bluetooth, than wire-line. Then the user browses
to a bank website, and enters into the cellphone the userid and password for
the site (step 5 in MP-Auth, see Section 2). We also assume that typing a
userid and password on a cellphone keypad is acceptable in terms of usability,
as many users are accustomed to type SMS messages or have been trained by
BlackBerry/Treo experience (especially, with devices featuring a full QWERTY
keypad). However, verification of transactions may be challenging to some users.
We have not conducted any user study to this end.

During authentication the cryptographic operations a cellphone is required
to perform in MP-Auth include: one public key encryption, one symmetric en-
cryption and one decryption, one random number generation, and three crypto-
graphic hash operations. The most expensive is the one public key encryption,
which is a relatively cheap RSA encryption with short public exponent in our
application; see Section 5 for concrete results.

For authentication in MP-Auth, a bank server performs the following op-
erations: one private key decryption, one symmetric key encryption and one
decryption, three cryptographic hash operations, and one random number gen-
eration. The private key decryption will mostly contribute to the increment
of the server’s computational cost. Verification of one-time passcodes gener-
ated by hardware tokens or SMS passcodes (as deployed in many two-factor
authentication schemes) also incurs extra processing and infrastructure costs.

Banks may also hesitate in distributing software programs for a user’s PC
and mobile device as required by MP-Auth, possibly due to software mainte-
nance issues. Standardization of such software APIs might enable interoperable
independent tools development, and thus reduce maintenance burdens. If a
specialized device like the EMV CAP reader is used for MP-Auth, banks may
pre-package all require software on the device and relieve users from installing
anything on a personal device. However, users and banks may still need to deal
with software for communications between a PC and personal device.

We now discuss other usability and deployment aspects which may favor
MP-Auth (see also Section 6).

1. MP-Auth expects the following from a user: (i) to input the password only
to the personal device (i.e., not to provide any MP-Auth-enabled sites’
passwords to a PC, even when phished or otherwise social-engineered to do
so); and (ii) to verify transaction information diligently when confirming a
transaction from the device. The former is required in each login session,
and the later only infrequently. While users can still fail in these actions,
we believe these requirements are simpler than existing practice, which
expects users e.g., to keep a PC patched with all OS and other software

15

updates, to install and run different anti-malware programs, and to check
visual (SSL) cues on a PC browser.

2. As it appears from the current trend in online banking (see Section 6.1),
users are increasingly required to use two-factor authentication (e.g., with
a separate device such as a SecurID passcode generator) for login. Hence
using an existing mobile device for online banking relieves users from car-
rying an extra device. Also, a user might otherwise require multiple hard-
ware tokens (e.g., SecurID) for accessing different online accounts (from
different banks).

3. MP-Auth offers cost efficiency for banks – avoiding the cost of providing
users with hardware tokens (as well as the token maintenance cost). The
software modification at the server-end is relatively minor; available SSL
infrastructure is used with only three extra messages (between a browser
and server) beyond SSL. MP-Auth is also compatible with the common
SSL setup, i.e., a server and a client authenticate each other using a third-
party-signed certificate and a user password respectively.

4. Several authentication schemes involving a mobile device store long-term
secrets on the device. Losing such a device may pose substantial risk to
users. In contrast, losing a user’s cellphone is inconsequential to MP-
Auth assuming no secret (e.g., no “remembered password”) is stored on
the phone.

5. Public key distribution and renewal challenges usability in any PKI. Key
updating is also troublesome for banks. However, key renewal is an infre-
quent event; we assume that users and banks can cope with this process
once every two to three years. If key updates are performed through the
mobile network or selected ATMs (e.g., within branch premises), the bur-
den of key renewal is largely distributed. For comparison, hardware tokens
(e.g., SecurID) must be replaced approximately every two to five years.

6. One usability problem of MP-Auth is that users must deal with two de-
vices (a trusted device and a PC) for online banking. Since usability of
smartphones is increasing with the adoption of a full QWERTY keypad
and a relatively large (e.g., 320 x 240 pixel) color screen, it would be bet-
ter if MP-Auth could be used directly from such a device (i.e., without
requiring a PC). However, we do not recommend such an integration as
it may be vulnerable to phishing attacks when a phishing website mimics
MP-Auth’s user-interface for password input.

Although we have not tested MP-Auth for usability, the above suggests that
compared to available two-factor authentication methods (see Section 6.1), MP-
Auth may be as usable or better. However, we hesitate to make strong state-
ments without usability tests (cf. [11]).

16

5 Implementation and Performance

We developed a prototype of the main authentication and session key establish-
ment parts of MP-Auth to evaluate its performance. The prototype consists of
a web server, a Firefox Extension, a desktop client, and a MIDlet on the cell-
phone. We set up a test web server (bank), and used PHP OpenSSL functions
and the mcrypt module for the server-side cryptographic operations. The Fire-
fox Extension communicates between the web server and desktop client. The
desktop client forwards messages to and from the cellphone over Bluetooth. We
did not have to modify the web server or Firefox browser for MP-Auth besides
adding PHP scripts to the login page. We used the BlueZ Bluetooth protocol
stack for Linux, and Rococosoft’s Impronto Developer Kit for Java. We devel-
oped a MIDlet – a Java application for Java 2 Micro Edition (J2ME), based on
the Mobile Information Device Profile (MIDP) specification – for a Nokia E62
phone (commercially available circa Sept. 2006, running Symbian Series 60 r3
on a Texas Instruments processor at 235 MHz). For cryptographic operations
on the MIDlet, we used the Bouncy Castle Lightweight Crypto API.

To measure login performance, we used MP-Auth for over 200 successful
logins, and recorded the required login time, i.e., the time to complete steps 1
through 9 in (see Section 2; excluding userid and password input in step 5). We
carried out similar tests for regular SSL logins. The results are summarized in
Table 2. Table 3 summarizes other implementation choices. Although regular
SSL login is almost eight times faster than MP-Auth, on average, it takes less
than a second for MP-Auth login. This added delay may be acceptable, given
that entering a userid and password takes substantial additional time. Source
code for the prototype can be made available.

Avg. Time (s) [Min, Max] (s)
MP-Auth 0.62 [0.34, 2.28]

Regular SSL 0.08 [0.06, 0.22]

Table 2: Performance comparison between MP-Auth and regular SSL login
excluding user input time

Public key encryption RSA 1024-bit
Symmetric encryption AES-128 (CBC)
Hash function SHA-1 (160-bit)
Source of randomness /dev/urandom, SecureRandom

Table 3: Cryptosystems and parameters for MP-Auth

17

6 Survey of Related Work

In this section, we summarize and provide extended discussion of related on-
line authentication methods used in practice or proposed in the literature, and
compare MP-Auth with these techniques.

6.1 Online Authentication Methods

We first discuss several online authentication methods commonly used (or pro-
posed for use) by banks, and briefly discuss their security.

a) Password-only authentication. Most bank websites authenticate cus-
tomers using only a password over an SSL connection. This is susceptible to
keyloggers and phishing. Banks’ reliance on SSL certificates does not stop at-
tackers. Attackers have used certificates – both self-signed, and real third-party
signed certificates for sound-alike domains, e.g., visa-secure.com – to dis-
play the SSL lock on phishing websites. In 2005, over 450 phishing websites
were reported to deploy SSL [52]. A trojan (with rootkit capabilities) has been
reported [25] to inject a spoofed HTML form (from the local PC) inside a SSL-
protected bank website for collecting banking and identity information; the form
appears to be served by the real bank site, and the browser displays the cor-
rect SSL site certificate when verified by the user. Also the bank site remains
uncompromised in this attack.

In a cross-site/cross-frame scripting attack, vulnerable website software is ex-
ploited to display malicious (phishing) contents within the website, making such
attacks almost transparent to users. Past vulnerable websites include Charter
One Bank, MasterCard, Barclays and Natwest [65]. In a March 2006 phishing
attack, attackers broke into web servers of three Florida-based banks, and redi-
rected the banks’ customers to phishing websites [53]. In another high-profile
phishing attack, attackers manipulated a U.S. government website to forward
users to phishing websites [19].

Reliance on SSL itself also leads to problems. For example, only one in 300
customers of a New Zealand bank [52] chose to abandon the SSL session upon a
browser warning indicating an expired SSL site certificate; the bank accidentally
allowed a certificate to expire for a period of 12 hours. A user study by Dhamija
et al. [16] also notes that standard (visual) security indicators on websites are
ineffective for a significant portion of users; over 90% participants were fooled
by phishing websites in the study.

As front-end (client-side) phishing solutions are failing in many instances,
some banks are putting more resources at back-end fraud detection to counter
phishing threats. For example, HSBC in Brazil uses the PhishingNet10 back-end
solution. PhishingNet uses user machine identification, and monitors online ac-
count activities, without requiring any user registration or software downloads.
Such a solution is almost transparent to end-users, and may help detect fraud-
ulent transactions. The RSA Adaptive Authentication for Web11 also provides

10http://www.the41st.com/products.asp
11http://www.rsa.com/node.aspx?id=3018

18

similar back-end fraud detection capabilities. However, in case of session hi-
jacking attacks when fraudulent transactions are performed from a user’s own
machine, back-end solutions may not help much.

The above suggests password-only web authentication over SSL is inadequate
in today’s Internet environment. This is motivating financial organizations to-
wards two-factor authentication methods.

b) Two-factor authentication. Traditionally, authentication schemes have
relied on one or more of three factors: something a user knows (e.g., a password),
something a user has (e.g., a bank card), and something a user is (e.g., biometric
characteristics). Properly designed authentication schemes that depend on more
than one factor are more reliable than single-factor schemes. Note that the
authentication scheme used in ATMs through a bank card and PIN is two-
factor; but, an online banking authentication scheme that requires a user’s bank
card number (not necessarily the card itself) and a password is single-factor, i.e.,
both are something known. As a step toward multi-factor authentication, banks
are providing users with devices like one-time password generators, to use along
with passwords for online banking, thus making the authentication scheme rely
on two independent factors. Examples of two-factor authentication in practice
are given below.

