Passwords for both Mobile and Desktop Computers:
ObPwd for Firefox and Android*

Mohammad Mannan P.C. van Oorschot

Concordia Institute for School of Computer Science
Information Systems Engineering Carleton University

Concordia University Ottawa, Canada

Montreal, Canada

Abstract

Many users now access password-protected accounts and websites alternately from desktop
machines, and mobile devices (e.g., smartphones, tablets). The input mechanisms of the mobile
devices are often miniature physical or virtual on-screen keyboards, posing challenges for users
trying to type passwords with mixed-case and special-characters expected by websites and more
easily entered on desktop keyboards. We begin with a review of these challenges and existing
proposals addressing cross-device password entry, including some password managers. We then
bring the issues into focus with detailed discussion of the interoperation challenges, and imple-
mentation details, and interface details of the object-based password “ObPwd” mechanism, as
implemented for the Android platform, plus compatible browser-based and stand-alone imple-
mentations for desktop environments. ObPwd generates a password from a user-selected digital
object (e.g., image), does not require changes to server-side software, and avoids the text-input
challenges of mobile devices. We also briefly evaluate ObPwd using a recently proposed evalu-
ation framework for password authentication schemes. A major goal is to increase attention to
the cross-device password authentication problem.

1 Introduction and Motivation

We all wish passwords would go away. Their faults are many, and well-documented elsewhere.
However, for the present time, the Internet world continues to have a deep investment in them.
Millions of websites continue to demand passwords.

Almost all users with a few years of experience are familiar with the task of typing passwords on
full-size Qwerty keyboards. For many accounts and websites, users are encouraged or required to
choose passwords with mixed-case letters, digits, and special characters. (How such policies affect
the overall security and usability requires an entirely separate discussion.) In recent years, the flood
of new devices in the marketplace has included smartphones, tablet PCs, Internet-enabled TVs,
and game consoles. Many of these offer only a limited on-screen keyboard, e.g., touch/stylus-based,
remote control, or miniature physical keyboards. When these devices are used for web browsing,
passwords must be input to access password-protected sites. Many applications (“mobile apps”)

*July 12, 2012. Author’s copy. A version of this paper appears in USENIX ;login: 37(4):28-37, August 2012.
Contact author: mmannan@ciise.concordia.ca.

also require password input, some of which are also accessible on desktops as independent or web
applications.

The authentication task is now more complicated than when using a full-size keyboard: text
password input is more error-prone and frustrating in terms of locating the keys and entering
the characters—especially if entering special characters requires multiple keys to reach alternate
(shifted) keyboards. Such text-unfriendly input interfaces may also influence user-chosen passwords
to be even weaker than otherwise. Indeed, Jakobsson et al. [9] reported from a survey of 50
smartphone users that 88% of device passwords are digit-only. (Arguably, user-choice is influenced
by available screen-lock options and the default option presented to users.) They also reported that
46% of users enter a password once or more per day on mobile devices, and that 56% mistype a
password at least one in ten times. Users even stated that mobile-device password entry is more
annoying than lack of coverage and poor voice quality. On the other hand, a new smartphone
dynamic is underway largely due to the input problem: mobile apps often require users to enter
an app-password only once (e.g., upon installation or first run), which is then saved by the app,
and thereafter the stored password is used to authenticate the user. This is analogous to a desktop
browser permanently remembering passwords for websites. However, the general password input
problem remains, especially for browser-accessed services in mobile devices.

Others also have recognized the problem of text-password input in mobile devices. Several
graphical and image-based schemes have been proposed; e.g., Windows 8 picture password, mo-
bile Blue Moon authentication (http://mobile-blue-moon-authentication.com). Another idea as
discussed later, is a password scheme involving multiple real words [7, 8] and leveraging widely
available auto-correct and auto-suggest features on mobile devices. However, using these same
passwords becomes challenging in the desktop world if similar auto-correction functionality is un-
available. For further reading on a similar topic, i.e., discussion of need for scheme that allows
users to alternate between mobile phone and desktop keyboard see Bicakci and van Oorschot [2].

More generally, user-friendly remote authentication mechanisms custom-designed for mobile de-
vices may not find wide acceptance, as the same online services will often be accessed from multiple
devices with different input mechanisms. A major design criteria that must not be overlooked, and
which is more challenging than initially apparent, is that such authentication mechanisms must
also be suitable back on a desktop computer with a standard keyboard since users alternate access
devices. Consequently, the design of a user-friendly authentication systems must suit a wide va-
riety of devices including those with input-constrained and conventional keyboards. We consider
this challenge herein. As a specific example, we revisit a password mechanism called object-based
password (ObPwd) originally designed in the context of the desktop world, and its implementation
adopted to the mobile world.

