
A

A Large-Scale Evaluation of High-Impact Password Strength Meters

XAVIER DE CARNÉ DE CARNAVALET and MOHAMMAD MANNAN, Concordia University

Passwords are ubiquitous in our daily digital lives. They protect various types of assets ranging from a sim-
ple account on an online newspaper website to our health information on government websites. However,
due to the inherent value they protect, attackers have developed insights into cracking/guessing passwords
both offline and online. In many cases, users are forced to choose stronger passwords to comply with pass-
word policies; such policies are known to alienate users and do not significantly improve password quality.
Another solution is to put in place proactive password-strength meters/checkers to give feedback to users
while they create new passwords. Millions of users are now exposed to these meters at highly popular web
services that use user-chosen passwords for authentication. More recently, these meters are also being built
into popular password managers, which protect several user secrets including passwords. Recent studies
have found evidence that some meters actually guide users to choose better passwords—which is a rare bit
of good news in password research. However, these meters are mostly based on ad-hoc design. At least, as
we found, most vendors do not provide any explanation of their design choices, sometimes making them
appear as a black-box. We analyze password meters deployed in selected popular websites and password
managers. We document obfuscated source-available meters; infer the algorithm behind the closed-source
ones; and measure the strength labels assigned to common passwords from several password dictionaries.
From this empirical analysis with millions of passwords, we shed light on how the server-end of some web
service meters functions, provide examples of highly inconsistent strength outcomes for the same password
in different meters, along with examples of many weak passwords being labeled as strong or even excellent.
These weaknesses and inconsistencies may confuse users in choosing a stronger password, and thus may
weaken the purpose of these meters. On the other hand, we believe these findings may help improve existing
meters, and possibly make them an effective tool in the long run.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Authentication; H.1.2 [Models and Principles]: User/Machine Systems—Human

factors

General Terms: Security, Human Factors

Additional Key Words and Phrases: Password strength, strength meter, password manager

ACM Reference Format:

Xavier de Carné de Carnavalet and Mohammad Mannan, 2015. A Large-Scale Evaluation of High-Impact
Password Strength Meters. ACM Trans. Info. Syst. Sec. V, N, Article A (January 2015), 32 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Proactive password checkers have been around for decades; for some earlier references,
see e.g., Morris and Thompson [1979], Spafford [1992], and Bishop and Klein [1995].
Recently, password checkers are being deployed as password-strength meters on many

Version: Feb. 27, 2015. This article is the extension of an NDSS 2014 publication [Carnavalet and
Mannan 2014]; see also the first author’s Master’s thesis [Carnavalet 2014]. Authors’ address: Con-
cordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada; emails:
x decarn@ciise.concordia.ca and m.mannan@concordia.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© 2015 ACM 1094-9224/2015/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

mailto:x_decarn@ciise.concordia.ca

A:2 X. de Carné de Carnavalet and M. Mannan.

websites to encourage users to choose stronger passwords. Password meters are gen-
erally represented as a colored bar, indicating e.g., a weak password by a short red bar
or a strong password by a long green bar. They are also often accompanied by a word
qualifying password strength (e.g., weak, medium, strong), or sometimes the qualify-
ing word is found alone. We use the terms password-strength meters, checkers, and
meters interchangeably in this paper.

The presence of a password meter during password change for an important ac-
count, and for password creation of an allegedly important account (although in a
limited study), has been shown to lead users towards more secure passwords [Ur et al.
2012; Egelman et al. 2013]. However, strengths and weaknesses of widely-deployed
password meters have been scarcely studied so far. Furnell [2011] analyzes password
meters from 10 popular websites to understand their characteristics, by using a few
test passwords and stated password rules on the sites. Furnell also reports several
inconsistent behaviors of these meters during password creation and reset, and in the
feedback given to users (or the lack thereof). Password checkers are generally known
to be less accurate than ideal entropy measurements; see e.g., [Castelluccia et al. 2012;
Weir et al. 2010]. One obvious reason is that measuring entropy of user-chosen pass-
words is problematic, especially with a rule-based metric; see e.g., the historic NIST
metric [Burr et al. 2006], and its weaknesses [Weir et al. 2010]. Better password check-
ers have been proposed (e.g., [Schechter et al. 2010; Castelluccia et al. 2012; Housh-
mand and Aggarwal 2012; Veras et al. 2014]), but we are unaware of their deployment
at any public website. We therefore focus on analyzing meters as deployed at popu-
lar websites, especially as these meters are apparently guiding the password choice of
millions of users.

We systematically characterize the password meters of 14 prominent web service
providers, ranging from financial, email, cloud storage to messaging services that are
ranked in Alexa’s top 100 (e.g., Google, ranked 1), or are related to a high ranked ser-
vice (e.g., Skype.com is ranked 186, which is a major VoIP service from Microsoft.com,
ranked 43). We also analyze meters from four leading password management software
tools, which we selected from various password managers rankings [LifeHacker.com
2008; PCMag.com 2014]. Our target meters include: Google, Tencent QQ, Yahoo!,
Twitter, eBay, Yandex, Apple, PayPal, Microsoft (three versions), Dropbox, Skype,
FedEx, China railway customer service center, Drupal, LastPass, KeePass, 1Password
(AgileBits, three versions) and RoboForm (Siber Systems). We extract and analyze
JavaScript code (partly obfuscated) for 12 services and browser extensions involving
local/in-browser processing. We further analyze the C# source code for a password
manager and reverse-engineer, to some extent, the six services involving server-side
processing that appear as a black-box along with the two closed-source password man-
agers. Unlike web-based password meters, the meters in password managers guide
the creation of a master password that further encrypts several other secrets and
passwords. Thus, it is particularly important to assess such meters. For Drupal, even
though the website itself is not ranked high in Alexa, its content management system
is widely used by many websites from various industries (see: DrupalShowcase.com).
Finally, we include FedEx and China railway for diversity. During our experiments, we
notified 11 web services and received feedback from seven of them. The company be-
hind a password manager was also indirectly notified (via Twitter). After 18 months of
our initial experiments and almost a year after notifying the companies, we reevaluate
the meters and report the changes in their algorithms, if any.

For each meter, we take the relevant parts from the source code (when available)
and plug them into a custom dictionary-attack algorithm written in JavaScript and/or
PHP. We then analyze how the meter behaves when presented with passwords from
publicly available dictionaries that are more likely to be used by attackers and users

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

DrupalShowcase.com

A Large-Scale Evaluation of High-Impact Password Strength Meters A:3

alike. Some dictionaries come from historical real-life passwords leaks. For each meter,
we test nearly nine and a half million passwords from 13 dictionaries (including a
special leet dictionary we created). We also optimize our large-scale automated tests in
a server-friendly way to avoid unnecessary connections and repeated evaluation of the
same password. At the end, we provide a close-approximation of each meter’s scoring
algorithm, weaknesses and strengths of the algorithm, and a summary of scores as
received by our test dictionaries against the meter.

The password dictionaries we consider are mostly composed of weak passwords by
essence. Although different websites may require various levels of security and enforce
heterogeneous password policies, the evaluation of a password’s strength is expected
to be consistent and clear to the user. We assume a user should not receive a “strong”
feedback on an easy-to-crack password at a non-sensitive website, if it is not accom-
panied with a properly identified context. Such a user could otherwise be tempted to
reuse this password on a more sensitive system that does not employ a strength me-
ter. Thus, we expect meters to provide consistent output on a given password, either
by providing similar feedback, or by indicating the “portability” of the given feedback.

Florêncio et al. [2007] suggest that strong passwords do not serve much purpose in
face of other less-frequently considered types of attack, such as phishing, keylogging,
shoulder surfing, leaked browser-saved passwords and bulk guessing attack. Florêncio
et al. [2014] also put into question the requirement for strong passwords since in-
creasing the strength of passwords beyond a certain point results in limited additional
security benefit. While we find this observation valid, we note however that database
leaks of hashed passwords are still a problem (as apparent from the LinkedIn leak [ZD-
Net.com 2012]; most of these hashed passwords have been cracked). Online password
guessing can also be problematic, if proper countermeasures are not enforced; cf. the
recent iCloud leak [TheNextWeb.com 2014; CSO Online 2014] that allegedly occurred
via an unrestricted online password guessing attack.

To measure the quality of a given password, checkers usually employ the following
methods: enforce strong requirements, mostly regarding the length and character-set
complexity; or try to detect weak patterns such as common words, repetitions and easy
keyboard sequences. Some web service checkers are implemented at client-end only,
some at server-end only, and the rest are hybrid, i.e., include measurements both at the
server- and client-ends. We also analyze strengths and limitations of these approaches.

Except Dropbox, and KeePass (to some extent), no other meters in our test set pro-
vide any publicly-available explanation of their design choices, or the logic behind their
strength assignment techniques. Often, they produce divergent outcomes, even for oth-
erwise obvious passwords. Examples include: Password1 (rated as very weak by Drop-
box, but secure by Yandex), Paypal01 (poor by Skype, but strong by PayPal), football#1
(very weak by Dropbox, but perfect by Twitter). In fact, such anomalies are quite com-
mon as we found in our analysis. Sometimes, very weak passwords can be made to
achieve a perfect score by trivial changes (e.g., adding a special character or digit).
There are also major differences between the checkers in terms of policy choices. For
example, some checkers promote the use of passphrases, while others may discour-
age or even disallow such passwords. Some meters also do not mandate any minimum
score requirement (i.e., passwords with weak scores can still be used). In fact, some me-
ters are so weak and incoherent (e.g., Yahoo! and Yandex) that one may wonder what
purpose they may serve. Considering some of these meters are deployed by highly pop-
ular websites and password managers, we anticipate inconsistencies in these meters
would confuse users, and eventually make the meters a far less effective tool.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:4 X. de Carné de Carnavalet and M. Mannan.