1. Several European banks attempt to secure online banking through e.g.,
passcode generators.

2. U.S. federal regulators have provided guidelines for banks to implement
two-factor authentication by the end of 2006 for online banking [22].

3. The Association of Payment and Clearing Systems (APACS) in the U.K.
is developing a standard12 for online and telephone banking authentica-
tion. Most major U.K. banks and credit-card companies are members of
APACS. The standard provides users a device to generate one-time pass-
words using a chip card and PIN. The one-time password is used along
with a user’s regular password.

Two-factor web authentication methods may make the collection of pass-
words less useful to attackers and thus help restrict phishing attacks. However,
these methods raise deployment and usability issues, e.g., cost of the token,
requirement to carry the token. Also malware on a client PC can record the
device-generated secret (which a user inputs directly to a browser), and log on
to the bank website before the actual user. This is recognized as a classic man-
in-the-middle (MITM) attack. Apparently showing a pre-selected user image or
phrase on the login page, or “device fingerprinting” (information specific to a
user PC, e.g., client browser, OS, CPU type, screen resolution) are considered
as a second factor by several U.S. banks; see O’Connor [54] for how easily these
‘second’ factors can be defeated by traditional phishing/MITM attacks.

In an interesting real attack [68] against a one-time password scheme imple-
mented by a Finnish bank, the bank provided users a scratch sheet containing
a certain number of one-time passwords. By setting up several phishing sites,

12http://www.chipandpin.co.uk/

19

attackers persuaded users to give out a sequence of one-time passwords in addi-
tion to their regular passwords. This attack is made more difficult if one-time
passwords expire after a short while (e.g., 30 to 60 seconds in SecurID); then the
collected one-time passwords must be used within a brief period of time from
a user’s login attempt. A July 2006 phishing attack [51], attackers collected
userid, password, as well as one-time password (OTP) generated by time-based
passcode generators from Citibank customers, and launched a real-time MITM
attack against compromised accounts. Also, such time-based passcode gener-
ators, e.g., SecurID, typically have time synchronization problems between a
client device and the server [76], and expire in 2-5 years. Other security is-
sues of such devices (e.g., [74]) are not directly relevant to our discussion; we
assume that any weaknesses could be repaired by superior algorithms or imple-
mentations overtime, albeit with the usual practical challenges, e.g., backwards
compatibility.

Note that, even when a one-time password is used along with a user’s (long-
term) regular password, gathering long-term passwords may be still be of offline
use to an attacker. For example, if flaws are found in a one-time key generator
algorithm (e.g., differential adaptive chosen plaintext attack [9]) by which at-
tackers can generate one-time keys without getting hold of the hardware token,
keylogging attacks to collect user passwords appear very useful.

Instead of gathering passwords, attackers can simply steal money from user
accounts in real-time, immediately after a user completes authentication [33, 66].
One Trojan program [24] even alters banking statements when displayed in an
infected PC browser to avoid detection by the user. Therefore, transaction
security becomes critical to restrict such attacks.

c) Transaction security and complimentary mechanisms. To protect
important transactions, and make users better able to detect break-ins to their
accounts, some banks have deployed security techniques which are generally
complementary to authentication schemes. Examples include:

1. Two New Zealand banks require online users to enter a secret from a
cellphone (sent as an SMS message to the phone) for transfers over $2500
from one account to another [67].

2. Customers of the Commonwealth Bank of Australia13 must answer (pre-
established) identification questions when performing sensitive transac-
tions. Email alerts are sent to users to confirm when users’ personal
details have been changed, or modifications to user accounts are made.

3. Bank of America uses SiteKey and SafePass14 to strengthen online au-
thentication and transaction authorization. If a user PC is recognized by
the bank, a secret pre-shared SiteKey picture is displayed; upon successful
verification of the SiteKey picture, the user enters her password. A confir-
mation question is asked if the user PC is not recognized, and the SiteKey
picture is displayed when the user answers the question correctly. The

13http://www.commbank.com.au/Netbank/faq/security.asp
14http://www.bankofamerica.com/privacy/index.cfm?template=learn_about_safepass

20

SiteKey picture provides evidence that the user is entering her password
to the correct website. When registered with SafePass, users get a six-
digit OTP through an SMS message which is used for authorizing critical
transactions; OTPs can also be generated using a wallet-sized card that
users can buy from the bank.

In principle, the above mechanisms (as well as MP-Auth’s transaction integrity
confirmation) are similar to integrity cross-checks by a second channel [70]. At-
tackers may be able to defeat some of these techniques; e.g., if a bank requires
SMS verification on large transactions, attackers can commit several relatively
small transactions (e.g., $10 instead of $1000) to avoid the verification step. In
one instance [31], cellphones are reprogrammed with a targeted user’s phone
number; this enables attackers to receive SMS messages including mTANs (mo-
bile transaction authentication numbers) sent to the user’s mobile phone number
by her bank as required for performing important transactions in certain Eu-
ropean countries. Also, SMS verification requires access to cellphone networks
which is a problem when a phone network is not available (e.g., while traveling).

d) Using a cellphone alone for important Internet services. One pro-
posed solution to keyloggers is to perform all critical work through a cellphone
browser, or through a PDA. However, a combination of the following usability
and security issues may restrict such proposals being widely deployed.

1. The display area of a cellphone/PDA is much smaller than a PC, limiting
usability for web browsing.

2. Users may still reveal passwords to phishing sites controlled by mali-
cious parties (through e.g., domain name hijacking [30], Kaminsky DNS-
flaw [35]). Thus even a trusted browser in a trusted device may not stop
phishing attacks; i.e., such a setup may allow a ‘secure’ pipe directly to
phishing sites.

3. Some mobile browsers, e.g., Opera Mini,15 use proxy servers (called
transcoders) to provide a faster web experience from a smart-phone;
transcoders retrieve a web page on behalf of a user, and reformat the
content to fit in the mobile browser. As a consequence, SSL connections
from a mobile browser to a site cannot provide end-to-end encryption; the
transcoders can learn all user credentials. This is problematic in several
ways: a transcoder-provider can be malicious or compromised, and users
may be unknowingly violating banking agreements which mandate not to
share passwords with others.

4. In many parts of the world, airtime costs money. So Internet browsing
through a mobile network remains, at least presently, far more expensive
than wire-line Internet connections.

e) Comparing MP-Auth with existing online authentication methods.
In contrast to two-factor authentication methods, by design MP-Auth does not

15http://www.opera.com/mini/help/faq/#security

21

provide attackers any window of opportunity when authentication messages
(i.e., collected regular and one-time passwords of a user) can be replayed to
login as the legitimate user and perform transactions on the user’s behalf. The
key observation is that, through a simple challenge-response, message (4) in
MP-Auth (Section 2) effectively turns a user’s long-term static password into a
one-time password in such a way that long-term passwords are not revealed to
phishing websites, or keyloggers on an untrusted PC. In contrast to transaction
security mechanisms, MP-Auth can protect both large and small transactions as
long as users diligently check integrity confirmation messages, and transactions
are prudently labled for user confirmation from the device; for example, even
small transactions to an unknown/unregistered party should be categorized as
sensitive. Also, MP-Auth does not require text or voice communications airtime
for web authentication or transaction security. (See also Section 4 for more
comparison on usability and deployment issues.)

6.2 Academic Proposals

Here we summarize selected academic proposals for authentication from an un-
trusted PC using a mobile device. MP-Auth shares several design goals with
these, and is influenced by the ideas and experiences of these past proposals.
We also compare MP-Auth to these in terms of technical merits and usability.

a) Splitting trust paradigm. Abadi et al. [1] envisioned an ideal smart-
card (with an independent keyboard, display, processor) as early as 1990, and
designed protocols using such a device to safeguard a user’s long-term secrets
from a potentially malicious computer. In 1999, Balfanz and Felten [6] pro-
posed a scheme to deliver smart-card functionality through a PalmPilot as-
suming the availability of user-level public key systems. They introduced the
splitting trust paradigm to split an application between a small (in size and pro-
cessing power) trusted device and an untrusted computer. Our work is based
on such a paradigm where we provide the long-term password input through
widely available cellphones, and use the untrusted computer for computation-
ally intensive processing and display. However, we do not use any user-level
PKI.

b) Phoolproof phishing prevention. Parno, Kuo and Perrig [56] proposed a
cellphone-based technique to protect users against phishing with less reliance on
users making secure decisions. With the help of a pre-shared secret – established
using an out-of-band channel, e.g., postal mail – a user sets up an account
at the intended service’s website. The user’s cellphone generates a key pair
{KU ,K

−1
U }, and sends the public key to the server. The user’s private key and

server certificate are stored on a cellphone for logins afterward. During login
(see Fig. 3), a user provides userid and password to a website on a browser (as
usual), while in the background, the browser and server authenticate (using SSL
mutual authentication) through the pre-established client/server public keys in
an SSL session; the browser receives the client public key from the cellphone.

22

(See also the Personal Transaction Protocol (PTP) [48] for a similar approach
from leading mobile phone manufacturers.)

Device Browser Server

oo

Hello Msgs
//

oo

CertS , DHS , {DHS}K−1

S

, Hello Done

oo

CertS , domain

CertKU
//

oo
h

{h}K−1

U
//

CertKU
, DHC , {h}K−1

U
//

oo

Change Cipher Msgs
//

Figure 3: Phoolproof login process (adapted from [56]

In Fig. 3, DHS , DHC represent the Diffie-Hellman public key parameters
for the server and client browser respectively, and h is a secure hash of all
previous SSL handshake messages of the current session. As noted [56], attackers
may hijack account setup or (user) public key re-establishment. Phoolproof
assumes that users can correctly identify websites at which they want to set
up an account. Public key creation in Phoolproof happens in the background
and is almost transparent to users. However, users must revoke public/private
key pairs in case of lost or malfunctioning cellphones, or a replacement of older
cellphone models. Expecting non-technical users (e.g., typical bank customers)
to understand concepts of revocation and renewal of public keys may not be
practical yet.