The ObPwd mechanism constructs text-compatible passwords from digital objects such as pic-
tures, generating strong passwords without requiring that users type mixed-case or special charac-
ters (see Fig. 1 in Section 4). A previous publication [3] outlines the basic idea and detailed results
of a user study and security analysis. Our main focus here is an illustrative example, with concrete
implementation details and design choices, of one solution to this challenge of designing a password
scheme supporting password entry modes across devices with a variety of input mechanisms—to
stimulate further innovation and better solutions. In what follows, we describe the implementa-
tion of ObPwd adapted to the mobile space (on the Android platform), as well as in the desktop
PC environment. Beside the basic design, we also emphasize the domain-salted variant of ObPwd
that generates unique passwords from the same object (e.g., a picture) for different websites; see

http://mobile-blue-moon-authentication.com

Section 4. This variant is particularly interesting in terms of addressing the wide-spread password
reuse behavior among users that enables passwords leaked from low-security websites to be used in
more sensitive sites.

2 Password Entry Challenges from non-standard Keyboards

Numerous usability issues arise when conventional text passwords must be entered on mobile devices
which do not have standard physical keyboards. We review a few of these here.

Multitude of devices with different keypad layouts. No standard keyboard layout is followed across
mobile devices. Common text entry methods include (a) multi-tap: multiple letters are mapped to
the same physical key; (b) T9: text on 9 keys, a predictive text entry method allowing words to be
entered by a single keypress; (c) full Qwerty keyboard; and (d) on-screen alternate keypads. Even
different versions of devices from the same manufacturer may vary significantly in keypad layout
(e.g., Nokia E7 vs. Nokia E63). Layout across devices from different classes of the same vendor
(e.g., Nokia E vs. N series), and across devices from distinct vendors, differ sufficiently to cause
vendor lock-in for some users.

Keyboard forms. Various form factors are available, with no clear winner. Examples include:
physical keypad, touch-based, stylus, or pointer-based on-screen keypad (e.g., on the Wii game
console). Forms other than physical keypads typically lack tactile feedback during input. Some on-
screen keypads offer feedback via audio and visual channels, and vibrating the device. Interestingly,
such user-friendly feedback may also leak information to nearby attackers when these devices are
used in public places (e.g., through shoulder-surfing, or video recording [13]).

Multiple steps for keyboard shifting. In the default layout, small keypads (whether physical or
touchscreen) offer a limited number of characters. Accessing additional characters requires tapping
or pressing special keys (e.g., using shift to switch between keypad modes). Thus inputting a strong
password with mixed case letters and digits requires more keystrokes than characters in a password.

Cold weather issues and fat-fingers. Most modern touchscreens use a capacitive sensing panel which
operates by completing an electric circuit with the human body through the fingers. This hinders
providing input to these devices with gloved fingers, as common gloves are made of electrically
insulating materials. Fat fingers (“working men’s fingers”) may also hinder input precision in
mobile keypads due to small keypad size and visual interference.

3 Existing Proposals Supporting Cross-Device Password Entry

Here we mention a few of the existing proposals providing password authentication which is com-
patible across devices with varying text-input mechanisms. Security and usability problems with
passwords are well-known, and many techniques have been proposed to replace passwords alto-
gether, e.g., biometrics, graphical passwords, and security tokens; detailed surveys for these are
beyond the scope of this article. Additional discussion on proposals supporting mobile device
password entry is provided in Appendix A.

Stand-alone password managers. Password managers are becoming more popular, for reasons
including: convenient access to passwords, need to maintain numerous accounts, browser integra-
tion, and online access. Several of the existing password managers (both stand-alone applications

and web services) which support multiple devices may alleviate the password input problem to
some extent. Below we discuss two example password managers.

KeePass. KeePass (http://keepass.info) is an open source password manager for multiple desktop
platforms. It saves several website/application specific items such as the site URL, userid and
password in an encrypted database file on a user’s local PC; the encryption key is derived from
a user-chosen master password, and optionally a user-selected or randomly generated file. The
database files can additionally be locked with the user’s Windows user account. The saved pass-
words can be copied into the clipboard, and then pasted into the intended application or website. A
saved URL can be launched through the default system browser directly from the KeePass applica-
tion; the KeeFox extension for Firefox can automate password entry to the website. KeePassSync
is a KeePass plugin that offers synchronization of password databases between devices using online
storage providers (e.g., Amazon S3). The database files can also be manually transferred. Third-
party developed apps (e.g., iKeePass, KeePassDroid, and KeePassMobile for iOS, Android, and
J2ME devices respectively) enable users to access KeePass databases from mobile devices.

LastPass. LastPass (http://lastpass.com) is a free online password manager available in most major
desktop and mobile platforms. Passwords and other user data (e.g., notes, form data) are encrypted
locally using a user-chosen master password; the encrypted result is saved on the LastPass server.
LastPass and similar online password managers offer two distinct features to alleviate password
problems in general: (a) portability — all user passwords are accessible from anywhere with a
browser and Internet connection; and (b) backups — passwords are backed up without involving
the user. However, these highly appreciated features come with side-effects. For example, the
encrypted password list may be vulnerable to dictionary attacks. This vulnerability depends on the
strength of the user-chosen master password; historical experience of user-choice issues makes this
worrisome. (Some password managers facilitate generating random passwords as site passwords,
but the master password itself remains user-chosen. Solutions such as Kamouflage [4] which store
decoy passwords along with user passwords can also be adopted to frustrate dictionary attacks on
stolen encrypted password storage.) These online password managers offer an attractive target to
attackers: compromising such a server allows access to a large number of user accounts. Indeed in
May 2011, LastPass was possibly compromised in such an attack [16]. When users were forced to
reset their master password after the attack, some users were stuck as the reset process required
logging into their pre-registered email address—the password of which was also saved with LastPass.
Such account lock-out appears to be an intrinsic problem with online password managers that use
email for account recovery.