Main contributions of this work are summarized as follows.
(1) METER CHARACTERIZATION. We systematically characterize a total of 22 pass-

word strength meters as deployed at popular web services and leading password
managers, which are used by hundreds of millions of users worldwide. This char-
acterization is particularly important for checkers with a server-side component,
which appears as a black-box; no vendors in our study provide any information on
their design choices. Even for client-side checkers, no analysis or justification is
provided (except Dropbox). After notifying several companies behind the meters,
we evaluate changes in their algorithms and review the changes (if any). Our me-
ter characterization can be viewed as a snapshot of password strength ranking
trends between May 2013 and Nov. 2014.

(2) REVERSE-ENGINEERING OF METERS IN PASSWORD MANAGER APPLICATIONS. We
successfully reverse-engineered the password meter algorithms of two popular
closed-source password managers. These managers provide a meter to guide the
creation of a master password that protects several other user secrets and pass-
words. Such meters are thus even more sensitive. To the best of our knowledge, no
such analysis on open/closed-source managers exists.

(3) EMPIRICAL EVALUATION OF METERS. For each of the 22 meters, we used nearly
nine million unique passwords from several password dictionaries (a total of at
least 200 million test cases, of which more than 52 million are tested against online
services). This is the largest such study on password meters to the best of our
knowledge. All checkers’ response profiles are also compared against each other.

(4) METER WEAKNESSES. Weaknesses exposed by our tests include: (a) several me-
ters label many common passwords as of decent quality—varying their strengths
from medium to secure, very strong, excellent or even perfect; (b) strength outcomes
widely differ between meters, e.g., a password labeled as weak by one meter, may
be labeled as perfect by another meter; and (c) many passwords that are labeled
as weak can be trivially modified to bypass password requirements, and even to
achieve perfect scores. These weaknesses may cause confusion and mislead users
about the true strength of their passwords. Compared to past studies, our analysis
reveals the extent of these weaknesses.

2. METERS CHARACTERIZATION

2.1. Overview

Password-strength meters are usually embedded in a registration or password update
page. In password managers, they are used during the creation of a master password
for the main application, and passwords in web forms; sometimes they are also used
to display the strengths of all stored passwords. During password creation, the meters
instantly evaluate changes made to the password field, or wait until the user finishes
typing it completely, and output the strength of the given password. Below we dis-
cuss different aspects of these meters; some common requirements and features of the
meters are also summarized in Table 2.1.

Charset and length requirements. By default, some checkers classify a given password
as invalid or too short, until a minimum length requirement is met; most meters also
enforce a maximum length. Some checkers require certain character sets (charsets)
to be included. Commonly distinguished charsets include: lowercase letters, uppercase
letters, digits, and symbols (also called special characters). Although symbols are not
always considered in the same way by all checkers (e.g., only selected symbols are
checked), we define symbols as being any printable characters other than the first
three charsets. One particular symbol, the space character, may be disallowed alto-
gether, allowed as external characters (at the start or end of a password), or as internal

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A Large-Scale Evaluation of High-Impact Password Strength Meters A:5

characters. Some checkers also disallow identical consecutive characters (e.g., 3 or 4
characters for Apple and FedEx respectively).

Strength scales and labels. Strength scales and labels used by different checkers also
vary. For example, both Skype and PayPal have only 3 possible qualifications for the
strength of a password (Weak-Fair-Strong and Poor-Medium-Good respectively), while
Twitter has 6 (Too short-Obvious-Not secure enough-Could be more secure-Okay-
Perfect). At the extreme side, LastPass has a continuous progress bar without labels.

User information. Some checkers take into account environment parameters related
to the user, such as her real/account name or email address. We let these parameters
remain blank during our automated tests, but manually checked different services by
completing their registration forms with user-specific information, or review the source
code for this purpose if available. Ideally, a password that contains such information
should be regarded as weak (or at least be penalized in the score calculation). However,
password checkers we studied vary significantly on how they react to user information
in a given password (details in Section 3).

Types. Based on where the evaluation is performed, we distinguish three main types
of password checkers for web-based meters as follows. Client-side: the checker is fully
loaded when the website is visited and checking is done only locally (e.g., Dropbox,
Drupal, FedEx, Microsoft, QQ, Twitter, Yahoo! and China railway customer service
center); server-side: the checker is implemented fully on server-side (e.g., eBay, Google,
Skype and Yandex); and hybrid: a combination of both (e.g., Apple and PayPal). All our
tested password managers operate at user-end (open or closed source). We use different
approaches to automate our tests for these varying types of meters; see Section 2.2.

Diversity. None of the 14 web services and 4 password managers we evaluated uses a
common meter. Instead, each service or software tool provides their own meter, with-
out any explanation of how the meter works, or how the strength parameters are as-
signed. For client-side and open-source checkers, we can learn about their design from
code review, yet we still do not know how different parameters are chosen. Dropbox is
the only exception, which has developed an apparently carefully-engineered algorithm
called zxcvbn [Wheeler 2012]; Dropbox also provides details of this open-source meter.

Entropy estimation and blacklists. Every checker’s implicit goal is to determine
whether a given password can be easily found by an attacker. To this end, most employ
a custom “entropy” calculator, either explicitly or not, based on the perceived complex-
ity and password length. As discussed in Section 5, the notion of entropy as used by
different checkers is far from being uniform, and certainly unrelated to Shannon en-
tropy. Thus, we employ the term entropy in an informal manner, as interpreted by dif-
ferent meters. Password features generally considered for entropy/score calculation by
different checkers include: length, charsets used, and known patterns. Some checkers
also compare a given password with a dictionary of common passwords (as a blacklist),
and severely reduce their scoring if the password is blacklisted.

2.2. Test Automation

We tested nearly nine and a half million of passwords against each of the 22 checkers.
Below, we discuss how we performed such large-scale automated tests.

2.2.1. Web-Based Client-Side Meters. For client-side checkers, we extract the relevant
JavaScript functions from a registration page, and query them to get the strength
score for each dictionary password. Outputs are then stored for later analysis. To iden-
tify the sometimes obfuscated part of the code, we use the built-in debugger in Google
Chrome. In particular, we set breakpoints on DOM changes, i.e., when the password
meter’s outcome is updated. Such obfuscation may be the result of code minification

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:6 X. de Carné de Carnavalet and M. Mannan.

Table I. Password requirements and characteristics of the evaluated meters. Strengths underlined in “Strength
scale” are the minimum strengths considered as good when comparing meters in Section 5.3. “User info”: ø
(no user information is used for strength check), and G# (some user information is used). None of these meters
include all available user info, nor do they involve more than a mere equality check with user-provided fields
(e.g., username, email address). “Charset required” represents the requirements to make a password valid
under the service’s policy. We use L, U, D to represent lowercase, uppercase letters and digits respectively; 2+
to denote “two or more” charsets; and ø to represent no requirements. The “Space allowed” column represents
whether a meter allows spaces inside a password (but not accounting for leading of trailing spaces, as these
are usually trimmed). The “Enforcement” column represents the minimum strength required by each checker
for registration completion: ø (no enforcement); and other labels as defined under “Strength scale”.

Type Service Strength scale
Length

min/max

Charset

required
Space

allowed

User

info

Enforce-

ment

W
eb

-b
a
se

d

C
li

en
t-

si
d

e

Dropbox
Very weak, Weak, So-so,

Good, Great
6 / 72 ø X G# ø

Drupal Weak, Fair, Good, Strong 6 / 128 ø X G# ø

FedEx
Very weak, Weak, Medium,

Strong, Very strong
8 / 35 L, U, D × ø Medium

Microsoft Weak, Medium, Strong, Best 1 / − ø X ø ø
QQ Weak, Moderate, Strong 6 / 16 ø × ø ø

Twitter

Invalid/Too short, Obvious,
Not secure enough (NSE),

Could be more secure (CMS),
Okay, Perfect

6 / >1k ø X G# CMS

Yahoo!
Too short, Weak, Strong,

Very strong
6 / 32 ø X G# Weak

12306.cn1 Dangerous, Average, Secure 7 / 25
L or U,
and D

× ø ø

S
er

v
er

-s
id

e eBay
Invalid, Weak, Medium,

Strong
6 / 20 2+ X G# ø

Google Weak, Fair, Good, Strong 8 / 100 ø X ø Fair

Skype Poor, Medium, Good 6 / 20 2+ or U × ø Medium
Yandex Too short, Weak, Secure 6 / 255 ø × G# Weak

H
y
b
.

Apple Weak, Moderate, Strong 8 / 32 L, U, D × G# Medium

PayPal Weak, Fair, Strong 8 / 20 2+2
× ø Fair

A
p

p
-b

a
se

d 1Password
Terrible, Weak, Fair, Good,

Excellent, Fantastic
1 / − ø X ø ø

KeePass 0–65–128 bits 1 / − ø X ø ø
LastPass 0–51–100% 1 / − ø X G# ø
RoboForm Weak, Good, Excellent 6 / 49 ø X ø ø

1 12306.cn is the domain name for China railway customer service center
2 PayPal counts uppercase and lowercase letters as a single charset

(e.g., removing comments, extra spaces, and shrinking variable names). Fortunately,
strength meters generally involve simple logic, and remain understandable even af-
ter such optimization. As some checkers are invoked with key-press events, the use
of a debugger also simplified locating the relevant sections. We tested our dictionaries
using Mozilla Firefox, as it was capable of handling bigger dictionaries without crash-
ing (unlike Google Chrome). Speed of testing varies from 7ms for a 500-word dictio-
nary against a simple meter (FedEx), to nearly half an hour for a 5-million dictionary
against the most complex meter (Dropbox).