It is also assumed in Phoolproof that the (Bluetooth) channel between a
browser and cellphone is secure. Seeing-is-believing (SiB) [44] techniques are
proposed to secure local Bluetooth channels, requiring users to take snapshots
using a camera-phone, an thus increasing complexity to users. If malware on a
PC can replace h (when the browser attempts to send h to the cellphone) with
an h value from an attacker, the attacker can login as the user (recall parallel
session attacks in Section 3.2). Also, Phoolproof is not designed to provide
protection against session hijacking attacks, which are becoming more common,
and easy to develop and deploy [33]. MP-Auth achieves such protection at the
(human interaction) cost of transaction integrity confirmation.

c) Bumpy: Safe passage for passwords. McCune et al. proposed Bumpy [46]
to enable safe forwarding of user-specified (e.g., via a secure attention sequence
@@) sensitive information including passwords from the user to a server, by-

23

passing untrustworthy legacy OS and other applications. Bumpy requires a
trusted device for displaying critical information (e.g., URL, favicon of the input-
receiving site), input-encrypting keyboard and mouse, and a proposed system
called Flicker [43]. Using TPM and the late launch feature available in certain re-
cent CPUs, Flicker provides hardware-supported isolation for security-sensitive
code from the OS and other applications. Flicker is used for obtaining sensitive
user input which is released to the legacy OS/browser after being encrypted for
the receiving server. Bumpy’s goal is to ensure a safe input mechanism in an
untrusted platform, but not to protect user secrets from phishing sites. A long
or look-a-like URL and the target site’s favicon when used in a phishing attack
may easily fool users into divulging their secrets to unwanted sites.

d) Zone Trusted Information Channel (ZTIC). ZTIC [73] has been de-
signed as a special-purpose USB device primarily to expose and confirm online
transactions (genuine or otherwise), initiated from an untrusted PC. The device
is equipped with a small display and two buttons (OK, Cancel), stores user cre-
dentials (e.g., bank-issued user-level X.509 certificates, as in Phoolproof [56]),
and hosts a TLS engine, proxy server and HTTP parser. The server and device
establish a secure channel using SSL mutual authentication, and the device acts
as a proxy and parses all interactions between the browser and server. When
a critical transaction is detected, it is displayed on the device and performed
only when confirmed from the device (i.e., by pressing the OK button). The
HTTP parser and bank server must be kept in sync to ensure proper extraction
and display of transaction detail. The device can store multiple user/server cre-
dentials and thus be used to access different ZTIC-enabled services. ZTIC does
not aim to protect user passwords; instead it relies on user-level certificates and
PKI.

e) Bump in the Ether. Bump in the Ether (BitE) [45] proxies sensitive user
input to a particular application via a trusted mobile device, bypassing the Linux
X-windowing system. Users receive verifiable evidence regarding the integrity of
the host kernel and whether the intended user application has been loaded. Only
the target application receives user input from the mobile device through a user-
verifiable trusted tunnel (between the device and application). BitE assumes the
OS kernel is trustworthy, and the BIOS and OS are TPM-enabled and perform
integrity check of code loaded for execution. BitE requires a user’s mobile device
to be cryptographically paired with the OS kernel. For establishing a trusted
tunnel between the user device and an application, (symmetric) cryptographic
keys for each BitE-aware application must be shared beforehand (e.g., during
application installation/registration). Keystrokes from the trusted device is then
sent encrypted from the device to the target application.

BitE can protect user input against user-space malware. However, BitE
does not protect user inputs from a phishing website, or compromised (e.g.,
Trojaned) user applications. BitE also stores cryptographic keys to the mobile
device, which are subject to compromise if the device is lost or left unattended
(if not protected otherwise, e.g., through TPM). Session hijacking is also not
addressed by BitE.

24

SpyBlock

Authentication

Agent

(on host OS)
SpyBlock

Browser

Helper

Browser

Application Env.

(on guest OS)

User PC

App1

Internet

Real

site

Fake

site

Figure 4: SpyBlock setup (adapted from [32])

f) SpyBlock. Jackson, Boneh and Mitchell propose SpyBlock [32] (see also [33])
to provide spyware-resistant web authentication using a virtual machine monitor
(VMM). The SpyBlock authentication agent runs on a host OS (assumed to be
trusted), and user applications including a web browser with a SpyBlock browser
helper run inside a guest VM (assumed to be untrusted) on the trusted host
OS. See Fig. 4.

A user authenticates to a website with the help of the SpyBlock authentica-
tion agent. The site password is given only to the authentication agent which
supports several authentication techniques, e.g., password hashing, strong pass-
word authentication, transaction integrity confirmation. The authentication
agent provides a trusted path to the user through a pre-shared secret picture.

SpyBlock does not require an additional hardware device (e.g., a cellphone).
However, a VMM must be installed. Also, users must know when they are
communicating with the authentication agent; user interface design in such a
setting appears quite challenging. Another assumption in SpyBlock is that
the host OS is trusted. In reality, maintaining trustworthiness of any current
consumer OS is very difficult (which is in part why secure web authentication
is so complex).

g) Three-party secure remote terminal protocol. Oprea et al. [55] pro-
posed a three-party protocol (see Fig. 5) to provide secure access to a home
computer from an untrusted public terminal. A trusted device (e.g., PDA) is
used to delegate temporary credentials of a user to an untrusted public com-
puter, without revealing any long-term secret to the untrusted terminal. Two
SSL connections are established in the protocol: one from the trusted PDA and
another from the untrusted terminal to the home PC using a modified Virtual
Network Computing (VNC) system. The PDA authenticates normally (using a
password) to the home PC, and forwards temporary secret keys to the untrusted
terminal. A user can control how much information from the home PC is dis-
played to the untrusted PC. Control messages to the home VNC, e.g., mouse
and keyboard events, are only sent from the PDA.

This protocol safeguards user passwords only when users access a PC (or
application) that they control, e.g., a home PC. Also, the trusted device must

25

Home PC

SSL tunnel

direct

connection

(temp keys)

SSL tunnel

Untrusted PC

Trusted PDA

keyboard

and mouse

events

Figure 5: Three-party VNC protocol (adapted from [55])

have SSL capabilities, and is required to maintain a separate SSL channel from
the PDA to the home PC.

h) Camera-based authentication. Clarke et al. [12] proposed a technique us-
ing camera-phones for authenticating visual information (forwarded by a trusted
service) in an untrusted PC. This method verifies message authenticity and in-
tegrity for an entire user session; i.e., it authenticates the content displayed
on a PC screen for every web page or only critical pages in a user session. A
small area on the bottom of a PC screen is used to transmit security parameters
(e.g., a nonce, a one-time password, or a MAC) as an image, with a strip of
random-looking data. Fig. 6 outlines the proposed protocol.

Trusted device

(camera phone)
Trusted proxy

Remote server

Untrusted PC

User

Figure 6: Camera-based authentication

To access a service from the Internet through an untrusted PC, this scheme
requires a trusted proxy. A user’s long-term keys are stored on the camera-

26

phone, protected by a PIN or biometric measurement. With a stolen phone, an
attacker may successfully impersonate the user or retrieve the stored long-term
keys from the phone. Camera-based authentication also creates a much different
user experience: users are expected to take snapshots and visually verify (cross-
check) images in terms of colors and shades. A calibration phase may also be
required to construct a mapping between PC screen pixels and camera pixels
(in one implementation, reported to take about 10 seconds). It attempts to
authenticate content of a visual display, which is apparently useful in a sense
that we can verify what is displayed on the screen.

Untrusted Host (K)

Trusted proxy (T)

Cellphone (M)

User (U)

Remote

server (R)

1

5

6

4

7

32

8

Figure 7: Web authentication with a cellphone

i) Secure web authentication with cellphones. Fig. 7 shows the secure web
authentication proposed by Wu et al. [75]. User credentials (userid, password,
mobile number etc.) are stored on a trusted proxy server. The protocol involves
the following steps (see Fig. 7 for symbol definitions).

1. U launches a web browser at K, and goes to T ’s site.

2. U types her userid and K sends it to T .

3. T chooses a random session name, and sends it to K.

4. T sends this session name to M as an SMS message.

5. U checks the displayed session name at K.

6. U verifies the session name at M .

7. If session names match, the user accepts the session.

8. If U accepts the session, then T uses U ’s stored credentials to login to R,
and works as a web proxy.

27

This protocol requires a trusted proxy, which if compromised, may readily
expose user credentials to attackers. A well-behaved proxy may also be tricked
to access a service on behalf of a user. Hence the proxy may become a prime
target of attacks. Also, losing the cellphone is problematic, as anyone can access
the trusted proxy using the phone, at least temporarily. Delegate [34] is another
similar trusted proxy based solution for secure website access from an untrusted
PC that also provides protection against session hijacking.

Filtering PDA

Internet

SSL

SSL

I/O
Direct I/O

when required

Untrusted PC

User

Figure 8: Guardian setup (adapted from [42])

j) Guardian privacy control framework. The Guardian [42] framework has
been designed with an elaborate threat model in mind. Its focus is to protect
privacy of a mobile user,16 including securing long-term user passwords and
protecting sensitive information, e.g., personal data from being recorded (to
prevent identity profiling). Guardian works as a personal firewall but placed on
a trusted PDA. In effect, the PDA acts as a portable privacy proxy. See Fig. 8.

Guardian keeps passwords and other privacy sensitive information out of the
reach of keyloggers and other malware installed on an untrusted PC. However,
phishing attacks still may succeed. Guardian attempts to manage a large set of
sensitive user details, e.g., PKI certificates, SSL connections, and cookies as well
as real-time content filtering. Thus its implementation appears to be complex,
and requires intelligent processing from the PDA.

k) Comparing MP-Auth with existing literature. Table 4 summarizes
a comparison of MP-Auth with several anti-phishing proposals from the liter-
ature. For example, Phoolproof [56] provides protection against phishing and
keylogging, but it is vulnerable to session hijacking; it requires a malware-free

16A user who uses several different public terminals to access critical online services, e.g.,
banking.