A general drawback of password manager services is the tangible privacy concern: despite assurances
that user data is stored in encrypted form, the service providers may be compelled to make user
data ‘available’ to government agencies; e.g., see the recent changes in DropBox privacy policy [6].

Karole et al. [11] conducted a usability study comparing three widely used password man-
agers: LastPass (online), KeePassMobile (phone-based), and Roboform2Go (USB-based). Overall,
LastPass was least preferred, and specifically the non-technical users in the study favored the phone-
based manager. The authors attributed this finding to the fact that users prefer control over their
passwords, rather than trusting a third party. However, they also reported that the usability of
phone-based managers is not at par with user expectations. Another study [1] on the security of
smartphone-based password manager apps reported several implementation weaknesses including
eagy verification of master password and hard-coded encryption keys.

http://keepass.info
http://lastpass.com

Browser-based password synchronization. Synchronization functionality is built into Firefox
4 (older versions can use the Sync addon), and Firefox Mobile (available on Android OS and
Maemo/Nokia N900). For example, Firefox Sync saves user bookmarks, passwords, open tabs,
form data and browsing history—for access from PCs and mobile devices. Saved content is also
accessible from iOS (iPhone, iPad, iPod) via the Firefox Home application. User data is encrypted
locally, and then stored and shared via a Mozilla hosted server; users can set up their own server
to be used with Sync (e.g., if they do not trust Mozilla with their data).

Tapsure is a Firefox Mobile addon (https://addons.mozilla.org/en-us/mobile/addon/tapsure/)
that enables users to input saved text passwords by tapping a rhythm/pattern on the phone’s
touchscreen. Users can save a password entered on a website (through usual input methods), by
tapping a personal pattern on the screen; the same password can be accessed from any sites that
use it via Tapsure. Tapsure uses Firefox’s built-in password manager for storing passwords. The
tapping pattern serves as an easy-to-use unlock password that enables access to the saved text
password. Tapsure differs from browser password managers in a subtle but important way. A
Tapsure-saved password can be accessed from any site when the specific tapping pattern is entered,
thus facilitating easier input of reused passwords. In contrast, browser password managers save
pairs of userid-password for individual sites which are made available only at the specific sites (from
the saved password list, which is optionally encrypted under a user-chosen master password).

4 Cross-platform/Cross-device ObPwd Implementations

We outline here the basic ObPwd scheme and several implementations in different platforms. The
implementation details may help understand challenges such as design and user interface issues
in cross-platform/cross-device implementations. Implementations are publicly available as an OS-
agnostic Firefox browser extension, and as stand-alone applications in Android, Microsoft Windows,
Mac OS X, and Linux. An initial Firefox extension and prototypes on other major platforms
have been well-received, and public feedback has resulted in modifications and upgrades. To our
knowledge, the technology is free of patents. ObPwd FAQ and download page is available at:
http://www.ccsl.carleton.ca/~mmannan/obpwd/.

While we explain specific implementation choices made in order to convey a concrete sense
of the functionality and interfaces available, different design choices could be made for reasons of
preference, usability and security, matching different intended contexts and use environments.

User object

Password
3| c1DSkCHeRXLV

ObPwd tool

Figure 1: ObPwd basic mechanism

The basic ObPwd mechanism. The core functionality in all ObPwd tools is to output a text
password from user-selected content; see Figure 1. The current implementations use SHA-1 to hash

https://addons.mozilla.org/en-us/mobile/addon/tapsure/
http://www.ccsl.carleton.ca/~mmannan/obpwd/

password objects. The hash output is mapped to a base-64 character set, then converted to an
alphanumeric password (default 12 characters) by known techniques [14]; for example, assuming
a local file is used as the password object, pwd = Hash2T ext(Hash(fileContent)). Up to the
first n = 100,000 bytes are used from an object; 160 bytes are required. Variants of the basic
mechanism are discussed elsewhere [3]. One of these variants, discussed later in Section 5, is the
domain-salted variant, which involves using a local file and the website domain as a salt (i.e.,
pwd = Hash2Text(Hash(URLdomain||fileContent))). This domain-salted variant is provided
by both the Firefox addon and the Android app implementations mentioned above, starting with
versions 1.0.1 and 1.0.