2.2.2. Web-Based Server-Side Meters. Server-side checkers directly send the password
to a server-side checker by an AJAX request without checking them locally (except
for minimum length). We test server-side checkers using a PHP script with the cURL
library (curl.haxx.se) for handling HTTPS requests to the server. The checker’s URL is
obtained from the JavaScript code and/or a network capture. We use Google Chrome to
set breakpoints on AJAX calls to be pointed to the send1 call before its execution. This

1http://www.w3.org/TR/XMLHttpRequest/#the-send()-method

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

curl.haxx.se
http://www.w3.org/TR/XMLHttpRequest/#the-send()-method

A Large-Scale Evaluation of High-Impact Password Strength Meters A:7

enables us to inspect the stack, and deduce how the call parameters are marshaled.
We then prepare our password test requests as such, and send them in batches.

To reduce the impact of our large volume of requests, we leverage keep-alive con-
nections, where requests are pipelined through the same established connection for as
long as the server supports it. Typically, we tested more than 9 million passwords for
each service (the small overlap between dictionaries was not stripped), and we could
request up to about 1000 passwords through one connection with Skype, 1500 with
eBay, and unlimited with Google; as a result, the number of connections dropped sig-
nificantly. We also did not parallelize the requests. On average, we tested our dictionar-
ies at a speed of 5 passwords per second against Skype, 8 against Yandex, 10 against
eBay, 64 against Google (2.5 against PayPal and 8 against Apple for the server-side
part of their checkers), generating a maximum traffic of 5kB/s of upload and 10kB/s of
download per web service. To our surprise, our tests were not blocked by the servers
(except for eBay that permanently blocked one IP towards the end of our tests).

2.2.3. Web-Based Hybrid Meters. Hybrid checkers first perform a local check, and then
resort to a server-side checker (i.e., a dynamic blacklist of passwords and associated
rules). We combine above mentioned techniques to identify client-side and server-side
parts of the checker. Our test script runs as a local webpage, invoking the extracted
client-side JavaScript checker. When the checker wants to launch a request to a re-
mote host, which is inherently from another origin, we face restrictions imposed by the
same-origin policy [Barth 2011]. To allow client-side cross-origin requests, the cross-
origin resource sharing (CORS [World Wide Web Consortium (W3C) 2013]) mechanism
has been introduced and is currently implemented in most browsers. To allow our local
script as a valid origin, we implemented a simple proxy to insert the required CORS
header, Access-Control-Allow-Origin, in the server’s response.

Our local proxy is problematic for keep-alive connections, as it breaks the direct con-
nection between the JavaScript code and the remote server. We implemented a simple
HTTP server in the PHP script of the proxy that allows server connection reuse across
multiple client requests. The HTTP server part waits for incoming connections and
reads requests on which only basic parsing occurs. We also chose to reuse the XML-
HttpRequest object to pipeline requests to our proxy from the browser. In this configu-
ration, we use a single connection between the JavaScript code and the proxy, and we
use the same pipelining mechanism as for the server-side checkers between the proxy
and the remote server. Finally, because we faced browser crashing for large dictionar-
ies tested against hybrid checkers, we needed to split these dictionaries into smaller
parts and to test them again separately. To prevent duplicate blacklist checks against
the server-side checker (as we restart the test after a browser crash), we implement a
cache in our proxy which also speeds up the resume process.

2.2.4. Application-Based Meters. To cope with a multitude of passwords, password man-
ager applications are also used widely. Some of these managers implement a meter;
similar to web-service meters, these meters also vary significantly in their design. We
choose four popular password managers that implement strength meters as part of a
closed- or open-source software tool and/or as a JavaScript browser extension.

Open-source meters. Open-source password managers in our evaluation include a C#
application (KeePass) and JavaScript-based browser extensions (LastPass and two of
1Password’s meters). In both cases, analyzing the algorithm and automating the test
of our dictionaries are straightforward. We modify KeePass to process an entire dic-
tionary instead of a typed password and evaluate our 13 dictionaries within 15 min-
utes. Tests against the JavaScript-based checkers are similar to web-based client-side
checkers, and yield comparable speed.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:8 X. de Carné de Carnavalet and M. Mannan.

Closed-source meters. We tested two closed-sourced software-based meters (1Password
and RoboForm). We evaluate the Windows versions of these checkers. We automate
the evaluation of our dictionaries by simulating user input of passwords, and collecting
back the results for further analysis. We leverage AutoIt (autoitscript.com/site/autoit/)
to automate such tests. AutoIt is a free software interpreter with a custom scripting
language designed for automating the Windows GUI. 1Password’s meter consists of a
continuous progress bar showing a score rounded to the nearest integer. As it is using
a default Windows progress bar, AutoIt is able to retrieve the score directly. However,
RoboForm’s meter provides only five possible positions and uses a custom graphical
meter, which cannot be processed directly by AutoIt to extract values. To collect and
reconstitute the meter’s output, we retrieve the color of selected pixels on the screen
with AutoIt at five different locations on the meter. Tests are performed at a speed of
90 passwords per second against 1Password and 8.5 against RoboForm.

RoboForm’s algorithm is apparently too complex to understand from its output only,
hence we rely on the reverse-engineering of its software binary for characterizing it.
To do this, we can leverage a debugger attached to the application to read through
the program’s low-level instructions and infer its high-level behavior. We must capture
a trace of the execution, or follow step-by-step the execution when the application is
actively ranking a given password. Such a method is cumbersome as the variety of
operations performed increases the length and complexity of the instructions to an-
alyze. We were successful at attaching Immunity Debugger [Immunity Inc. 2014] to
RoboForm’s binary and setting a breakpoint on any access to the memory location that
contains the user password to be ranked. Once the algorithm reads this memory loca-
tion, we can follow the algorithm and understand how the score is calculated. Details
of this analysis are given in Section 4.4.

2.3. Tested Dictionaries

2.3.1. Overall description. Table II lists the 13 dictionaries we used. Our dictio-
nary sources include: password cracking tools, e.g., John the Ripper (JtR [Open-
Wall.com 2014]) and Cain & Abel (C&A [Oxid.it 2014]); a list of 500 most commonly
used passwords (Top500 [Burnett 2005]); an embedded dictionary in the Conficker
worm (Cfkr [Sophos.com 2009]), and leaked databases of plaintext or hashed pass-
words (RockYou.com (RY5), phpBB.com (phpBB), Yahoo.com (YA) and LinkedIn.com
(LinkedIn)). We mostly chose simple and well-known dictionaries (as opposed to more
complex ones, see e.g., [ArsTechnica.com 2013]), to evaluate checkers against pass-
words that are reportedly used by many users. Except for leaked databases, we ex-
pected passwords from these non-targeted dictionaries would be mostly rejected (or
rated as weak) by the meters. We also derive four additional dictionaries using well-
known password mangling rules [OpenWall.com 2014]. As we noticed that our main
dictionaries did not specifically consider leet transformations, we built a special leet
dictionary using the base dictionaries.

Several of our dictionaries are created from sources between 2005 and 2009 (some-
what outdated by now). Many other password leaks were reported in recent years;
however, in most cases, the plaintext passwords are unavailable. We selected two
leaked password databases from relatively important accounts in 2012 (YA and
LinkedIn). We test these dictionaries almost a year after we notified several web ser-
vices, which allows us to observe the potential changes in their algorithms. For exam-
ple, Yahoo! removed the password checker from its registration webpage, and 1Pass-
word corrected its algorithm. Apple and eBay also demonstrate strange behaviors.

We also noticed poor internationalization of dictionary passwords in general, where
most of them originate from English. One exception is the RockYou dictionary, which
contains some Spanish words. Some leaked passwords also contained UTF-8-encoded

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

autoitscript.com/site/autoit/

A Large-Scale Evaluation of High-Impact Password Strength Meters A:9

Table II. Dictionaries used against password checkers; +M represents mangled version of a dictionary; the “Leet”
dictionary is custom-built by us. “Composition” column gives the three main charsets that compose the dictionaries,
with the percentages attached to each. The caret (ˆ) before a range(s) of characters means “everything but” the
following range(s), e.g., [ˆA-Z0-9] means lowercase and symbols; \w means all four charsets.