28

mobile and stores long-term secrets on the mobile, but does not require a trusted
proxy or trusted PC OS. We acknowledge that although this table may provide
useful high-level overview, it is not an apple-to-apple comparison. Several so-
lutions listed here require a trusted proxy, thus introduce an extra deployment
burden, and present an attractive target to determined attackers.

Protection against Requirement

Session-
hijacking

Phishing
Key-
logging

Trusted
proxy

On-device
secret

Trusted
PC OS

Malware-
free
mobile

MP-Auth X X X 7

Phoolproof [56] X X 7 7

Bumpy [46] X 7

ZTIC [73] X X X 7 7

BitE [45] X 7 7 7

SpyBlock [32] X X X NA 7

Three-party [55] NA NA X 7 7

Camera-based [12] X X X 7 7 7

Web-Auth [75] X X 7 7 7

Guardian [42] X 7 7

Table 4: Comparing MP-Auth with existing academic proposals. An (7) means
a special requirement is needed. An empty box indicates the stated protection
is not provided (first three columns) and the stated requirement is not needed
(last four columns). NA denotes non-applicability. (All Xand no 7 would be
optimal.)

7 Concluding Remarks

We propose MP-Auth, a protocol for web authentication which is resilient to
keyloggers (and other malware including rootkits), phishing websites, and ses-
sion hijacking. Recently, many new small-scale, little-known malware instances
have been observed that install malicious software launching keylogging and
phishing attacks; these are in contrast to large-scale, high-profile worms like
Slammer. One reason for this trend might be the fact that attackers are in-
creasingly targeting online financial transactions. For example, according to
one report [3], 87% of all phishing sites in the fourth quarter of 2009 targeted
online financial, payment, auction and retail services. Furthermore, such at-
tacks are fairly easy to launch; for example, attackers can gain access to a user’s
bank account simply by installing (remotely) a keylogger on a user PC and
collecting the user’s banking access information (userid and password). MP-
Auth is designed to prevent such attacks. MP-Auth primarily focuses on online
banking but can be used for general web authentication systems. Our require-
ment for a trustworthy personal device (i.e., free of malware) is important, and
becomes more challenging over time, but as discussed in Section 3.3, may well
remain viable. In our MP-Auth implementation, cryptographic computations
and Bluetooth communications took less than a second for login (excluding the
user input time), which we believe to be an acceptable delay for the added se-

29

curity. Despite a main objective of preventing phishing and keylogging attacks,
MP-Auth as presented remains one-factor authentication; thus an attacker who
nonetheless learns a user password can impersonate that user. Consequently,
the server side of MP-Auth must be trusted to be secure both against insider
attack and break-in.

Users often input reusable critical identity information to a PC other than
userid/password, e.g., a passport number, social security number, driver’s li-
cense number, or credit card number. Such identity credentials are short, mak-
ing them feasible (albeit tedious) to enter from a cellphone keypad. In addition
to protecting a user’s userid/password, MP-Auth may easily be extended to pro-
tect other identity credentials from the reach of online attackers, and thereby
might be of use to reduce online identity theft. Additionally, MP-Auth may be
suitable for use in ATMs (automated teller machines), if an interface is provided
to connect a cellphone, e.g., a wire-line or Bluetooth interface. This can be a
step towards ending several types of ATM fraud. We believe that the very sim-
ple approach on which MP-Auth is based – using a cellphone or similar device to
asymmetrically encrypt passwords and one-time challenges – is of independent
interest for use in many other applications, e.g., traditional telephone bank-
ing directly from a cellphone, where currently PINs are commonly transmitted
in-band without encryption.

We reiterate that although based on a very simple idea, MP-Auth has yet to
be user-tested for usability; this is an architecture, analysis and state-of-the-art
paper. We encourage the security community to pursue alternate proposals for
password-based online authentication which simultaneously address phishing,
keylogging and session hijacking rootkits.

Acknowledgments. We thank anonymous referees for their constructive com-
ments which improved the presentation of this work, Bryan Parno for allow-
ing us to access and build on source code of his Phoolproof [56] implemen-
tation, Anupam Datta for help with the PCL analysis, and Masud Khan for
providing a Nokia E62 smartphone. The first author was supported in part by
an NSERC CGS and ISSNet (Internetworked Systems Security Network – an
NSERC Strategic Network Grant) post-doctoral fellowship. The second author
is Canada Research Chair in Authentication and Computer Security, and is
supported in part by an NSERC Discovery Grant, the Canada Research Chairs
Program, and NSERC ISSNet.

References

[1] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication and
delegation with smart-cards. Science of Computer Programming, 21(2):91–
113, Oct. 1993.

[2] M. AlZomai, B. AlFayyadh, A. Jøsang, and A. McCullag. An experi-
mental investigation of the usability of transaction authorization in on-

30

line bank security systems. In Australasian Information Security Confer-
ence (AISC’08), pages 65–73, Wollongong, Australia, Jan. 2008. Australian
Computer Society.

[3] Anti-Phishing Working Group. Phishing Activity Trends Report, Q4/2009.
http://www.antiphishing.org/reports/apwg_report_Q4_2009.pdf.

[4] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,
P. H. Drielsma, P. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and
L. Vigneron. The AVISPA tool for the automated validation of Internet
security protocols and applications. In Computer Aided Verification (CAV),
volume 3576 of LNCS, pages 281–285, Edinburgh, Scotland, UK, July 2005.
Springer-Verlag. Project website, http://www.avispa-project.org.

[5] K. Bailey, A. Kapadia, L. Vongsathorn, and S. W. Smith. TwoKind authen-
tication: Protecting private information in untrustworthy environments. In
ACM Workshop on Privacy in the Electronic Society (WPES’08), pages
39–44, Alexandria, VA, USA, Oct. 2008. ACM Press.

[6] D. Balfanz and E. Felten. Hand-held computers can be better smart cards.
In USENIX Security Symposium, pages 15–24, Washington, DC, USA, Aug.
1999. USENIX Association.

[7] M. Bellare and C. Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Jour-
nal of Cryptology, 21(4):469–491, 2008.

[8] M. Bellare and P. Rogaway. Entity authentication and key distribution.
In Advances in Cryptology – CRYPTO’93, volume 773 of LNCS, pages
232–249, Santa Barbara, CA, USA, Aug. 1993. Springer-Verlag.

[9] A. Biryukov, J. Lano, and B. Preneel. Cryptanalysis of the alleged SecurID
hash function. In Selected Areas in Cryptography (SAC), volume 3006 of
LNCS, pages 130–144, Ottawa, Canada, Aug. 2003. Springer-Verlag.

[10] CA Virus Information Center. Win32.Grams.I, Feb. 2005.

[11] S. Chiasson, P. van Oorschot, and R. Biddle. A usability study and critique
of two password managers. In USENIX Security Symposium, pages 1–16,
Vancouver, Canada, Aug. 2006. USENIX Association.

[12] D. E. Clarke, B. Gassend, T. Kotwal, M. Burnside, M. van Dijk, S. Devadas,
and R. L. Rivest. The untrusted computer problem and camera-based
authentication. In Pervasive Computing, volume 2414 of LNCS, pages 114–
124, Zurich, Switzerland, Aug. 2002. Springer-Verlag.

[13] Computerworld.com. Malware count blows past 1M mark. News article
(Apr. 8, 2008).

31

[14] D. Dagon, M. Antonakakis, X. Luo, C. P. Lee, W. Lee, and K. Day. Re-
cursive dns architectures and vulnerability implications. In Network and
Distributed System Security Symposium (NDSS’09), San Diego, CA, USA,
Feb. 2009. Internet Society (ISOC).

[15] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition
logic (PCL). Electronic Notes in Theoretical Computer Science (ENTCS),
172:311–358, Apr. 2007.

[16] R. Dhamija, J. Tygar, and M. Hearst. Why phishing works. In Confer-
ence on Human Factors in Computing Systems (CHI’06), pages 581–590,
Montréal, Canada, Apr. 2006. ACM Press.

[17] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–
125, 1992.

[18] W. Enck, M. Ongtang, and P. McDaniel. Understanding Android security.
IEEE Security & Privacy Magazine, 7(1):50–57, 2009.

[19] Eweek.com. Tax scam preys on refund-hungry public with real gov site.
News article (Nov. 30, 2005). http://www.eweek.com/article2/0,1895,
1894746,00.asp.

[20] F-Secure. F-Secure virus descriptions: Cabir, June 2004.

[21] F-Secure. F-Secure trojan information pages: Redbrowser.A, Mar. 2006.

[22] Federal Financial Institutions Examination Council (FFIEC). FFIEC guid-
ance: Authentication in an Internet banking environment, Oct. 2005.
http://www.fdic.gov/news/news/financial/2005/fil10305.html.

[23] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach. Web spoofing: An
Internet con game. In National Information Systems Security Conference,
Baltimore, MD, USA, Oct. 1997.

[24] Finjan Malicious Code Research Center. Cybercrime intelligence report:
Cybercriminals use Trojans & money mules to rob online banking accounts.
Online article (issue no. 3, 2009). http://www.finjan.com/GetObject.
aspx?ObjId=679.

[25] Finjan Malicious Code Research Center. Web security trends report –
Q3/2007. http://www.finjan.com/GetObject.aspx?ObjId=506.

[26] V. D. Gligor and P. Donescu. Fast encryption and authentication: XCBC
encryption and XECB authentication modes. In Workshop on Fast Soft-
ware Encryption (FSE’01), volume 2355 of LNCS, pages 1–20, Yokohama,
Japan, Apr. 2001. Springer-Verlag.

32

[27] A. Gostev and A. Shevchenko. Kaspersky security bulletin, January - June
2006: Malicious programs for mobile devices, Sept. 2006. http://www.

viruslist.com.

[28] S. Halevi and H. Krawczyk. Public-key cryptography and password proto-
cols. ACM Transactions on Information and Systems Security (TISSEC),
2(3):230–268, Aug. 1999.

[29] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A mod-
ular correctness proof of IEEE 802.11i and TLS. In ACM Computer and
Communications Security (CCS’05), pages 2–15, Alexandria, VA, USA,
Nov. 2005. ACM Press.