ObPwd Firefox extension (desktop). This extension can be activated from the browser context
menu (i.e., right-/secondary-click menu). Under the “Object-based Password (ObPwd)” menu,
several sub-menus appear (depending on the right-click context): (i) “Get ObPwd from Local File”
brings up a file dialog box for selecting a local file as a password object; (ii) “Get Unique ObPwd:
Local file + Domain” offers choosing a local file, and then the domain name of the current page
is used with the file content to generate a site-specific password; (iii) “Get ObPwd from Selected
Text” generates a password using the selected text block on the web page (if there is any selected
text string); (iv) “Get ObPwd from Image” generates a password from the selected image (i.e., the
one right-clicked on, if any); (v) “Get ObPwd from Link” generates a password from the content as
pointed by the URL right-clicked on, if any. Certain types of relatively stable HTTP and HTTPS
links are supported by default (e.g., pdf, mp3, avi, txt, jpg, zip, wav), but not several common URL
extensions (e.g., html, php, asp) which commonly host dynamic content—e.g., news page content
may change as user comments are added, precluding regeneration of the original password.

Configuration preferences support changing the default password output length (6 to 20 char-
acters, default 12) and including special characters. If a password is generated with certain prefer-
ences, the same preferences must be selected to re-create that password (irrespective of where the
password is used).

When a password object (an image, highlighted text, URL, or a local file) is selected, the
extension generates a password from the underlying content and displays the password in a dialog
box in plaintext to enable users to record it for backup in a secure way. If the OK button is clicked,
the password is copied to the system clipboard allowing pasting anywhere by the user. Note that
by default, for security and privacy reasons, Firefox clipboard data is not accessible to JavaScript
embedded on a site. The password is inserted directly into a password input box on a login page,
if the extension is activated from such a box (i.e., the context menu is brought up by right-clicking
on the password box). This auto-filling both automates the password copy-paste step, and protects
the password from shoulder-surfing.

ObPwd Android app (mobile devices). Installing the ObPwd app adds a menu item (labelled
“ObPwd”) to the “Share” menu of Gallery, the default media app for Android devices. Users can
browse their media files stored on the device and from Picasa web albums (if the user’s Google
account is linked to Picasa). When the user selects an image or video, and chooses the ObPwd app
from Gallery’s Share menu, then the user is asked if the domain of the last visited website should
be used in the password generation (i.e., whether to use the domain-salted variant). Then the
corresponding text password is displayed. The password display dialog offers two choices: “Copy
to clipboard” (which copies the password to the clipboard), and “Quit” (which quits the ObPwd
app). If copied, the password can be pasted to any password field (e.g., in websites and other apps),

without requiring typing the password.

5 Usability, Limitations and Evaluation

Discussion on usability and features of the basic ObPwd. A hybrid in-lab/at-home user
study using the ObPwd desktop extension was conducted involving 32 participants (see [3] for full
details). Participants were asked to use 11 new passwords (8 test websites and 3 real-world sites) in
a span of 7-10 days. The study reported encouraging results in terms of several usability factors.
The login success rate was more than 90% (on the first attempt) in a return-to-lab session. The
average login time was about 20 seconds—which despite being longer than text password logins
in the desktop environment, was reflected in a positive affect by participants: they reported that
they enjoyed browsing their password objects both when creating passwords and logging in. This
result is atypically positive compared to other new password proposals. Whether similar positive
results occur for other ObPwd platforms and/or implementations requires further user studies; we
presently have only anecdotal praise from users of the Android app, but these are self-selected,
technically-savvy users not representative of the general population.

The user interfaces of ObPwd tools described above differ depending on the device/environment,
reflecting hardware and software interfaces which vary significantly across these devices. Instead of
implementing a separate image/video browsing interface on Android, the implementations described
rely on the default Gallery app for object selection. This provides a familiar interface to users,
but on the down side, the implementation shortcut overloaded the “Share” menu to initiate the
ObPwd app. “Share” is an unfortunate name for this function menu, since security is defeated if
users openly share their password objects (as facilitated by several other applications in the Share
menu). Indeed, ObPwd security relies heavily on the assumption that users’ password objects
remain private, as opposed to, for example, publicly posted photos.

Some features of the ObPwd scheme may favor its adoption. Personal digital content is now
easily available on both desktop and mobile platforms. As ObPwd requires no server-side changes,
users can immediately benefit upon installing freely available implementations. ObPwd passwords
are typically as strong as system-generated passwords, with respect to guessing attacks (see [3] for
further discussion), yet the password objects are user-chosen. On the other hand, many visible
and invisible barriers exist to installing any new authentication mechanism intended to replace
passwords; widespread adoption of ObPwd, or any other alternative, is likely to occur only if
adopted by a major platform vendor or browser provider.

ObPwd is a hybrid mechanism both in terms of authentication method (part what-you-know,
part what-you-have-access-to), and input type (involving media such as image/video/music-based).
It is not a password manager in a traditional sense (i.e., does not store passwords), but empowers
users to better manage several strong passwords (as apparent from our user testing) by taking
advantage of the positive attachment users already have with their personal content.