Dictionary # words
Max/Avg/Std

length
Composition

Rank #1 Rank #2 Rank #3
Top500 499 8 / 6.00 / 1.10 [a-z] 91% [0-9] 7% [a-z0-9] 2%
Cfkr 181 13 / 6.79 / 1.47 [a-z] 53% [0-9] 30% [a-z0-9] 16%
JtR 3,545 13 / 6.22 / 1.40 [a-z] 83% [a-z0-9] 8% [a-zA-Z] 4%
C&A 306,706 24 / 9.27 / 2.77 [a-z] 99.84% [ˆA-Z0-9] 0.09% [a-z0-9] 0.05%
RY5 562,987 49 / 7.41 / 1.64 [a-z] 40% [a-z0-9] 36% [0-9] 17%
phpBB 184,389 32 / 7.54 / 1.75 [a-z] 41% [a-z0-9] 36% [0-9] 11%
YA 342,514 30 / 8.49 / 1.88 [a-z0-9] 57% [a-z] 25% [a-zA-Z0-9] 6%
LinkedIn 5,092,552 54 / 8.77 / 1.95 [a-z0-9] 45% [a-z] 21% [a-zA-Z0-9] 15%
Top500+M 22,520 12 / 7.18 / 1.47 [a-z0-9] 38% [a-zA-Z0-9] 20% [a-zA-Z] 15%
Cfkr+M 4,696 16 / 7.88 / 1.78 [a-z0-9] 39% [a-zA-Z0-9] 21% [a-zA-Z] 15%
JtR+M 145,820 16 / 7.30 / 1.66 [a-z0-9] 39% [a-zA-Z0-9] 20% [a-zA-Z] 15%
RY5+M 2,173,963 39 / 8.23 / 1.98 [a-z] 24% [a-z0-9] 19% [a-zA-Z0-9] 18%
Leet 648,116 20 / 9.09 / 1.81 [\w] 78% [a-zA-Z0-9] 19% [ˆ0-9] 4%

words that were generally not handled properly by the checkers (cf. [Bonneau and Xu
2012]). Given their small number in our reduced version of RockYou dictionary, we
chose to ignore them. Dictionaries sometimes overlap, especially when considering the
inclusion of trivial lists and default dictionaries from cracking tools, among the leaked
passwords we used; see Table 5.1. As a side note, many passwords in the source dictio-
naries are related to insults, love and sex (cf. [Veras et al. 2014]). We avoid mentioning
such words as example passwords.

2.3.2. Sources of tested dictionaries.

Top500. This dictionary was released in 2005 as the “Top 500 Worst Passwords of
All Time” [Burnett 2005], and later revised as Top 10000 [Burnett 2011] passwords
in 2011. We use the 500-word version as a very basic dictionary. Passwords such as
123456, password, qwerty and master can be found in it. Actually, a “0” is duplicated
in this list, making it have only 499 unique passwords.

Cfkr. The dictionary embedded in the Conficker worm was used to try to access other
machines in the local network and spread the infection. Simple words and numeric
sequences are mostly used; examples include: computer, 123123, and mypassword.

JtR. John the Ripper [OpenWall.com 2014] is a very common password cracker that
comes with a dictionary of 3,546 passwords, from which we removed an empty one.
Simple words can be found in this dictionary too; however, they are little more complex
than those in Top500, e.g., trustno1.

TCJ. We combine Top500, Cfkr and JtR (without duplicates) as TCJ. Since these dic-
tionaries share similar characteristics, meters often output similar results for them.
Hence, we sometimes refer them as TCJ for simplicity.

C&A. A 306,706-word dictionary, primarily consisting of long lowercase words, e.g.,
constantness, as comes with the password cracking tool, Cain & Abel [Oxid.it 2014].

RY5. RockYou.com is a gaming website that was subject to an SQL injection attack in
2009, resulting in the leak of 32.6 million cleartext user passwords. This constitutes
one of the largest real user-chosen password databases as of today. There are only
14.3 million unique passwords, which is still quite large for our tests. We kept only
the passwords that were used at least 5 times, removed space-only passwords (7) and
duplicates arising from trimming (5). The resulting dictionary has 562,987 words.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:10 X. de Carné de Carnavalet and M. Mannan.

phpBB. The phpBB.com forum was compromised in 2009 due to an old vulnerable
third-party application, and the database containing the hashed passwords was leaked
and mostly cracked afterwards. Due to the technical background of users registered on
this website, passwords tend to be a little more sophisticated than trivial dictionaries.

YA. Yahoo! was breached in July 2012 by an SQL injection, leaking cleartext passwords
of about 450,000 users. Removing duplicates yields 342,514 unique passwords.

LinkedIn. In some cases, especially for accounts deemed unimportant, users may
knowingly choose not-so-good passwords (see e.g., [Egelman et al. 2013]). So far, we
have not seen any leaked password databases for very important services, such as
online banking. In this context, the LinkedIn dictionary is a good example of rela-
tively recent real-user passwords used for a web service strongly linked to a user’s real
identity, and possibly considered important by many users. LinkedIn lacks a password
policy (except a 6-character length check) and does not incorporate a meter. Hence,
this dictionary has the potential to represent what users are left with when they try to
choose a password for an important account on their own. Also, the passwords released
after the June 2012 breach were hashed (using SHA1 without salt) and independently
cracked (partially), demonstrating the effective guessability of such passwords by at-
tackers in practice. The cracked version we rely on was found on adeptus-mechanicus.
com, which contains about 5.1 million passwords from the 6.46 million hashes. We
tested the dictionary against the hashes acquired from another source and confirmed
the match.

2.3.3. Mangled Dictionaries. Users tend to modify a simple word by adding a digit or
symbol (often at the end), or changing a letter to uppercase (often the first one), some-
times due to policy restrictions [Castelluccia et al. 2012; Komanduri et al. 2011; Burr
et al. 2006]; for details on this wide-spread behavior, see e.g., Weir [2010]. Password
crackers accommodate such user behavior through the use of mangling rules. These
rules apply different transformations such as capitalizing a word, prefixing and suf-
fixing with digits or symbols, reversing the word, and some combinations of them.
For example, password can be transformed into Password, Password1, passwords and
even Drowssap. John the Ripper comes with several mangling rules (25 in the wordlist
mode), which can produce up to about 50 passwords from a single one.

We applied John the Ripper’s default ruleset (in the wordlist mode) on Top500, Cfkr,
and JtR dictionaries, generating an average of 45, 26 and 41 passwords from each
password in these dictionaries, respectively. Derived dictionaries are called Top500+M,
Cfkr+M, JtR+M respectively. Original passwords with digits or symbols are excluded
by most rules, unless otherwise specified. We chose not to test the mangled version
of C&A as it consists of 14.7 million passwords (too large for our tests). Given that
the original size of RY5 is already half a million passwords, mangling it with the full
ruleset would be similarly impractical. For this dictionary, we applied only the 10 most
common rules, as ordered in the ruleset and simplified them to avoid redundancy.
For example, instead of adding all possible leading digits, we restricted this variation
to adding only “1”. We did the same for symbols. The resulting dictionary is called
RY5+M. The rules applied for RY5 mangling are the following: lowercase passwords
that are not; capitalize; pluralize; suffix with “1”; combine (a) and (d); duplicate short
words (6 characters or less); reverse the word; prefix with “1”; uppercase alphanumer-
ical passwords; and suffix with “!”.

Note that although these rules are close to real users’ behavior, they are compiled
mostly in an ad-hoc manner (see e.g., Weir [2010]). For example, reversing a word is
not common in practice, based on Weir’s analysis of leaked password databases. At
least, John the Ripper’s rules represent what an average attacker is empowered with.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

adeptus-mechanicus.com
adeptus-mechanicus.com

A Large-Scale Evaluation of High-Impact Password Strength Meters A:11

2.3.4. Leet Transformations. Leet is an alphabet based on visual equivalence between
letters and digits (or symbols). For example, the letter E is close to a reversed 3, and S
is close to a 5 or $. Such transformations allow users to continue using simple words as
passwords, yet covering more charsets and easily bypass policy restrictions [Schechter
et al. 2010]. Leet transformations are not covered in our main dictionaries, apart from
few exceptions; thus, we built our own leet transformed dictionary to test their effect.

Our Leet dictionary is based on the passwords from Top500, Cfkr, JtR, C&A, phpBB,
the full RockYou dictionary, the Top10000 dictionary, and a 37,141-word version of the
leaked MySpace password dictionary,2 obtaining 1,007,749 unique passwords. For each
of them, we first strip the leading and trailing digits and symbols, and then convert
it to lowercase (e.g., 1PassWord$0 becomes password). Passwords that still contain
digits or symbols are then dropped, so as to keep letter-only passwords. Passwords
that are less than 6-character long are also dropped, while 6-character long ones are
suffixed with a digit and a symbol chosen at random, and 7-character passwords are
only suffixed with either a digit or a symbol. At this point, all passwords are at least
8-character long, allowing us to pass all minimum length requirements. Those longer
than 20 characters are also discarded. The dictionary was reduced to 648,116 words.

We then apply leet transformations starting from the end of each password to mimic
known user behaviors of selecting digits and symbols towards the end of a password
(see e.g., [Weir 2010; Heijningen 2013]). For these transformations, we also use a trans-
lation map that combines leet rules from Dropbox and Microsoft checkers. Password
characters are transformed using this map (if possible), by choosing at random when
multiple variations exist for the same character, and up to three transformations per
password. Thus, one leet password is generated from each password, and only single
character equivalents are considered (e.g., we do not consider more complex trans-
formations such as V becoming double slashes: \/). Arguably, this dictionary is not
exhaustive; however, our goal is to check how meters react against simple leet trans-
formations. The near-zero overlap between this dictionary and the leaked ones (as in
Table 5.1) can be explained by the simple password policies as used by RockYou and
phpBB at the time of the leaks. RockYou required only a 5-character password and
even disallowed symbol characters [Heijningen 2013], while phpBB’s 9th most popu-
lar password is 1234, clearly indicating a lax password policy. Thus, users did not need
to come up with strategies such as mangling and leet transformations.

3. EMPIRICAL EVALUATION OF WEB-BASED METERS

In our previous work [Carnavalet and Mannan 2014], we focused on large services
and evaluated the password meters of Apple, Dropbox, Drupal, FedEx, Google, eBay,
Microsoft, PayPal, Skype, Twitter and Yahoo!. In this work, we extend our scope to
two major Chinese web-services: Tencent QQ and the China railway customer service
center (12306.cn), and the Russian-based email provider Yandex Mail. Tests were per-
formed in Feb/Mar. 2014 for QQ and 12306.cn, and Nov. 2014 for Yandex. We first
summarize findings from our previous tests (performed in June/July 2013). Then, we
present the general behavior and characterize the response of these meters against our
test dictionaries, analyze their algorithm and discuss their strengths and weaknesses.