[30] ICANN Security and Stability Advisory Committee. Domain name hi-
jacking: Incidents, threats, risks, and remedial actions, July 2005. http:

//www.icann.org.

[31] IDG News Service. Investigators replicate Nokia 1100 online banking hack.
News article (May 21, 2009). http://www.thestandard.com/news/2009/
05/21/investigators-replicate-nokia-1100-online-banking-hack.

[32] C. Jackson, D. Boneh, and J. Mitchell. Spyware resistant web authenti-
cation using virtual machines. Technical report (2006). http://crypto.
stanford.edu/spyblock.

[33] C. Jackson, D. Boneh, and J. Mitchell. Transaction generators: Root kits
for web. In USENIX Workshop on Hot Topics in Security (HotSec’07),
Boston, MA, USA, Aug. 2007.

[34] R. C. Jammalamadaka, T. van der Horst, S. Mehrotra, K. Seamons, and
N. Venkatasuramanian. Delegate: A proxy based architecture for secure
website access from an untrusted machine. In Annual Computer Secu-
rity Applications Conference (ACSAC’06), pages 57–66, Miami Beach, FL,
USA, Dec. 2006. IEEE Computer Society.

[35] D. Kaminsky. Black Ops 2008 – It’s the end of the cache as we know it. In
Black Hat USA, Las Vegas, NV, USA, Aug. 2008.

[36] D. Kuhlman, R. Moriarty, T. Braskich, S. Emeott, and M. Tripunitara.
A correctness proof of a mesh security architecture. In IEEE Computer
Security Foundations Symposium (CSF), pages 315–330, Pittsburgh, PA,
USA, June 2008. IEEE Computer Society.

[37] K. Kursawe and S. Katzenbeisser. Computing under occupation. In New
Security Paradigms Workshop (NSPW’07), pages 81–88, New Hampshire,
USA, Sept. 2007. ACM Press.

[38] B. Laurie and A. Singer. Choose the red pill and the blue pill. In New
Security Paradigms Workshop (NSPW’08), pages 127–133, Lake Tahoe,
CA, USA, Sept. 2008. ACM Press.

33

[39] M. Mannan. Authentication and Securing Personal Information in an Un-
trusted Internet. PhD thesis, Carleton University, Canada, 2009.

[40] M. Mannan and P. van Oorschot. Using a personal device to strengthen
password authentication from an untrusted computer. In Financial Cryp-
tography and Data Security (FC’07), volume 4886 of LNCS, pages 88–103,
Lowlands, Scarborough, Trinidad and Tobago, Feb. 2007. Springer-Verlag.

[41] M. Mannan and P. van Oorschot. Digital objects as passwords. In USENIX
Workshop on Hot Topics in Security (HotSec’08), San Jose, CA, USA, July
2008.

[42] N. B. Margolin, M. K. Wright, and B. N. Levine. Guardian: A framework
for privacy control in untrusted environments, June 2004. Technical Report
04-37 (University of Massachusetts, Amherst, USA).

[43] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker:
An execution infrastructure for TCB minimization. In The European Con-
ference on Computer Systems (EuroSys’08), pages 315–328, Glasgow, Scot-
land, UK, Apr. 2008. ACM Press.

[44] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using
camera phones for human-verifiable authentication. In IEEE Symposium
on Security and Privacy, pages 110–124, Oakland, CA, USA, May 2005.
IEEE Computer Society.

[45] J. M. McCune, A. Perrig, and M. K. Reiter. Bump in the Ether: A frame-
work for securing sensitive user input. In USENIX Annual Technical Con-
ference, pages 185–198, Boston, MA, USA, 2006. USENIX Association.

[46] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for passwords and
other sensitive data. In Network and Distributed System Security Sympo-
sium (NDSS’09), San Diego, CA, USA, Feb. 2009. Internet Society (ISOC).

[47] Mobile Antivirus Researchers Association. Analyzing the crossover virus:
The first PC to Windows handheld cross-infector, 2006. http://www.

informit.com.

[48] Mobile electronic Transactions (MeT) Ltd. Personal Transaction Pro-
tocol Version 1.0 (Draft Specification), Jan. 2002. http://www.

mobiletransaction.org/.

[49] Mobile Phone Work Group. TCG mobile trusted module specification.
Specification version 1.0, Revision 6, June 26, 2008.

[50] A. Moshchuk, T. Bragin, S. D. Gribble, and H. Levy. A crawler-based
study of spyware in the web. In Network and Distributed System Security
(NDSS’06), San Diego, CA, USA, Feb. 2006. Internet Society (ISOC).

34

[51] Netcraft. Fraudsters attack two-factor authentication, July 2006. http:

//news.netcraft.com.

[52] Netcraft.com. More than 450 phishing attacks used SSL in
2005. http://news.netcraft.com/archives/2005/12/28/more_than_

450_phishing_attacks_used_ssl_in_2005.html.

[53] Netcraft.com. Phishers hack bank sites, redirect customers. News arti-
cle (Mar. 27, 2006). http://news.netcraft.com/archives/2006/03/27/
phishers_hack_bank_sites_redirect_customers.html.

[54] B. O’Connor. Greater than 1: Defeating “strong” authentication in web
applications. In Defcon 15, Las Vegas, NV, USA, Aug. 2007.

[55] A. Oprea, D. Balfanz, G. Durfee, and D. Smetters. Securing a remote termi-
nal application with a mobile trusted device. In Annual Computer Security
Applications Conference (ACSAC’04), pages 438–447, Tucson, AZ, USA,
Dec. 2004. IEEE Computer Society.

[56] B. Parno, C. Kuo, and A. Perrig. Phoolproof phishing prevention. In
Financial Cryptography and Data Security (FC’06), volume 4107 of LNCS,
pages 1–19, Anguilla, British West Indies, Feb. 2006. Springer-Verlag.

[57] A. Perrig and D. Song. Hash visualization: A new technique to improve
real-world security. In Workshop on Cryptographic Techniques and E-
Commerce (CrypTEC’99), pages 131–138, Hong Kong, July 1999.

[58] B. Pinkas and T. Sander. Securing passwords against dictionary attacks. In
ACM Computer and Communications Security (CCS’02), pages 161–170,
Washington, DC, USA, Nov. 2002. ACM Press.

[59] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your
iFRAMEs point to us. In USENIX Security Symposium, pages 1–15, San
Jose, CA, USA, July 2008. USENIX Association.

[60] Redmondmag.com. Coreflood trojan stole 500G of personal financial data.
News article (Aug. 7, 2008). http://redmondmag.com/news/article.

asp?editorialsid=10111.

[61] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. Mitchell. Stronger
password authentication using browser extensions. In USENIX Security
Symposium, pages 17–32, Baltimore, MD, USA, 2005. USENIX Associa-
tion.

[62] V. Roth, K. Richter, and R. Freidinger. A PIN-entry method resilient
against shoulder surfing. In ACM Computer and communications Security
(CCS’04), pages 236–245, Washington, DC, USA, Oct. 2004. ACM Press.

35

[63] A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P. Seifert. Secrecy Anal-
ysis in Protocol Composition Logic. Formal Logical Methods for System
Security and Correctness, IOS Press, 2008. Volume based on presentations
at Summer School Marktoberdorf, Germany, 2007.

[64] M. Shackman. Platform security - a technical overview, Nov. 2006. Sym-
bian Developer Network article. http://developer.symbian.com/main/
downloads/papers/plat_sec_tech_overview/platform_security_a_

technical_overview.pdf.

[65] SpamFo.co.uk. Has MasterCard gone on a phishing trip, leaving the back
door wide open. News article (July 19, 2004). http://spamfo.co.uk/

2004/07.

[66] Symantec Security Response. Banking in silence. News article (Jan. 14,
2008). http://www.securityfocus.com/blogs/485.

[67] The Sydney Morning Herald. NZ bank adds security online. News article
(Nov. 8, 2004). http://www.smh.com.au/.

[68] TheRegister.com. Phishing attack targets one-time passwords. News article
(Oct. 12, 2005). http://www.theregister.co.uk/2005/10/12/outlaw_

phishing/.

[69] E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of secure pairing
methods. In Workshop on Usable Security (USEC’07), pages 307–324,
Lowlands, Scarborough, Trinidad and Tobago, Feb. 2007. Springer-Verlag.

[70] P. van Oorschot. Message authentication by integrity with public corrob-
oration. In New Security Paradigms Workshop, (NSPW’05), pages 57–63,
Lake Arrowhead, CA, USA, Sept. 2005. ACM Press.

[71] P. van Oorschot and S. Stubblebine. On countering online dictionary at-
tacks with login histories and humans-in-the-loop. ACM Transactions on
Information and System Security (TISSEC), 9(3):235–258, Aug. 2006.

[72] WashingtonPost.com. Hackers zero in on online stock accounts. News
article (Oct. 24, 2006).

[73] T. Weigold, T. Kramp, R. Hermann, F. Hörin, P. Buhle, and M. Baentsch.
The Zurich trusted information channel – an efficient defence against man-
in-the-middle and malicious software attacks. In Conference on Trusted
Computing and Trust in Information Technologies (TRUST’08), pages 75–
91, Villach, Austria, Mar. 2008. Springer-Verlag.

[74] I. Wiener. Sample SecurID token emulator with token secret im-
port, 2000. BugTraq post. http://archives.neohapsis.com/archives/
bugtraq/2000-12/0428.html.

36

[75] M. Wu, S. Garfinkel, and R. Miller. Secure web authentication with mobile
phones. In DIMACS Workshop on Usable Privacy and Security Systems,
Piscataway, NJ, USA, July 2004.

[76] G. G. Xie, C. E. Irvine, and T. E. Levin. Quantifying effect of network la-
tency and clock drift on time-driven key sequencing. In IEEE International
Conference on Distributed Computing Systems Workshops (ICDCSW’02),
pages 35–42, Vienna, Austria, July 2002. IEEE Computer Society.

[77] Y. Zhang, S. Egelman, L. F. Cranor, and J. Hong. Phinding phish: An
evaluation of anti-phishing toolbars. In Network and Distributed System
Security Symposium (NDSS’07), San Diego, CA, USA, Feb. 2007. Internet
Society (ISOC).