Discussion on the ObPwd domain-salted variant. For generating ObPwd passwords, we
assume the domain-salted variant in the evaluation below (see also Section 4). This variant is
arguably the safest, and, from a user interface viewpoint, indistinguishable from that used in the
user study [3]; we note however that this variant itself and and the ObPwd Android app have
not been formally user-tested. We also assume that a single local file is used as the password
object for all websites; i.e., the password object is used as a master password from which unique,

sabili eployabili ecuri
Usability Deployability S ty
=
3
5 <
o— -
= ngq_)
28 wi g7
¥ 0 & 8 & g
>wm®ﬁ5® -
L =2 n =5 2 S =
‘D@Q.)UH"-’ Q
] o n & =5 Y 2 0 7}
) g L2 E U g o | > g
17 — & O»—«lﬂ)oa < 9
o 0 & = () A5 B EIL S ow s Q
s, 4 - - -
e §EE 58 TZE8 HE®SEEEEEE:S
A2 38 2 8 8 5 % 2 & 388 =228 82 <=2 &
¢ 7 9@d sRag SgE FHEEERIS&EEEA
25 67T 8 &L oz ;! 8 9 =1 T T T - N« S~ B N P
gwuzq@gog_‘ooo S - - - - - B o)
5 0d = 1 £ T 32 B30 4L 045454545454545451;;~~§
;_‘._‘QCGO;;:Q:.—(.A.oohccﬁﬁﬁﬁﬂﬁg.‘:
g2 5 L ¥ ¢ = 2 0wy » £ 3 3 8 8 O O O O ==
ESE2E p8 gtz s s 2d gg
oﬁggggdgsgmgmommmmmm'm'm|@ﬂ
S A ZA A B ERA<Z Az eSS gES s Eb
— KRN ~NZ
o T T e =T T <] HE I e B Y= R =) I RS SR A S S (R B
D P Db PP PBDAAAAAA®n NV NN VRN N RN A
Web passwords (desktop)) @ 06O 00 060 0 0 0 @) ® 0600
Web passwords (mobile)) [e O 0606 06 00 @) ® 0600
ObPwd (desktop) O @ @ O 00 [K J O & © @ @ @ ® 6 06 06 0 0
ObPwd (mobile) O @ @ O O @ [K J o 0 0 0 [N)

Table 1: Comparing conventional text passwords (web passwords) to ObPwd passwords.
Key: @ (offers the benefit); O (almost offers the benefit); blank (benefit not offered).

site-specific passwords are generated (cf. PwdHash [14]). This assumption is rooted in the current
practice of reusing the same or few text passwords across many accounts. We argue that access
to site-specific passwords does not allow an attacker or a malicious site operator to (easily) create
passwords for other sites since this will require guessing the file-content of the password object
(recall that pwd = Hash2Text(Hash(URLdomain||fileContent))). In effect, the best attack
remains to be the exhaustive search; note that, for an attacker not in possession of the password
object, exhaustive search requires on the order of 279 guesses in default settings (see [3] for details).
In contrast, a compromised site-specific password generated from a user-chosen master password
(e.g., pwd = Hash2T ext(Hash(URLdomain|master Password))) may reveal the master password
under offline dictionary attacks. Thus, from a security viewpoint, ObPwd is analogous to using a
random string stored on the user’s machine. However, from a usability viewpoint, in contrast to
ObPwd’s use of a user-chosen object, a random string is neither user-friendly nor recognizable to
users, and provides no positive feedback.

Comparison and usability-deployability-security evaluation. We compare and evaluate
ObPwd against basic text passwords, using the UDS (usability, deployability, security) framework
of 25 baseline properties for user authentication schemes [5]. For context, we show the UDS rating
for (web passwords, desktop) as the first row of Table 1 herein. Appendix C explains how we came
up with the ratings that appear in Table 1. We use separate table rows for implementations of each
mechanism for desktop (assuming a full-size keyboard) and mobile platforms (e.g., mobile phones
with small hardware or touch-based keypads, and tablets), as the usability ratings in particular
differ.

6 Concluding Remarks

The ubiquity of traditional keyboards in desktop systems has played an important role in the
proliferation of text passwords as the primary mode of user authentication on the Internet. For user
authentication from mobile devices, the opportunity exists to exploit device-specific features such as
multi-touch, GPS, accelerometer, and camera to improve both security and usability (e.g., see [9]).
However, a critical requirement is that the authentication of users who alternate between desktop
and mobile systems must be accommodated. Greater customization of authentication schemes, such
as allowing user-selection of per-login authentication modes, may be the path to better support
the emerging multi-device/multi-platform usage scenarios. The system side could automatically
detect the type of device the user is on, and offer a different login interface or variation based
on that. The interaction between user authentication and evolving password managers (and their
support across platforms and devices, including cross-device password synchronization) is likely to
become an increasingly important part of the user authentication equation. Another important
but unexplored aspect of cross-device authentication is: whether current user behavior is affected
by input difficulties, and if so, to what extent; for example, do users significantly change which
sites they visit depending on which access device they use specifically to avoid accessing sites that
require password input?

The implementations discussed herein are an illustrative example intended to motivate fur-
ther discussion and innovation addressing the problem of user-friendly password authentication
from alternating computing devices supporting divergent user input capabilities. No doubt, better
mechanisms will appear over time. Their chances of deployment success in practice will be much
higher if designed from the start keeping in mind cross-device requirements as discussed herein.
We hope this article motivates and expedites further progress.