3.1. Highlights of previous findings

Interesting meters from our previous work include Dropbox, FedEx and Google. The
first is the most advanced client-side checker that we evaluated, the second appears
simple and effective until we show its severe limitations, and the last one is a black-box
for which we are unable to provide a definitive explanation.

2Collected from: http://www.skullsecurity.org/wiki/index.php/Passwords

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

http://www.skullsecurity.org/wiki/index.php/Passwords

A:12 X. de Carné de Carnavalet and M. Mannan.

Dropbox. Dropbox has developed a client-side password strength checker called zx-
cvbn [Wheeler 2012], and open-sourced it to encourage others to use and improve the
checker. WordPress uses zxcvbn as its default password meter as of version 3.7 (Octo-
ber 2013) and Kaspersky Labs reuses it to provide an independent checker. Zxcvbn de-
composes a given password into patterns with possible overlaps, and then assigns each
pattern an estimated “entropy”. The final password entropy is calculated as the sum
of its constituent patterns’ entropy estimates. The algorithm detects multiple ways of
decomposing a password, but keeps only the lowest of all possible entropy summations
as an underestimate. An interesting aspect of this algorithm is the process of assigning
entropy estimates to a pattern. The following patterns are considered: spatial combi-
nations on a keyboard (e.g., qwerty, zxcvbn, qazxsw); repeated and common semantic
patterns (e.g., dates, years); and natural character sequences (e.g., 123, gfedcba). These
patterns are considered weak altogether, and given a low entropy count.

Additionally, parts of the password are checked against various dictionaries of com-
mon passwords and common English words and names, summing up to 85,088 words.
Such a subpart is assigned an entropy value based on the average number of trials
that an attacker would have to perform, considering the rank of the subpart in its
dictionary. Finally, the entropy is matched to a score by supposing that a guess would
take 0.01 second, and that an attacker can distribute the load on 100 computers.

Compared to other meters, zxcvbn yields more accurate strength evaluations. How-
ever, its main limitation, which applies to other meters in general, is the limited size
of the embedded dictionary. Non-dictionary words are considered random strings that
can be found only by an exhaustive search (brute-force attack), which would take
months or years to finish. However, it is unlikely for an attacker to perform such a
long exhaustive search. Instead, an attacker may use better dictionaries and addi-
tional mangling rules, which is likely to decrease the time-to-crack.

FedEx. This web service is related to one of the few non-IT companies in the scope of
our evaluation. The client-side algorithm run by FedEx takes into account leet trans-
formations and embeds a small common passwords dictionary of 180 effective words.
Also, a stringent requirement limits a password’s strength to very weak, until the pass-
word is 8 characters long and includes lowercase, uppercase letters and digits with no
three identical consecutive characters. These rules effectively prevent nearly all of our
dictionaries from reaching a better score, a desirable outcome since our passwords are
arguably weak. However, this meter wrongly assigns weak scores to decent passwords
only because they fail one of the requirements; e.g., Vm*H=Cj%u(YXDcQ is considered
as very weak because it lacks digits. As legitimate users will face such difficulties, they
are likely to follow simple rules to modify their password to make it compliant. We cre-
ated a targeted dictionary for FedEx by combining the basic dictionaries of Top500,
JtR and Cfkr. We applied slightly more refined mangling rules consistent with known
user behaviors [Weir 2010; Heijningen 2013], namely: (a) capitalize and append a digit
and a symbol; (b) capitalize and append a symbol and a digit; (c) capitalize and ap-
pend a symbol and two digits; and (d) capitalize, append a symbol and a digit, and
prefix with a digit. We then removed the passwords below 8 characters, resulting in
a dictionary of 121,792 words (only 4 symbols and 4 digits are covered for simplicity).
60.9% of this dictionary is now very-strong, 9.0% is strong, 29.7% is medium, and the
rest is very-weak (due to repetitions of the same character). Thus, FedEx checker is
particularly prone to qualify easy-to-crack mangled passwords as of decent strength.
An attacker can integrate the effect of the password requirements and start with the
weakest accepted passwords.

Google. Google accounts are used to access Google services, in particular Gmail, Drive,
Calendar, etc. Account creation is helped by a meter that is difficult to reverse-engineer

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A Large-Scale Evaluation of High-Impact Password Strength Meters A:13

for two main reasons: (a) passwords are mostly ranked either as too short or strong;
and (b) the meter’s inconsistent output for the same password at different times. Con-
sider the following examples: testtest is weak and testtest0 is strong, but testtest1 is
fair, testtest2 is good and testtest3 is strong again; such a variety of scores for so mi-
nor changes is difficult to comprehend. Other examples show significant variations
depending on the position of an uppercased letter in a simple password. If this is
the result of advanced checks, then many commonly used patterns would be penal-
ized. However, Google’s checker is ranked second and fifth in terms of yielding “strong”
passwords from our base and mangled dictionaries, respectively; see Section 5.3.

Regarding time-varying strengths, difference remains limited to one strength level
(better or worse). For example, in a two-week interval we found that overkill went from
weak to fair, canadacanada from fair to good, and anythings from good to strong, while
startrek4 went from strong to good, and baseball! from fair to weak. Weeks or months
later, scores can return to their past values as we observed. These fluctuations may
indicate the use of a dynamic or adaptive password checker. Irrespective of the nature
of the checker, users can barely make any sense of such fluctuations.

Finally, it is fairly easy to change a weak password to make it strong, e.g., by making
one letter uppercase and/or adding a leading digit or symbol. For example database
is weak, but Database, database0 and database+ are strong. However, for the weak
password internet, Internet remains weak, internet0 is fair and internet+ is strong.

3.2. China railway customer service center

China railway provides a ticket reservation system (www.12306.cn). It is the govern-
ment’s official website for train tickets and generally visited by millions of customers.

Algorithm. A password is considered ‘dangerous’ (translated from the Chinese word
found on the website) for the following cases: its length is less than 7 characters; com-
posed only of letters, digits, or, surprisingly, an underscore character. Beyond these
cases, a password is labeled as average. It is labeled as secure if it contains mixed-case
letters, digits and at least an underscore character.

Weaknesses. 12306.cn is sensitive only to password composition after a minimal length
of 6 characters. It strongly promotes the use of the underscore character, which is
the only special character considered. Consequently, a 20-character random password
(e.g., SFh*#6ˆZ44CwhKB73@x3) covering all charsets but no underscores is rated only
as average. As such, the meter appears extremely stringent to users wishing to reach a
secure score until they find the magic character; however, users are advised to include
underscores in their password (as stated right next to the password field). In this case,
passwords may often contain underscores.

3.3. Tencent QQ

QQ is an instant messaging service developed by the Chinese company Tencent, and
mostly targets Chinese-speaking countries. Its user-base is reportedly at least 820-
million strong, as of Nov. 2014.3

Algorithm. The part of the code responsible for evaluating the strength on the registra-
tion web page is only 12 simple lines of code, plus the mapping of the output numbers
(1, 2, 3) to their respective labels. It is also very simple in the design and proceeds as
follows. No strength is returned and a warning is displayed if the password is less than
6-character long, or is composed of only 8 digits or less. Passwords are not ranked bet-
ter than weak unless they reach 8 characters in length. The number of charsets (from
the 4 common ones) included in the password are counted and mapped to a strength

3http://www.chinainternetwatch.com/10711/tencent-q3-2014/

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

www.12306.cn
12306.cn
http://www.chinainternetwatch.com/10711/tencent-q3-2014/

A:14 X. de Carné de Carnavalet and M. Mannan.

label as follows: the use of 1 charset is weak, 2 is moderate, 3 and 4 are strong. Note
that QQ does not constantly evaluate a password as it is typed by the user, but ranks
it when the user switches to another field of the form.

Weaknesses and interesting features. Similar to 12306.cn, this checker is sensitive only
to the number of charsets after crossing the minimum length threshold of 8 characters.
No further checks are done such as searching for repetitive patterns, weak or common
words, nor are any reward given to the length beyond six characters. This leads to a
low ranking of passphrases (e.g., a password such as correcthorsebatterystaple is weak)
and inconsistencies such as Password1 being rated as strong.

During code review, we noticed two interesting features on the registration page.
First, the total time spent on creating the password in milliseconds (time focused on
the password field), along with the number of keys pressed inside the field (tentative
characters to create a password) are recorded, and sent to the server when the form is
submitted. Second, the password is encrypted using a 1024-bit RSA key prior to being
sent to the server (the form is submitted via HTTP, unlike HTTPS as in most sites).

3.4. Yandex

Yandex is a popular search engine in Russia, which also provides email and storage
services. Both the Russian and English versions of the website show a meter in its
registration page.

Algorithm. Yandex comprises a graphical bar that is filled up to a percentage calcu-
lated as the min value between 100 · ln(length+ 1)/ ln(255) and 100, with length being
the password length. In practice, it translates to a bar that fills up at a logarithmic
speed with respect to the password length, i.e., additional characters for short pass-
words matter more than the ones for a longer password. The bar is totally filled when
the password reaches 254 characters. The password is also sent to the server as typed,
starting from the first input character. The server returns an error message if illegal
characters are included in the password (e.g., not all special characters are allowed).
Otherwise, the server returns a score that is either secure or weak (blocking as an
error, or simply a non-blocking warning). A simple check is performed against the
username to prevent the password to be the same.