A AVISPA Test Code

Protocol: MP-Auth

As noted in Section 3, we include here results on our AVISPA [4] analysis of an
idealized version (see below) of the MP-Auth protocol from Section 2.

Protocol Purpose

Authentication and key exchange between a mobile device M and a remote
server S. More specifically, goals are (see Section 2, Table 1 for notation):

• M and S achieve mutual authentication (using P and ES)

• M and S establish a secret (symmetric) session key for later use in en-
cryption

How We Tested Using AVISPA

We used AVISPA Web interface available at http://www.avispa-project.

org/web-interface/. We copied the HLPSL code (below) to the Web inter-
face, and ran the relevant tests. Applicable tests to MP-Auth are: On the Fly
Model Checker (OFMC), Constraint Logic-based Attack Searcher (CL-AtSe),
and SAT-based Model Checker (SATMC). The Tree Automata based on Auto-
matic Approximations for Analysis of Security Protocols (TA4SP) results are
omitted from the AVISPA output below as the TA4SP back-end was not sup-
ported for our setup.

Idealization of MP-Auth

In MP-Auth, the browser B acts like a relaying party between M and S during
the authentication and key exchange phase. Therefore B was removed from our
idealized HLPSL model (and thus also, the SSL encryption between B and S).

37

Also, the human user U was merged with M , as U only provides the password
P to M . Hence the idealized MP-Auth is a two-party protocol, which is much
simpler to analyze for AVISPA back-end protocol analyzers. As we have omit-
ted party B, session ID verification is not required. The transaction integrity
confirmation messages use KMS established in the authentication phase. The
confirmation messages have not been included in our model; we assume the
secrecy of KMS implicitly protects those messages. The idealized version of
MP-Auth is given below.

M <- S: Rs

M -> S: {Rm}_Es.{f(Rs).M.P}_Kms, where Kms = f(Rs.Rm)

M <- S: {f(Rm)}_Kms

Results of the AVISPA Tests

No attacks have been reported by AVISPA on the idealized protocol. Results
from the AVISPA back-end protocol analyzers are given below.

OFMC.

% OFMC

% Version of 2006/02/13

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

/home/avispa/web-interface-computation/./tempdir/workfileP2NEkh.if

GOAL

as_specified

BACKEND

OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 2.58s

visitedNodes: 798 nodes

depth: 10 plies

CL-AtSe.

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

TYPED_MODEL

PROTOCOL

/home/avispa/web-interface-computation/./tempdir/workfileP2NEkh.if

GOAL

As Specified

38

BACKEND

CL-AtSe

STATISTICS

Analysed : 5548 states

Reachable : 3529 states

Translation: 0.01 seconds

Computation: 0.14 seconds

SATMC.

SUMMARY

SAFE

DETAILS

STRONGLY_TYPED_MODEL

BOUNDED_NUMBER_OF_SESSIONS

BOUNDED_SEARCH_DEPTH

BOUNDED_MESSAGE_DEPTH

PROTOCOL

workfileP2NEkh.if

GOAL

%% see the HLPSL specification..

BACKEND

SATMC

COMMENTS

STATISTICS

attackFound false boolean

upperBoundReached true boolean

graphLeveledOff 4 steps

satSolver zchaff solver

maxStepsNumber 11 steps

stepsNumber 5 steps

atomsNumber 1196 atoms

clausesNumber 5705 clauses

encodingTime 1.12 seconds

solvingTime 0.1 seconds

if2sateCompilationTime 0.21 seconds

ATTACK TRACE

%% no attacks have been found..

HLPSL Specification

role mobile (M, S: agent,

Es: public_key,

F, KeyGen: hash_func,

P: text,

SND, RCV: channel (dy)) played_by M def=

local State : nat,

Rm, Rs: text,

Kms: message

39

init State := 1

transition

2. State = 1 /\ RCV(Rs’) =|>

State’:= 3 /\ Rm’ := new()

/\ Kms’:= KeyGen(Rs’.Rm’)

/\ SND({Rm’}_Es.{F(Rs’).M.P}_Kms’)

/\ witness(M,S,rm,Rm’)

/\ secret(Kms’, sec_kms1, {M,S})

3. State = 3 /\ RCV({F(Rm)}_Kms) =|>

State’:= 5 /\ request(M,S,rs,Rs)

end role

%%

role server(S: agent,

Es: public_key,

F, KeyGen: hash_func,

Agents: (agent.text) set,

SND, RCV: channel (dy)) played_by S def=

local State : nat,

Rm, Rs, P: text,

Kms: message,

M: agent

init State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’:= 2 /\ Rs’ := new()

/\ SND(Rs’)

2. State = 2 /\ RCV({Rm’}_Es.{F(Rs).M’.P’}_KeyGen(Rs.Rm’))

/\ in(M’.P’, Agents) =|>

State’:= 4 /\ Kms’ := KeyGen(Rs.Rm’)

/\ SND({F(Rm’)}_Kms’)

/\ secret(Kms’, sec_kms2, {M’,S})

/\ request(S,M’,rm,Rm’)

/\ witness(S,M’,rs,Rs)

end role

%%

role session(M, S: agent,

Es: public_key,

F, KeyGen: hash_func,

P: text,

40

Agents: (agent.text) set) def=

local SS, RS, SM, RM: channel (dy)

composition

mobile (M,S,Es,F,KeyGen,P,SM,RM)

/\ server (S,Es,F,KeyGen,Agents,SS,RS)

end role

%%

role environment() def=

local Agents: (agent.text) set

const m, s: agent,

es: public_key,

f, keygen: hash_func,

rm, rs, sec_kms1, sec_kms2 : protocol_id,

pm, pi: text

init Agents := {m.pm, i.pi}

intruder_knowledge = {m,s,f,keygen,pi,es,rs}

composition

session(m,s,es,f,keygen,pm,Agents)

/\ session(m,s,es,f,keygen,pm,Agents)

/\ session(i,s,es,f,keygen,pi,Agents)

end role

%%

goal

secrecy_of sec_kms1, sec_kms2

authentication_on rm

authentication_on rs

end goal

%%

environment()

41

B A PCL Proof Sketch for MP-Auth

In this section we discuss a proof sketch of MP-Auth using the Protocol Com-
position Logic (PCL) [15, 29, 63]. We assume that readers are familiar with
the PCL proof system. See Appendix B.5 for a quick reference to frequently-
used PCL axioms, rules, and definitions. We first outline the PCL setup for
MP-Auth, and then provide the PCL analysis of mutual authentication and key
secrecy.

B.1 PCL Setup

For the proof here, we use the following simplified version of MP-Auth. As the
browser in MP-Auth only forwards messages between the web server and per-
sonal device, we remove the browser’s role here. For simplification of the proof,
we also replace {f(RM)}KMS

with [1]KMS
(i.e., now the proof of ownership of

the session key KMS is provided through a MAC instead of an encryption).
Also, to reduce confusion between PCL roles (generally upper case) and vari-
ables (generally lower case), we make necessary case transformation here.

M ← S : IDS .rs

M → S : {rm}ES
.{f(rs).IDU .P}kms

, where kms = f(rs.rm)

M ← S : [1]kms

This simplified protocol is defined by ‘roles’ {Init, Resp} in Fig. 9, written
using the protocol programming language as used in PCL. Each role specifies
a sequence of actions to be executed by an honest principal in MP-Auth. An
honest principal can execute one or more copies of its own role concurrently.
Note that, roles are asymmetric in MP-Auth; for example, the server and client
authenticate each other using a public key and a password, respectively, and
an honest server does not impersonate a client. Here, a thread X refers to a
principal X̂ executing a particular instance of a role. Actions inside a thread
include nonce generation, encryption, hash calculation, network communication
and pattern matching (e.g., decryption). Each thread contains one or more
‘basic sequences.’ A basic sequence is a series of actions excluding any blocking
actions (e.g., receive) except as the first action. Each role in MP-Auth consists of
two basic sequences. PCL proofs use modal formulas of the form ψ[P]Xϕ which
informally means that if X starts from a state where ψ holds, and executes the
program P , then the resulting state is guaranteed to hold the security property
ϕ, irrespective of the actions of a Dolev-Yao attacker and other honest principals.
Let idp := 〈M̂.ID, M̂ .P 〉 (i.e., the userid-password pair of the user operating
the mobile device M̂), and ids := Ŝ.ID (the server’s ID).

42

Init =(M̂, S, idp, ids) [

new rs;

send Ŝ.M̂ .ids.rs;

receive M̂.Ŝ.t;

match t/〈encrm, encidp〉;

rm := pkdec encrm, Ŝ;

kms := hash rs.rm;

decval := symdec encidp, kms;

match decval/〈hrs′, idp〉;

match idp/〈M̂.ID, M̂ .P 〉;

hrs := hash rs;

match hrs′/hrs;

mac1 := hash 1, kms;

send Ŝ.M̂ .mac1;

]S

Resp =(M, idp) [

receive Ŝ.M̂ .ids.rs;

new rm;

encrm := pkcnc rm, Ŝ;

hrs := hash rs;

kms := hash rs.rm;

symt := hrs.idp;

encidp := symenc symt, kms;

send M̂.Ŝ.encrm.encidp;

receive Ŝ.M̂ .mac1;

verifyhash mac1, 1, kms;

]M

Figure 9: MP-Auth server (Init) and client (Resp) programs

43

Let K = {k̄
Ŝ
}, the private key of server Ŝ. The public and private key pair

for Ŝ is (k
Ŝ
, k̄

Ŝ
). We use the following abbreviations for MP-Auth messages (see

Fig. 9 for terms definitions):

msg1 := Ŝ.M̂ .ids.rs

msg2 := M̂.Ŝ.encrm.encidp

msg3 := Ŝ.M̂ .mac1

Invariants. The ‘honesty’ rule in PCL is “an invariance rule for proving prop-
erties about the actions of principals that executes roles of a protocol” [15]. An
honest principal in PCL is the one who follows one or more roles of the protocol.
The honesty rule is used to reason in a deductible manner about the actions
of the other party in the protocol. Formulas derived by the application of this
rule are called ‘invariants’. We use the following invariants of MP-Auth for our
authentication and secrecy proofs.17

Γmp1 Honest(Ŝ) ∧ Send(S,msg) ⊃ ¬Contains(msg, idp)

Γmp2 Honest(M̂) ⊃ PkEnc(M, rm, kŜ
) ⊃

(Receive(M,msg1) < New(M, rm) < PkEnc(M, rm, kŜ
) <

Send(M,msg2))

Γmp3 Honest(M̂) ∧ Receive(M,msg1) ∧ Send(M,msg2) ⊃
FirstSend(M, rm,msg2)

Γmp4 Honest(M̂) ∧ Send(M,msg) ⊃
¬Contains(msg,HASH [kms](1))

Γmp5 Honest(Ŝ) ∧ New(S, rs) ∧ Send(S,msg1) ⊃
FirstSend(S, rs,msg1)

Γmp1 states that the server Ŝ does not send any message containing idp.
This essentially prohibits a server to execute the role of a client (mobile device).
Otherwise, Ŝ could impersonate M̂ which is false given that Ŝ is honest. Γmp4

implies that an honest M̂ does not send any message containing HASH [kms](1),
although M̂ also knows kms. Only the server Ŝ sends such a term to prove the
knowledge of kms.