References

[1] A. Belenko and D. Sklyarov. “Secure password managers” and “military-grade encryption”
on smartphones: Oh, really? Blackhat Europe 2012. Online manuscript available at: http://
www.elcomsoft.com/WP/BH-EU-2012-WP.pdf.

[2] K. Bicakci and P. van Oorschot. A multi-word password proposal (gridWord) and exploring
questions about science in security research and usable security evaluation. In New Security
Paradigms Workshop (NSPW’11), Marin County, CA, USA, Sept. 2011.

[3] R. Biddle, M. Mannan, P. van Oorschot, and T. Whalen. User study, analysis, and usable
security of passwords based on digital objects. IEFE Transactions on Information Forensics
and Security (TIFS), 6(3):970-979, Sept. 2011.

[4] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh. Kamouflage: Loss-resistant password
management. In European Symposium on Research in Computer Security (ESORICS’10),
Athens, Greece, Sept. 2010.

[5] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The quest to replace passwords:
A framework for comparative evaluation of web authentication schemes. In IEEE Symposium
on Security and Privacy, Oakland, CA, USA, May 2012.

http://www.elcomsoft.com/WP/BH-EU-2012-WP.pdf
http://www.elcomsoft.com/WP/BH-EU-2012-WP.pdf

[6]

[10]

[11]

[12]

[13]

[14]

BusinessInsider.com. DropBox: We’ll turn your files over to the government if they ask us to.
News article (Apr. 18, 2011). http://www.businessinsider.com/dropbox-updates-security-
terms-of-service-to-say-it-can-decrpyt-files-if-the-government-asks-it-to-2011-4.

W. Cheswick. Rethinking passwords. Invited talk at USENIX LISA 2010. http://www.usenix.
org/event/lisal0/tech/slides/cheswick.pdf. See summary in ;login: The USENIX Magazine,
36(2):68-69, Apr. 2011,

M. Jakobsson and R. Akavipat. Rethinking passwords to adapt to constrained keyboards. In
Mobile Security Technologies (MoST) Workshop, San Francisco, CA, USA, May 2012.

M. Jakobsson, E. Shi, P. Golle, and R. Chow. Implicit authentication for mobile devices. In
USENIX Workshop on Hot Topics in Security (HotSec’09), Montreal, Canada, Aug. 2009.

M. Jakobsson, E. Stolterman, S. Wetzel, and L. Yang. Love and authentication. In Conference
on Human Factors in Computing Systems (CHI’08), Florence, Italy, Apr. 2008.

A. Karole, N. Saxena, and N. Christin. A comparative usability evaluation of traditional
password managers. In International Conference on Information Security and Cryptology
(ICISC’10), Seoul, Korea, Dec. 2010.

K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-board credentials with open
provisioning. In ACM Symposium on Information, Computer and Communications Security
(ASIACCS’09), Sydney, Australia, Mar. 2009.

R. Raguram, A. White, D. Goswami, F. Monrose, and J.-M. Frahm. iSpy: Automatic recon-
struction of typed input from compromising reflections. In ACM Computer and Communica-
tions Security (CCS’11), Chicago, IL, USA, Oct. 2011.

B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger password authen-
tication using browser extensions. In USENIX Security Symposium, Baltimore, MD, USA,
2005.

J. Strauss, C. Lesniewski-Laas, J. M. Paluska, B. Ford, R. Morris, and F. Kaashoek. Device
transparency: A new model for mobile storage. ACM SIGOPS Operating Systems Review,
44(1), Jan. 2010.

TheNextWeb.com. LastPass potentially hacked, users urged to change master passwords. News
article (May 5, 2011). http://thenextweb.com/apps/2011/05/05/lastpass-potentially-hacked-
users-urged-to-change-master-passwords/.

10

http://www.businessinsider.com/dropbox-updates-security-terms-of-service-to-say-it-can-decrpyt-files-if-the-government-asks-it-to-2011-4
http://www.usenix.org/event/lisa10/tech/slides/cheswick.pdf
http://www.usenix.org/event/lisa10/tech/slides/cheswick.pdf
http://thenextweb.com/apps/2011/05/05/lastpass-potentially-hacked-users-urged-to-change-master-passwords/

Appendix

A Other Proposals Supporting Password Entry on Mobile Devices

The Blue Moon authentication scheme [10] is a preference-based secondary login system designed
to be used when users forget account passwords. Its primary goal is to replace common password
reset methods such as personal verification questions (PVQs) by using personal preference based
questions; the underlying assumption is that preferences are more stable than long-term memory.
During setup, users select items they like and dislike from several categories (e.g., sports, music,
food). For authentication, users must correctly categorize previously selected items as ‘liked’ or
‘disliked’. Items can be presented as text or image; an image-based implementation is available
for mobile devices (http://mobile-blue-moon-authentication.com/). For both the text-based and
image-based schemes, users need only select displayed items, e.g., via mouse pointer or touch, rather
than by typing. Thus Blue Moon seems appropriate for primary web logins in both desktop and
mobile platforms, if adopted by site maintainers.