The algorithm for the server-side part of this meter is difficult to infer. It appears
that there are checks for sequences of numbers, since passwords such as 1234567890
and 73221987 (but not 73221986) are ranked as weak. Also, there is a blacklist check
that forbids simple words, including some variations of them. For example, cnffjbeq is
secure while password is weak, although both share the same length and character
frequencies, and the former is a simple shift (ROT13) of the later. Both Robert1 and
Monopoly are weak, which are found as robert and monopoly respectively in the Top
10000 [Burnett 2011], showing that the algorithm is aware of certain transformations.
However, even though password is weak, Password and password1 are secure, which
contradicts the hypothesis that the Top 10000 is used as a blacklist. In fact, we could
not find a simple known dictionary that could be used as is for blacklisting. Hence, we
conclude that the blacklist on the server-side is most likely a custom compilation.

Finally, if a password does not contain sequences or is not blacklisted, it is ranked
as follows: secure, if it at least 7-character long; weak (non-blocking), if it has 6 char-
acters; or too short otherwise.

Weaknesses. Although the meter’s bar is very stringent on the number of characters
(i.e., 254 are required to fill the bar completely), the bar is colored in green when the
result of the server-side check is secure. Such a result is returned too frequently, grant-
ing Yandex the first position in our comparison in terms of overestimating password
strength (see Fig. 1 under Section 5.3).

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

12306.cn

A Large-Scale Evaluation of High-Impact Password Strength Meters A:15

3.5. Changes in Apple, eBay and Yahoo!

During our previous experiments (June/July 2013), we were able to reliably reverse-
engineer eBay’s (fully) server-side meter. Its algorithm was as follows: a single-charset
password is invalid, two is weak, three is medium and four is strong. The password
length becomes irrelevant, once passed the minimum requirement of six characters.
Almost a year after we informed eBay, we evaluate again their algorithm with our YA
and LinkedIn dictionaries (Nov. 2014). Although the core algorithm remains similar,
we noticed that for more than 13% of YA dictionary, results do not match with our pre-
vious model. These passwords are one rank above their estimated rank. As it turns
out, passwords with unexpected results are given varying feedback in time, e.g., hon-
gloan123 is expected to be weak, yet it may receive a medium score for no apparent
reason after successive trials. We are left to conclude it is a buggy behavior.

Similarly, we previously assessed Apple’s hybrid checker, which is sensitive to
charset complexity. A blacklist check is performed on the server, which used to include
parts of Top500, JtR and C&A. We tried to evaluate YA and LinkedIn dictionaries,
however, beyond simple change in the expected format for the blacklist check, we found
that the server reports negative results independently of the password requested af-
ter a number of consecutive tests. We also found that the meter reports unexpected
negative results from a different browser under a different IP address shortly after
we launched a series of tests. For this reason, we cannot properly evaluate our new
dictionaries. The client-side evaluation remains mostly the same.

Yahoo! dropped its checker altogether soon after our initial tests and resorted to a
more stringent policy only.

4. EMPIRICAL EVALUATION OF PASSWORD MANAGERS

Password meters are also available in several password managers. These managers
help users choose better passwords (or generate random ones) on any websites, and
store all user passwords in a password-protected encrypted vault. The master pass-
word creation is guided by a meter that plays a much more important role than the
ones in web services. Thus, one would expect better meters in such specialized soft-
ware. We evaluate the meters found in 1Password, LastPass, KeePass and RoboForm.
We follow the same analysis structure as for web-based meters.

4.1. 1Password

1Password is a password manager that protects various passwords and other forms of
identity information in a password-encrypted vault stored on a user’s device (computer
or smartphone), or optionally in the cloud. The master password creation is guided
by a password meter. This meter shows both a continuous progress bar and a label.
However, as this application is closed-source, we treat its algorithm as a black-box.
We later noticed that the browser extension that comes with the application, is also
equipped with a checker, which is significantly different from the one implemented in
the stand-alone application. We were not expecting 1Password to implement two dif-
ferent meters, so we stopped at the first one we encountered (i.e., the application/main
meter) and conducted its analysis before accessing the second meter (i.e., the browser
meter) that is only available after the creation of a password vault protected by the
master password. The main meter is also used to evaluate and present the strength of
each password stored in the vault. The 1Password browser extension generates ran-
dom passwords in the browser; however, users can modify or rewrite the passwords
completely, and get feedback on the resulting strength from the browser meter. We
first present the analysis of the black-box meter, as it demonstrates the possibility of
analyzing closed-source compiled implementations.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:16 X. de Carné de Carnavalet and M. Mannan.

Main password strength meter algorithm. Our method for uncovering the algorithm be-
hind this black-box is to identify the features used and understand their implications.
We can extract fine-grained strength output from this meter as it uses a continuous
progress bar whose value is rounded to the nearest integer and can be queried auto-
matically. The thresholds for label assignment are therefore easy to deduce.

The first parameter of interest is the length. We treat passwords as UTF-8 encoded
when measuring their length since our dictionaries are encoded as such. We found
a very high correlation coefficient of 0.9853 between the length and score, based on
the output for Top500. Moreover, we can approximately identify that the scores from
Top500 vs. the corresponding passwords length form two straight lines, and those from
phpBB form four straight lines (scores capped at 100). Considering the composition of
these dictionaries (one/two charsets in Top500, and one to four charsets in phpBB),
we infer that the number of charsets is another feature used in the algorithm. We
analyzed how special characters are counted: not all of them are considered, and multi-
byte characters are not processed properly on the master password’s selection screen,
i.e., the password length is counted as the number of bytes instead of the number of
characters (however, the evaluation of passwords in the records list is done correctly).

We can infer the rule separating the charset lines. For the same length passwords,
we observe that scores are linked together by a single coefficient (1.2), derived as fol-
lows. If we take passwords of length 13, for the number of charsets between 1–4, we
get scores of 47, 56, 67, and 81, respectively (i.e., scores here depend only on the num-
ber of charsets). These scores when rounded to the nearest integer can be linked as:
47 · 1.23 ≃ 56 · 1.22 ≃ 67 · 1.21 ≃ 81. We infer that the algorithm fits the following model
for scores between 0 and 100 (‖.‖ denotes the nearest integer of a given value):

score =
∥

∥α ·
(

length · β#charsets−1
)

+ γ
∥

∥ ;here: α, γ ∈ R, β = 1.2

Since there is no justification for providing non-zero score to a zero-length pass-
word, we set γ to 0 (matching our observations). Also, we believe the coefficient α is
derived from a simple expression due to the apparent simplicity of this meter. Finally,
as the four candidate values for α obtained by linear regression oscillate around 3.6,
we choose to set α = 3.6, resulting the following model:

score =
∥

∥3.6 · length · 1.2#charsets−1
∥

∥

At last, we need to infer the mapping from scores to the six possible categories as
follows: Terrible (0–10), Weak (11-20), Fair (21-40), Good (41-60), Excellent (61-90),
or Fantastic (91-100). Note that to accommodate the observed scores for passwords
containing a space and only non-recognized characters, we add an additional check
to our algorithm (see Algorithm 1 in the appendix). Our algorithm yields zero error
when evaluated against the rest of our dictionaries, indicating that we found the exact
algorithm of 1Password’s application meter.

Browser extension strength meter algorithm. Surprisingly, 1Password uses a different
password meter in its browser extension. This meter evaluates randomly generated
passwords; however, the user is allowed to modify a generated password as she wishes,
and the meter also reacts to user modifications. It differs from the one ranking the
master password in the stand-alone application in three ways: it is aware of some leet
transformations and mangling; it performs a blacklist check against a 228,268-word
dictionary (it lowers the evaluated password length by the length of the core word
found in the blacklist) ; and it differs in the way of identifying groups of characters (it
considers two sets of symbols found on a US keyboard instead of one).

Label assignment is identical in both versions; however, for the extension meter, the
label is used only to color the meter’s bar and is not displayed to the user. We noticed
that a coefficient of 1.2 is repeated several times throughout the algorithm, rewarding

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A Large-Scale Evaluation of High-Impact Password Strength Meters A:17

the presence of different charsets; we reverse-engineered the same coefficient in the
application version of the meter.

Weaknesses. An obvious drawback of 1Password is its use of two significantly differ-
ent checker algorithms. Users may not understand why the same password is ranked
differently by the same password manager. In addition, the master password that pro-
tects all secrets is guided by the worse of both meters. The application meter is de-
pendent only on the password length and number of charsets used, and lacks any
further checks such as blacklisting, pattern matching, and leet transformations. Thus,
it is unable to catch many weak passwords. Moreover, due to the way labels are as-
signed, most passwords fall under the “fair” category, even from the Top500 dictio-
nary (the meter has two labels below fair). Examples of weak passwords labeled as
good include password123, princess12 and 123456789a; excellent passwords include
123456789123456789 and 1q2w3e4r5t6y7u8i9o0p; and finally, abcdefghijklmnopqrstu-
vwxyz is labeled as fantastic.

Strengths. The extension meter performs better than its stand-alone application coun-
terpart. It is able to assign scores between “terrible” and “fair” in a sound way; e.g.,
simple dictionaries (Top500, Cfkr and JtR) are mostly assigned terrible and weak
scores, while their mangled versions only achieve a fair score. It detects some leet
transformations, and correctly identifies blacklisted words in its dictionary even when
the password is derived from a dictionary word with three additional non-letter char-
acters placed at the beginning and/or end of the word. Thus, it avoids assigning good
or better scores for our mangled dictionaries.