Secrecy of password. As assumed in MP-Auth, the userid-password pair
idp is unique for each user, and P is a shared secret between M and S. This
assumption is formalized as follows.

φsecp ::= Honest(M̂) ∧ Honest(Ŝ) ∧ Has(Ẑ, idp) ⊃ (Ẑ = M̂ ∨ Ẑ = Ŝ)

Additionally, we now show that idp is not sent in the clear by any role (Init,
Resp) of MP-Auth. The proof is straightforward: Ŝ does not send any mes-
sage with idp, and M̂ sends out idp only encrypted under kms. Assume that

17For the application of the honesty rule, the invariants must be preserved by all the basic
sequences in MP-Auth. These proofs are straightforward, and thus we omit them here.

44

K′ = {kms}, and kms is the secret session key shared between M̂ and Ŝ (see
Section B.3).

SAF2 SafeMsg(Esym[kms](hrs.idp), idp,K
′) (12)

12,P1, S1, NET3 SafeNet(idp,K′)[Resp]M SendsSafeMsg(M, idp,K′)
(13)

Γmp1,SAF0 SafeNet(idp,K′)[Init]S SendsSafeMsg(S, idp,K′) (14)

From 13, 14, and the application of the NET rule and the POS axiom, we
conclude that SafeNet(idp,K′) is always true, and Honest(M̂) ∧ Honest(Ŝ) ∧
Has(Ẑ, idp) ⊃ (Ẑ = M̂ ∨ Ẑ = Ŝ).

Security Properties of MP-Auth. MP-Auth requires the following authen-
tication and secrecy properties to be satisfied by any successful protocol run.

1. Server-side authentication. At the end of a protocol run, both parties
must agree on each other’s identity, protocol completion status, and the
secret session key generated from exchanged nonces. The authentication
property of MP-Auth is formulated in terms of matching conversations [8].
The basic idea is that on execution of the server role (Init), we prove
the existence of the intended client role (Resp) with a corresponding
view of the messages exchanged. Matching conversations for server Ŝ and
corresponding client M̂ is formulated as follows:

φauth,Ŝ ::= Honest(M̂) ∧ Honest(Ŝ) ⊃ ∃M.Has(M,kms)∧

((Send(S,msg1) < Receive(M,msg1))∧

(Receive(M,msg1) < Send(M,msg2))∧

(Send(M,msg2) < Receive(S,msg2))∧

(Receive(S,msg2) < Send(S,msg3)))

Note that the server receives no acknowledgement for the last message
sent; i.e., the corresponding receive action is not a part of the authentica-
tion guarantee.

2. Secrecy of kms. The secret session key Kms must not be known to any
principal other than the server and client. This secrecy property of MP-
Auth is formulated as follows:

φseckms ::= Honest(M̂) ∧ Honest(Ŝ) ∧ Has(Ẑ, kms) ⊃ (Ẑ = M̂ ∨ Ẑ = Ŝ)

3. Client-side authentication. In MP-Auth, the client and server roles are
not symmetric; i.e., the server is authenticated by showing the proof of
ownership of the decryption key corresponding to the public key as used
by the client role. On the other hand, the client prove its identity to the
server by showing the knowledge of the shared secret P . Thus the client’s
view of mutual authentication is different than that of the server. For

45

client M̂ , communicating with server Ŝ, matching conversations is defined
as follows.

φ
auth,M̂

::= Honest(M̂) ∧ Honest(Ŝ) ⊃ ∃S.Has(S, kms)∧

((Send(S,msg1) < Receive(M,msg1))∧

(Receive(M,msg1) < Send(M,msg2))∧

(Send(M,msg2) < Receive(S,msg2))∧

(Receive(S,msg2) < Send(S,msg3))∧

(Send(S,msg3) < Receive(M,msg3)))

B.2 Server-side authentication

We use the secrecy of password (φsecp, Section B.1), protocol invariants

Γmp1,Γmp2 and Γmp3, to argue that there must be a thread of client M̂ which
must have performed certain actions corresponding to the client role Resp (see
Fig. 9). Properties of nonces and encryption are also used. The proof sketch
is summarized by the following steps below. Each step consists of three com-
ponents: (i) the axioms, invariants and/or previous steps used, (ii) actions per-
formed, and (iii) the resulting predicate. For example, the first of the proof
below uses axioms AA1, P1, AA4 (see Section B.5) to establish that the
server performed certain actions in sequence.

46

AA1, P1, AA4 [Init]S Send(S, msg1) <Receive(S, msg2) <

Send(S, msg3)

(15)

AA1 [receive M̂.Ŝ.t]S Receive(S, M̂.Ŝ.t) (16)

AR1 Receive(S, M̂.Ŝ.t)[match t/〈encrm, encidp〉]S

Receive(S, M̂.Ŝ.encrm.encidp)

(17)

REC Receive(S,M̂.Ŝ.encrm.encidp) ⊃

Has(S, M̂.Ŝ.encrm.encidp)

(18)

PROJ Has(S,M̂.Ŝ.encrm.encidp) ⊃

Has(S, encrm) ∧ Has(S, encidp)

(19)

AR3 Has(S, encrm) [rm :=pkdec encrm, Ŝ;]S

Has(S, E[k
Ŝ
](rm))

(20)

DEC Has(S, E[k
Ŝ
](rm)) ⊃ Has(S, rm) (21)

16, 17, 18, 19, 20, 21, S1, P1 [Init]S Has(S, rm) (22)

AA1 [new rs]S New(S, rs) (23)

ORIG New(S, rs) ⊃ Has(S, rs) (24)

23, 24, S1, P1 [Init]S Has(S, rs) (25)

HASH0’ [kms := hash rs.rm]S Has(S, kms) (26)

AR3 Has(S, encidp) [decval := symdec encidp, kms;]S

Has(S, Esym[kms](decval))

(27)

AR1 Has(S, Esym[kms](decval))

[match decval/〈hrs′, idp〉;]SHas(S, Esym[kms](hrs′.idp))

(28)

ENC4 SymDec(S, Esym[kms](hrs′.idp), kms) ⊃

∃Y.SymEnc(Y, hrs′.idp, kms)

(29)

ENC3 SymEnc(Y, hrs′.idp, kms) ⊃

Has(Y, hrs′.idp) ∧ Has(Y, kms)

(30)

PROJ Has(Y, hrs′.idp) ⊃ Has(Y, hrs′) ∧ Has(Y, idp) (31)

31, φsecp Has(Y, idp) ⊃ Ŷ = M̂ ∨ Ŷ = Ŝ (32)

Γmp1, 27, 28, 29, 30, 31, 32, S1, P1 [Init]S ∃Y.Has(Y, idp) ⊃ Ŷ = M̂ (33)

Γmp2, 33 [Init]S ∃M.(Receive(M, msg1) < Send(M, msg2)) (34)

AN3, FS1, S1, P1 [Init]S FirstSend(S, rs, msg1) (35)

33, 35, FS2 [Init]S Receive(M, msg1) ∧ M̂ 6= Ŝ ⊃

Send(S, msg1) < Receive(M, msg1)

(36)

AA1, S1, P1 [Init]S Receive(S, msg2) (37)

Γmp3, 37, FS2 [Init]S Honest(M̂) ∧ M̂ 6= Ŝ ∧ Receive(M, msg1)∧

Send(M, msg2) ⊃ Send(M, msg2) < Receive(S, msg2)

(38)

15, 34, 36, 38 [Init]S Honest(M̂) ∧ M̂ 6= Ŝ ⊃ φ
auth,Ŝ

(39)

47

B.3 Secrecy of session key

We show that honest principals do not perform any actions that compromise
the secrecy of session key kms through induction on the basic protocol sequences
(see below for definitions of Resp1,Resp2, Init1, and Init2). Each induction
step informally states that if kms has not already been compromised at the
beginning of a basic sequence (i.e., SafeNet(kms,K) is true), then the actions
performed in that basic sequence by a thread X do not compromise kms (i.e.,
SendsSafeMsg(X, kms,K) is true). For the basic sequence Resp2, the proof is
straightforward: there is no send action. For Init2, the terms sent out by Ŝ do
not contain kms in the clear (kms is used as a MAC key).