To ease text entry, many smartphone platforms offer a predictive text entry feature where the
system auto-fills or suggests a list of commonly used words once a user has typed the first few charac-
ters. At times, auto-correction may produce amusing results; see e.g., http://damnyouautocorrect.
com/. Cheswick [7] has recently revived the circa 1980’s or earlier idea of multi-word passwords
to combine this and users’ existing preference to choose dictionary words as passwords; see Bicakci
and van QOorschot [2] for a summary of old and new variations of multi-word password proposals.
The basic idea of multi-word passwords [7] is as follows: instead of a non-dictionary password with
special characters, users (must) choose multiple common words as their password. Users need type
only a few characters per word of their multi-word password, enabling easy-to-input, high-entropy
passwords for mobile devices. For example, a system-assignment of 3 words from a fixed 1024-word
list provides 30 bits of entropy; the password distribution, and thus entropy, should be expected
to be skewed if selection from the list is user-chosen. Predictive text is also easily implemented
on desktop platforms—desktop browsers now commonly integrate dictionaries to help users fill
forms. Multi-word passwords thus appear to offer convenient password entry on both platforms—if
adopted by websites—although we are aware of no user studies that explore their memorability, or
usability in general.

Password patterns on a 9-dot grid used for screen-unlocking of Android phones are a simplified
form of graphical passwords, used for local device authentication. This authentication mechanism
is not presently compatible with desktop machines which typically (at present) lack touch-sensitive
screens, though compatible mouse-driven interfaces could easily be implemented. The PIN-level
security seems mainly of interest for casual security appropriate for screen-locking rather than
remote authentication to websites.

Jakobsson et al. [9] developed a model for implicit authentication (IA), in which users are
authenticated based on passively collected usage data from their mobile devices (e.g., phone calls,
SMSs, GPS coordinates, emails, and calender events). During authentication, IA outputs a score
comparing the user’s recent usage behavior with a pre-established user model (calculated from the
user’s past usage data); this score is then used to make authentication decisions. Note that TA
mechanisms are already being used in the desktop world by certain industry sectors; see e.g., RSA
adaptive authentication (http://www.rsa.com/node.aspx?id=3018).

To secure the increasing amount of sensitive data on mobile devices against malicious apps,

11

http://mobile-blue-moon-authentication.com/
http://damnyouautocorrect.com/
http://damnyouautocorrect.com/
http://www.rsa.com/node.aspx?id=3018

the on-board credential (ObC [12]) system has been developed by Nokia for devices running on
Symbian and Maemo systems. ObC secures user credentials by relying on trusted hardware such
as Trusted Platform Module (TPM), and M-Shield.

B Syncing Objects and the Case for Allowing Multiple Passwords

Password objects must be copied (or made available via other methods including portable memory
cards) to all devices/platforms from which the user wishes to use ObPwd; and synced if passwords
are updated. Existing sharing and sync mechanisms can facilitate the availability of the same
password-generating object on these platforms. For example, Digital Living Network Alliance
(DLNA) certified devices including TVs, DVD players, game consoles, computers, and mobile
devices can easily share digital content such as photos, video and music files when connected in a
home network. Millions of such devices are currently in use; see dlna.org. Advanced sync techniques
for generic user content have also been proposed, e.g., device transparency [15]. Note that, to prevent
exposure of password objects which is equivalent to leaking real passwords, the sync mechanisms
must be over secure channels (e.g., physical USB connection, encrypted connection over Bluetooth
or wifi). In the absence of such guarantees, this makes reliance on generic syncing tools dangerous
if ObPwd is used.

Although sync mechanisms are readily available in modern devices, we expect syncing of pass-
word objects would remain a usability and/or deployability obstacle for many users. Here we briefly
sketch an alternative that will require back-end support. Beyond the current practice of supporting
one valid password per account, multiple passwords could be allowed for accessing each account.
Services can make available new interfaces that allow entering alternate passwords (e.g., as part of
a “change password” dialogue, a new option is “allow an alternate password, e.g., from a mobile
phone”); by entering the original password (or any later registered ones), users can authorize the
use of the alternate password (with a customary second-time password entry for confirmation).
Then users can use the same or different password objects from their multiple devices without
syncing the objects. To some extent, this is akin to services which allow users to register alternate
email addresses in case the primary address becomes inaccessible. Allowing multiple passwords may
also encourage the use of more device-specific password mechanisms. However, we re-iterate that
this proposal breaks the “drop-in” feature of current ObPwd, which we believe is a huge enabling
factor. The use of alternative passwords (instead of syncing) also increases the cognitive load for
users, and for example increases the chances of errors due to password interference, i.e., confusing
passwords between accounts.

C Detail of Usability-Deployability-Security Evaluation

Evaluation of (web passwords, mobile). We first discuss how the original ratings [5] for regular
web passwords change for a mobile platform (e.g., smartphone), as summarized in row 2 of Table 1
with label (web passwords, mobile). We note the following ratings as downgrades from the desktop
version: not-Efficient-to-Use /U6 and not-Infrequent-Errors /UT (password entry is less efficient and
more error-prone on mobile keyboards); and Quasi-Accessible/D1 (e.g., motor-impaired and blind
users may have additional challenges). The rating Nothing-to-Carry/U3 is unchanged (the mobile
platform is the primary device, not an auxiliary device needed for login to a primary device).