Updated version. Seven months after the company developing 1Password became
aware of our results, we tested a newer version of this application (v4.1.0.526, as of
Nov. 23, 2014). The major change is the consistency between the algorithm run in the
browser and the stand-alone application. The JavaScript version was dropped and the
evaluation is now fully handled by the application. Also, the algorithm is slightly dif-
ferent compared to the one we reverse-engineered for v1.0.9.340. Indeed, we found that
the coefficients α and β are changed to 3.08 and 1.1 respectively, instead of 3.6 and 1.2.
Also, the issue of counting characters is now swapped: the master password evaluation
counts correctly the number of characters, while the bars evaluating each recorded
passwords interprets the number of bytes taken by a password as its length. Finally, a
blacklist check is now performed against the Top 10000 dictionary, but not as thorough
as the previous browser extension (i.e., now a simple equality check of the lowercased
password). If the password matches a blacklisted word, its score downgrades to 20,
which is weak. In Fig. 1 (Section 5.3), we evaluate YA and LinkedIn against this new
version of the algorithm. The other dictionaries are evaluated against the previous
version of the application for Windows.

4.2. LastPass

LastPass is a password manager extension for popular web browsers and mobile plat-
forms. Users create a LastPass account using a master password evaluated by a meter.
The master password further encrypts the password vault, stored online. The service
handles identity information for the user and helps with the creation of new web ser-
vice accounts with a dedicated dialog box that is prefilled with a random password
that the user can further modify (similar to 1Password’s browser extension). The me-
ter does not come with a label associated with the evaluated strength, and provides
only a score between 0 and 100. Only LastPass 3.1.1 for Firefox (as of March 25, 2014)
is evaluated in our analysis.

Algorithm. The LastPass meter consists of only 28 lines of JavaScript code and per-
forms various checks as follows. If the password is exactly equal to the email address

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:18 X. de Carné de Carnavalet and M. Mannan.

of the user (while creating a LastPass account), the password receives a score of 1. If
the password is contained in the email address, the strength is penalized by 15 (i.e.,
the strength starts at −15 instead of zero). Conversely, if the email address is con-
tained in the password, the strength is penalized by a percentage equal to the length
of the email address. If the password contains only one unique character (despite rep-
etitions), the score is 2. The password length is then added to the strength and several
patterns are checked sequentially that increase the score: the password length is again
added to the score if it is less than 5 characters; 6 points are added if it has between 5
to 7 characters; 12 points if it has between 8 and 15 characters; 18 points if it is longer;
1 point for having lowercase letters; 5 points each time any of the following matches:
uppercase letters, digits, symbols, at least three digits, at least two symbols; 2 points
for having both lower and uppercase letters; 2 points for having both the previous rule
and digits; 2 points for having both the previous rule and symbols. Finally, the strength
is doubled and truncated between 0 and 100.

Weaknesses and user information. Many weak passwords are assigned decent scores;
e.g., password is ranked at 42%, and Password1 at 72% (due to the number of charsets
and length). Clearly, this checker focuses on rewarding a password rather than appro-
priately reducing its strength by additional checks of simple patterns. Rules are mostly
sensitive to the password composition, ignoring other patterns or common passwords.
Leet transformations are also not taken into account.

The password is verified against the email address by more than a simple equality
check, accounting for one included in the other. For the case where only the username
part of an email is reused in the password, the check is bypassed by adding an extra
character, e.g., email address john.doe@email.com and password john.doe1 are allowed.

4.3. KeePass

KeePass is an open-source password manager, which comes with a brief explanation
of how the manager’s password meter is designed as described on the KeePass help
center webpage at keepass.info. We analyze KeePass version 2.25 for Windows (as of
March 25, 2014). The password meter appears during the creation of a new password-
encrypted vault and a new entry in a vault. The meter represents the strength of a
given password as both an entropy score in bits and a progress bar filled at 128 bits.
The translation to labels provided on the KeePass help center webpage suggests the
following mapping: very weak (0–64), weak (64–80), moderate (80–112), strong (112–
128), very strong (128+). However, we report strengths grouped into five equal ranges
since no label is provided to users. Moreover, this proposed label mapping is apparently
unrealistic since a password would be considered very weak until it reaches 50% of the
meter and weak until 63% (which is already in a green area).

Algorithm. KeePass uses a rather comprehensive algorithm as its checker (similar to
Dropbox). It detects several patterns in a password, including: repeated substrings of
length 3 or more (e.g., as in passwordpassword or winter14winter), groups of 3 digits
or more, sequences of 3 characters or more whose UTF-8 code values are separated by
a regular interval (e.g., abcdef and 123456 with a distance of 1, acegi and 86420 with a
distance or 2 and -2, respectively). The checker also performs a leet-aware dictionary
check against a list of 10,183 words.

KeePass distinguishes between lowercase (L)/uppercase (U) letters, digits (D), sym-
bols from a US keyboard (S), along with an extended set of international letters and
symbols (H) from code points 0xA1 to 0xFF (upper part of the extended ASCII), and
denotes other characters in set X. Patterns are further classified as R for repetitions,
W for words in the dictionary, C for sequences of characters, and N for groups of digits.
The password is decomposed into all possible (with likely overlapping) patterns, each
having an entropy computed based on the pattern type. See Algorithm 2 in the ap-

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

keepass.info

A Large-Scale Evaluation of High-Impact Password Strength Meters A:19

pendix for full details. Note that when detecting patterns of a certain type (R, W, C or
N), the longest ones are matched first, from left to right, and a detected pattern cannot
overlap with another one of the same type. For example, in Password123, Password1
is detected as a dictionary word (pattern W), however, Password alone will be ignored
to reduce the number of pattern combinations that would overestimate the strength of
the password. The representation of Password123 becomes the following:

W
︷ ︸︸ ︷

P
︸︷︷︸

U

a
︸︷︷︸

L

s
︸︷︷︸

L

s
︸︷︷︸

L

w
︸︷︷︸

L

o
︸︷︷︸

L

r
︸︷︷︸

L

d
︸︷︷︸

L

1
︸︷︷︸

D

2
︸︷︷︸

D

3
︸︷︷︸

D
︸ ︷︷ ︸

N
︸ ︷︷ ︸

C

The overall entropy for each combination of patterns is calculated. Simple characters
that are not part of R, W, C or N belong to the corresponding groups previously identi-
fied (L, U, D, S, H or X) and whose entropy is defined as log2(group size), respectively.
In the example above, all combinations include ULLLLLLLDDD, ULLLLLLLN, ULL-
LLLLLC and WDD. In contrast to Dropbox, which simply combines entropies together
by addition and considers non-dictionary string as random string, KeePass relies on
an “optimal static entropy encoder” (as mentioned on the KeePass help center web-
page). This encoder first takes into account the sum of entropies and includes a cost
associated to the number and nature of the patterns found in the password (having
more patterns yields more complex password). At last, it computes the entropy of un-
recognized strings (remaining characters in L, U, D, S, H, X, that are not part of any
other patterns) based on their characters distribution among the single-character sets.
The final score is assigned with the entropy of the combination of patterns that yields
the minimum value. KeePass yields a slightly bigger combined entropy for the same
identified patterns compared to Dropbox’s algorithm.

Strengths. A special extended symbol charset takes into account international symbols
beyond the symbols available on a US keyboard. This is one of the rare attempts to
consider internationalized passwords. The translation table for leet transformations is
the most comprehensive among the meters we tested; the table incorporates more than
a hundred transformations, including simplifications of accented letters (e.g., é → e).
KeePass rejects our simple dictionaries and their mangled and leet-transformed ver-
sions without involving a stringent policy. In fact, no policies are enforced on password
input/ranking. Such a design is more realistic, and remarkable in contrast to meters
showing good results only with stringent policy checks.

Weaknesses. KeePass is primarily intended for traditional passwords that contain
random characters or one or two core words. No special consideration is given to
passphrases; e.g., love is in the air ranks 76 bits (59%). In this case, only love is part
of the dictionary. Dropbox is more optimized in this regard, as it detects small words
such as “the” or “is”. This example passphrase is as good as the 13-character random
password !X>g$r6ˆG+MX (75 bits), which also highlights the stringency of this meter.
In fact, only carefully-chosen 20-character long random passwords can successfully
fill the meter, e.g., &bˆp6Mvm97Hc#$1Oa*S5 (129 bits), which makes KeePass as the
most stringent meter we analyzed (without depending on policies). Finally, although
extensive checks are performed to detect sequences, the algorithm does not check for
spatial keyboard combinations, e.g., a1s2d3f4g5h6j7k8, which is ranked 81 bits (63%).

4.4. RoboForm

RoboForm is a password manager that comes both as a stand-alone application and a
browser extension. Unfortunately, the browser extension calls functions implemented

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:20 X. de Carné de Carnavalet and M. Mannan.

in the application binary through a Dynamic-Link Library for Windows; thus, the
source code for password evaluation is unavailable (i.e., not written in JavaScript). The
output profile of this checker is totally different than all other meters we evaluated. We
tried to infer its logic by applying the same technique as used with 1Password without
success, as no pattern emerged from various representations of password scores. To
understand how the algorithm treats passwords, we reverse-engineer identities.exe
from RoboForm version 7.9.5.7 for Windows (as of March 25, 2014), which handles the
creation of a master password with the help of a meter, and understand the types of
checks the meter performs. Details about how we reverse-engineered the application
are given in Section 2.2.4.