Let [Resp2]M ′ : [receive Ŝ′.M̂ ′.mac1′;

verifyhash mac1′, 1, k′ms;]M ′

S1, NET1 SafeNet(kms,K)[Resp2]M ′ SafeMsg(Ŝ′.M̂ ′.mac1′, kms,K) (40)

40,NET2 SafeNet(kms,K)[Resp2]M ′ SendsSafeMsg(M ′, kms,K) (41)

Let [Init2]S′ : [receive M̂ ′.Ŝ′.t′;

match t′/〈encrm′, encidp′〉;

r′m := pkdec encrm′, Ŝ′;

k′ms := hash r′s.r
′

m;

decval′ := symdec encidp′, k′ms;

match decval′/〈hrs′′, idp′〉;

match idp′/〈M̂ ′.ID, M̂ ′.P 〉;

hrs′ := hash r′s;

match hrs′′/hrs′;

mac1′ := hash 1, k′ms;

send Ŝ′.M̂ ′.mac1′;]S′

SAF5 SafeMsg(HASH [k′ms](1), kms,K) (42)

42,S1, NET3 SafeNet(kms,K)[Init2]S′ SendsSafeMsg(S′, kms,K) (43)

The session key kms is computed from two nonces, rs and rm, where rs is sent
in the clear. Thus the secrecy of kms lies on the secrecy of rm. For the basic
sequences that send out nonces, we need to show that the nonces are not equal
to rm, or that rm is encrypted under the public key of Ŝ. These arguments are
formulated as Φ := Φ1

rm
∧ Φ2

rm
.

Φ1
rm

: ∀M, Ẑ.New(M, rm) ∧ PkEnc(M, rm, kẐ
) ⊃ Ẑ = Ŝ

Φ2
rm

: ∀M, New(M, rm) ∧ Send(M,msg) ⊃ ¬ContainsOpen(msg, rm)

48

The predicate ContainsOpen(m, a) asserts that a can be obtained from m (di-
rectly or a series of unpairings only) without any decryption. Φ1

rm
and Φ2

rm
can

be established from invariant Γmp2: from thread M ’s point of view, it knows
that it has freshly generated the nonce rm, and has only sent rm out encrypted
with only principal Ŝ’s public key.

Let [Resp1]M ′ : [receive Ŝ′.M̂ ′.ids′.r′s; new r′m;

encrm′ := pkcnc r′m, Ŝ
′;

hrs′ := hash r′s; k
′

ms := hash r′s.r
′

m;

symt′ := hrs′.idp′;

encidp′ := symenc symt′, k′ms;

send M̂ ′.Ŝ′.encrm′.encidp′;]M ′

Case : r′m 6= rm (44)

S1, SAF3 [Resp1]M ′ SafeMsg(Epk[Ŝ′](r′m), rm,K) (45)

45,NET3 SafeNet(rm,K)[Resp1]M ′ SendsSafeMsg(M ′, rm,K) (46)

Case : r′m = rm (47)

S1, P1 [Resp1]M ′ PkEnc(M ′, rm, kŜ′) (48)

48,Φ1
rm

[Resp1]M ′ Ŝ′ = Ŝ (49)

48, 49,SAF3 [Resp1]M ′ SafeMsg(Epk[Ŝ](rm), rm,K) (50)

50,NET3 SafeNet(rm,K)[Resp1]M ′ SendsSafeMsg(M ′, rm,K) (51)

Let [Init1]S′ : [new r′s;

send Ŝ′.M̂ ′.ids′.r′s;]S′

Φ2
rm

[Init1]S′ r′s 6= rm (52)

52,SAF0 [Init1]S′ SafeMsg(Ŝ′.M̂ ′.r′s, rm,K) (53)

53,NET3 SafeNet(rm,K)[Init1]S′ SendsSafeMsg(S′, rm,K) (54)

As kms is computed from rm and rs, we can say SafeNet(rm,K) ⊃
SafeNet(kms,K). Thus, from 41, 43, 46, 51, 54 and the application of the
NET rule and the POS axiom, we conclude that SafeNet(kms,K) is always
true, and Φ ∧ Honest(M̂) ∧ Honest(Ŝ) ∧ Has(Ẑ, kms) ⊃ (Ẑ = M̂ ∨ Ẑ = Ŝ).

B.4 Client-side authentication

We use protocol invariants Γmp4 and Γmp5, secrecy of the server’s private key,

and properties of nonces to argue that there must be a thread of server Ŝ which

49

must have performed certain actions corresponding to the server role Init (see
Fig. 9). The proof sketch is summarized by the following steps below.

AA1, P1, AA4 [Resp]M Receive(M, msg1) <

Send(M, msg2) < Receive(M, msg3)

(55)

AA1 [receive Ŝ.M̂ .mac1]M Receive(M, Ŝ.M̂.mac1) (56)

56, S1, P1 [Resp]M Receive(M, Ŝ.M̂.mac1) (57)

57, HASH3’ [Resp]M∧Honest(M̂) ⊃ ∃X.Computes(X, HASH[kms](1))∧

Send(X, msg) ∧ Contains(msg, HASH[kms](1))

(58)

57, 58 [Resp]M ∧ Honest(M̂) ⊃ ∃X.(Receive(M, msg3) < Send(X, msg3))
(59)

HASH2 [verifyhash mac1, 1, kms]M mac1 = HASH[kms](1) (60)

60, S1, P1 [Resp]M mac1 = HASH[kms](1) (61)

61, Γmp4,SEC, DEC [Resp]M∧Honest(Ŝ) ⊃ ∃X.((Send(X, msg3) < Receive(X, msg2))

∧ PkDec(X, E[k
Ŝ
](rm), k̄

Ŝ
)) ⊃ (X̂ = Ŝ ∧ Has(S, rm))

(62)

S1, P1, AN3, FS1 [Resp]M FirstSend(M, rm, msg2) (63)

63,FS2 [Resp]M Receive(S, msg2) ∧ M̂ 6= Ŝ ⊃

Send(M, msg2) < Receive(S, msg2)

(64)

Γmp5, AA1, FS2 [Resp]M Receive(M, msg1) ∧ M̂ 6= Ŝ ⊃

Send(S, msg1) < Receive(M, msg1)

(65)

55, 59, 62, 64, 65 [Resp]M ∧ Honest(S) ∧ M̂ 6= Ŝ ⊃ φauth,M (66)

B.5 Frequently-used PCL Axioms, Rules, and Definitions

in MP-Auth

The PCL axioms and rules that we use here have been proposed previously [15,
29, 63, 36]. Some of these axioms are natural logical assumptions (also known
as first order logical axioms, e.g., creation of a nonce implies possession of that
nonce). Others are ‘idealized’ cryptographic axioms which provide formal logic
equivalent of standard cryptography. (Note that, in reality, most cryptographic
primitives do not achieve idealized cryptographic functionality.) In the axioms
here, a denotes an action (e.g., send, receive, new, pkenc), and a denotes the
corresponding predicate in PCL. Axiom AA4 states that after thread X exe-
cutes actions a, ..., b in a sequence, the action predicates a, ..., b are temporarily
ordered in the corresponding sequence. Axiom SEC states that if a principal X̂
is honest, and a thread Y of another principal Ŷ can decrypt a term encrypted
with the public key of X̂ then principals X̂ and Ŷ must be the same (∧ is
logical conjunction and ⊃ can be read as ‘implies’). We introduce a new axiom
HASH0’ which refers to the fact that if principal X computes the hash of a
value then X also possesses the computed hash.

50

AA1 φ[a]X a

AA4 φ[a; ...; b]X a < ... < b

AN3 φ[new x]X Fresh(X, x)

REC Receive(X, x) ⊃ Has(X, x)
ENC Has(X, x) ∧ Has(X, K) ⊃ Has(X, E[K](x)
PROJ Has(X, x.y) ⊃ Has(X, x) ∧ Has(X, y)
DEC Has(X, E[K](x)) ∧ Has(X, K) ⊃ Has(X, x)

AR1 a(x)[match q(x)/q(t)]X a(t)
AR3 a(x)[y := dec x, K]X a(E[K](y))

SEC Honext(X̂) ∧ Decrypt(Y, E[k
X̂

](x)) ⊃ (Ŷ = X̂)

G4
φ

θ[P]Xφ

S1
φ1[P]Xφ2 φ2[P ′]Xφ3

φ1[PP ′]Xφ3

P1 Persist(X, t)[a]X Persist(X, t) for Persist ∈ {Has, Send, Receive}

FS1 Fresh(X, t)[send t′]X FirstSend(X, t, t′), where t ⊆ t′

FS2 FirstSend(X, t, t′) ∧ a(Y, t′′) ⊃ Send(X, t) < a(Y, t′′), where X 6=
Y and t ⊆ t′′

ENC3 Enc(X, m, k) ⊃ Has(X, k) ∧ Has(X, m), where Enc ∈ {SymEnc, PkEnc}
PENC4 PkDec(X, E[k](m), k̄) ⊃ ∃Y.PkEnc(Y, m, k)
ENC4 SymDec(X, Esym[k](m), k) ⊃ ∃Y.SymEnc(Y, m, k)

HASH3’ Receive(X, HASH[k](x)) ⊃
∃Y.Computes(Y, HASH[k](x)) ∧ Send(Y, m) ∧ Contains(m, HASH[k](x))

HASH2 φ[verifyhash m′, m, k]X m′ = HASH[k](m)
HASH0’ Computes(X, HASH(m)) ⊃ Has(X, HASH(m))

SAF0 ¬SafeMsg(s, s,K)∧SafeMsg(x, s,K), where x is an atomic term, and x 6= s
SAF2 SafeMsg(Esym[k](m), s,K) ≡ SafeMsg(m, s,K) ∨ k ∈ K
SAF3 SafeMsg(Epk [k](m), s,K) ≡ SafeMsg(m, s,K) ∨ k̄ ∈ K
SAF5 SafeMsg(HASH[k](m), s,K)

SendsSafeMsg(X, s,K) ≡ ∀m.(Send(X, m) ⊃ SafeMsg(m, s,K))
SafeNet(s,K) ≡ ∀X.SendsSafeMsg(X, s,K)

NET1 SafeNet(s,K)[receive m]X SafeMsg(m, s,K)
NET2 SendsSafeMsg(X, s,K)[a]X SendsSafeMsg(X, s,K), where a is not a send

NET3 SendsSafeMsg(X, s,K)[send m]X SafeMsg(m, s,K) ⊃
SendsSafeMsg(X, s,K)

POS SafeNet(s,K) ∧ Has(X, m) ∧ ¬SafeMsg(m, s,K) ⊃ ∃k ∈ K.Has(X, k) ∨
New(X, s)

51