12

dlna.org

Evaluation of (ObPwd, desktop). We rate (ObPwd, desktop) as Quasi-Memorywise-
Effortless/U1 (users must remember where to find the password object file in their file system
but need not remember precise syntax details of the password characters); Scalable-for-Users /U2
(one password object generates unique passwords for different websites). We rate it not-Nothing-
to-Carry /U3 in order to highlight the following device dependency: a desktop user may need to
carry storage media containing their object files, for the reason of not having access to their dig-
ital objects on all login devices which they may wish to use (e.g., consider a friend’s machine);
available syncing mechanisms (as discussed earlier) should not be used on borrowed machines. We
rate it not- Physically-Effortless /U4, by this benefit’s strict definition, as login requires more than
the press of a button. It is Fasy-to-Learn/Ub. Tt is Quasi-Efficient-to-Use /U6 as locating a single
object file becomes easier with repeated use (similar to typing the same password). Note that, in
our user study [3], the ObPwd login task on average took almost twice as long as text password
login; however, users were selecting different object files for their eight test accounts. We rate it
Infrequent-Errors /UT (typing errors are eliminated; users need to locate only one password object
across accounts). We rate it Fasy-Recovery-from-Loss /U8 (if a user forgets the object file’s path, or
loses the object file, recovery is possible by the same mechanism as for lost regular text passwords).

For the primary use case of image-based objects, we must rate ObPwd non-Accessible /D1
(blind users will find it problematic). It is Negligible- Cost-per-User /D2 and Server-Compatible /D3
but not- Browser-Compatible /D4 (additional software must be installed). The desktop version is
Quasi-Mature /D5 (has been implemented for various platforms, has a small user base beyond
academic users, and has been formally user-tested but only one variant in small scale). It is Non-
Proprietary /D6 (no patents are known to the scheme’s designers; freely available for download).

The scheme is both Resilient-to-Physical-Observation/S1 —and Resilient-to- Targeted-
Impersonation/S2 (an attacker would also need an exact copy of the object file), and since
in these passwords are essentially random from the viewpoint of an attacker with access to the ob-
ject file [3], it is also Resilient-to- Throttled- Guessing/S3 and Resilient-to- Unthrottled- Guessing /S4.
Due to the generation involving an essentially random string being salted with a site domain,
the scheme is also Resilient-to-Leaks-from-Other-Verifiers/S6 and Resilient-to-Phishing/S7. The
scheme matches web passwords for the remaining security benefits S8-S11. Notably, S1-S4, S6,
and S7 all improve over basic web passwords. For S8 (Resilient-to-Theft), we grant the benefit
based on strict definition, but note that password object files may be stolen if backed up onto
portable media to allow device-independence, or made available to attacks through insecure
syncing mechanisms (as discussed earlier); here we rate the scheme assuming that neither occurs,
and note that consequently, the scheme has the disadvantage of being device-dependent (which
also results in the penalty of not having the benefit Nothing-to-Carry/U3).

Evaluation of (ObPwd, mobile). For the ObPwd mobile version (see Table 1, last row), the
following benefits are worth some comments relative to the desktop version: only Quasi-Infrequent-
Errors/UT as using the ObPwd app requires users to switch to the Gallery app to generate a
password, and then paste the password to the requesting website. However, these ratings are based
on anecdotal comments rather than a formal user study. Regarding the rating not-Nothing-to-
Carry/U3 here: syncing mechanisms in the mobile version may also be not available at all, are not
yet proven easy to set up and use by all users with existing mobile phones, or not used by choice if
a secure version is not available, in which case a user may need to carry storage media containing
their object files. We rate the mobile version as not Mature/D5 (a version for Android only is
available for public download but is more recent than the desktop version, has not been formally

13

user-tested, and has a smaller user base).

The issue of not being Browser-Compatible/D4 would disappear for ObPwd (as for any other
proposal) if the method were widely adopted by browser vendors, and likewise for the missing
benefit of being not Mature/D5 — but, the ratings measure the status quo, not what could be.
Being not Resilient-to-Internal-Observation /S5 remains an important drawback, but is strongly
related to the existing infrastructure for password verification—as a side effect of aiming to be
Server-Compatible /D3, which is desirable at least in the short term to avoid imposing server-side
changes on the password-supporting subset of the approximately one hundred million currently
active web sites.

14

	Introduction and Motivation
	Password Entry Challenges from non-standard Keyboards
	Existing Proposals Supporting Cross-Device Password Entry
	Cross-platform/Cross-device ObPwd Implementations
	Usability, Limitations and Evaluation
	Concluding Remarks
	Other Proposals Supporting Password Entry on Mobile Devices
	Syncing Objects and the Case for Allowing Multiple Passwords
	Detail of Usability-Deployability-Security Evaluation