Algorithm. The debugging of the program reveals several checks run against a can-
didate password. At first, we identified four simple functions for detecting if a given
character is a lowercase or uppercase letter, a non-letter, a digit, or a symbol (only
special characters found on a US keyboard are considered). These functions are then
part of more refined checks. This gives a first idea about the types of checks involved in
the algorithm, which are mainly focused on password composition. For each detected
pattern, a penalty or reward is added to the overall score. To the best of our under-
standing, checks include the presence of digits only, count of non-lowercase characters,
count of non-letter characters, presence of both digits and symbols, count of repeti-
tions. More advanced patterns are searched such as the succession of two characters
that are typed from the same key on a US keyboard (e.g., “a” and “A”, or “5” and “%”)
or from adjacent keys, along with simple keyboard sequences (e.g., q1w2e3r4t5y). A
blacklist check is also performed against an embedded dictionary of 29,080 words and
keyboard sequences. We did not cover all the checks run by RoboForm, nor did we write
a full-fledged equivalent algorithm since we gained enough insights to understand its
strengths and weaknesses. Also, understanding all the details of the algorithm from
reverse-engineering the binary file is a time-consuming task.

Strengths. The algorithm checks for several patterns with a particular emphasis given
to keyboard sequences. RoboForm is the only algorithm that embeds a list of sequences
in its dictionary, in addition to the ones that are easy to check programmatically. It also
catches the most of TCJ passwords and assigns them a score below good.

Weaknesses. RoboForm fails to detect many mangled passwords and does not consider
leet transformations. A fair amount of our dictionaries are ranked better than good,
and even excellent. Among such good passwords, we find Password1 ranked 4/5 (be-
tween good and excellent), Basketball and A1b2c3d4. The latter is surprising given
the many keyboard patterns the meter checks. These three examples are taken from
Top500+M that includes variations of the simplest dictionary. The dictionary check is
able to penalize words that are included in one of the blacklisted words irrespective
of the case; however, any additional characters bypass this check, resulting in score
jumps, e.g., password is weak (1/5) while password1 is ranked 4/5.

5. RESULTS ANALYSIS

Below, we further analyze our results from Sections 3 and 4, list several common fea-
tures and weaknesses, and compare the meters.

5.1. Summary

Here we summarize our findings by grouping the meters according to the core algo-
rithm they are relying on. We also consider the presence of several features.

Most checkers we evaluated heavily rely on the presence of characters included
into the four main charsets (lower/uppercase letters, digits and symbols); hence we
name their category as LUDS. LUDS checkers, especially if combined with a dictionary

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A Large-Scale Evaluation of High-Impact Password Strength Meters A:21

check, mainly reward random-looking passwords, and discourage passphrase-looking
passwords that include only lowercase letters. Most LUDS checkers we evaluated
(12/18), combine charset complexity with password length. 7 LUDS checkers involve a
dictionary check; only 4 consider mangling and leet transformations. 6 LUDS checkers
perform further check for patterns; 4 of them search for patterns only to increase the
strength score. Among the remaining 3 non-LUDS checkers, 2 of them (Dropbox and
KeePass) mainly rely on advanced pattern checking, e.g., sequences, repetitions, dic-
tionary words with mangling and leet-awareness, keyboard patterns, human-readable
patterns (e.g., dates), combined with a conservative entropy calculation. These two
checkers yield sound response profiles to our test dictionaries, i.e., they rank the base
dictionaries as weak and the mangled and leet ones only slightly better. The last
checker, Google, remains a mystery to us due to its black-box nature and inconsistent
output. Table 5.1 summarizes the types and capabilities of the evaluated meters.

As expected, embedded dictionaries of the meters involving a blacklist check overlap
with parts of our dictionaries; see Table 5.1. Most embedded dictionaries contain a
significant portion of Top500, Cfkr and JtR (but not completely). 1Password is almost
fully taken from C&A dictionary (99.58% come from it, which represents 74.11% of
C&A). Dropbox’s dictionary includes most of KeePass and Twitter dictionaries.

5.2. Meters Heterogeneity and Inconsistencies

In general, each meter reacts differently to our dictionaries, and strength results vary
widely from one to another. For example, Microsoft v2 and v3 checkers assign their
best score to only a very small fraction of our passwords, while Google assigns its
best score to more than 5.8 million of them (about 66%). For individual checkers, some
simple dictionaries score significantly higher than others, e.g., Top500 and JtR when
tested against Twitter; 75% of Top500 words are considered obvious and the rest are
too short; however, 58% of JtR words are considered “Could be More Secure” (2 or 3
steps up from Top500). As for individual passwords, possibly the most baffling example
is Password1, which receives the widest possible scores, ranging from very weak for
Dropbox to very strong for Yahoo!. It also receives three different scores by Microsoft
checkers (i.e., strong, weak and medium chronologically). While our leet dictionary is
mostly considered strong by Microsoft v1, it becomes mostly weak in v2, and medium
in v3. Such inconsistent jumps demonstrate the relativity of password strength even
by the same vendor at different times.

Some inconsistencies are particularly evident when a password passes the minimum
requirements. For example, password$1 is correctly assigned very-weak by FedEx, but
the score jumps to very-strong when the first letter is uppercased. Such modifications
are normally considered very early in a cracking algorithm; hence, such a jump is
unlikely to match reality. Similarly, qwerty is tagged as weak by Yahoo!, while qwerty1
jumps to strong; password0 is weak and password0+ is strong as per Google. Finally,
as expected, a random password +ˆv16#5{](is rated as strong by most checkers (or at
least medium by Microsoft v3 and eBay); surprisingly, FedEx considers it as very-weak.
These problems can be mostly attributed to stringent minimum requirements.

One possible consequence of these heterogeneous behaviors is user confusion with
regard to their password strength. When opposite strength values are given for the
same password by different services, users may not understand the reason behind such
results, which may discourage them from choosing stronger passwords. It may also en-
courage them to search for easy tricks to bypass stringent restrictions rather than re-
considering their password. Also, permissive meters may drive users to falsely assume
their weak password as strong, and provide only a false sense of security (cf. [Hei-
jningen 2013]), which in turn may encourage users to reuse such weak passwords for

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:22 X. de Carné de Carnavalet and M. Mannan.

Table III. Dictionary overlaps shown in percentage relative to the size of the dictionary from the left-most
column, e.g., 95.99% of Top500 is included in phpBB. Checkers’ embedded dictionaries overlaps are
also represented. ˜0 means less than 0.01%

Top500 Cfkr JtR C&A RY5 phpBB Top500+M Cfkr+M JtR+M RY5+M Leet Yahoo! LinkedIn

Top500 - 6.61 84.37 89.18 99.00 95.99 0 0 2.20 0 0 95.59 74.75

Cfkr 18.23 - 45.86 46.41 93.92 86.74 2.76 0 3.87 1.66 0 81.77 77.90

JtR 11.88 2.34 - 73.34 95.99 85.08 6.21 0.59 0 0.82 0 82.88 72.81

C&A 0.15 0.03 0.85 - 8.59 4.03 0.06 ˜0 0.18 0.23 0 3.98 10.32

RY5 0.09 0.03 0.60 4.68 - 7.73 1.22 0.11 4.86 0 ˜0 12.03 42.87

phpBB 0.26 0.09 1.64 6.70 23.61 - 0.74 0.11 2.07 2.19 ˜0 10.82 25.86

Top500+M 0 0.02 0.98 0.75 30.44 6.09 - 4.40 83.84 19.25 0 10.26 32.86

Cfkr+M 0 0 0.45 0.32 12.73 4.43 21.08 - 43.19 15.82 0 5.52 19.95

JtR+M 0.01 ˜0 0 0.38 18.75 2.61 12.95 1.39 - 17.99 0.01 5.04 21.30

RY5+M 0 ˜0 ˜0 0.03 0 0.19 0.20 0.03 1.21 - 0.01 0.36 4.60

Leet 0 0 0 0 ˜0 ˜0 0 0 ˜0 0.03 - ˜0 0.02

Yahoo! 0.14 0.04 0.86 3.56 19.77 5.83 0.67 0.08 2.15 2.31 ˜0 - 22.96

LinkedIn 0.01 ˜0 0.05 0.62 4.74 0.94 0.15 0.02 0.61 1.96 ˜0 1.54 -

1Password 0.12 0.02 0.63 99.58 7.60 3.50 0.04 ˜0 0.20 0.23 0 3.66 10.13

DropBox 0.58 0.17 3.50 35.66 39.43 17.53 0.76 0.10 2.01 2.75 0 18.40 40.10

FedEx 14.49 4.77 45.23 98.76 89.05 75.09 0.88 0.18 1.94 0.53 0 76.68 92.05

KeePass 4.89 1.30 27.49 57.81 89.93 74.57 4.75 0.34 7.68 0.41 0 72.80 71.40

Microsoft v1 6.08 1.51 23.78 98.58 65.22 46.98 0.35 0.04 0.71 0.22 0 46.32 56.39

RoboForm 1.57 0.16 5.08 36.32 40.23 16.65 0.15 0.02 0.52 0.73 0 16.92 34.11

Twitter 93.77 7.98 85.54 87.03 98.00 95.01 0.25 0 2.74 0 0 95.26 97.51

1Password DropBox FedEx KeePass Microsoft v1 RoboForm Twitter

Top500 54.71 99.60 16.43 99.80 27.45 91.78 75.35

Cfkr 25.97 77.90 14.92 72.93 18.78 25.41 17.68

JtR 40.25 83.92 7.22 78.96 15.12 41.64 9.68

C&A 74.11 9.89 0.18 1.92 0.72 3.44 0.11

RY5 3.08 5.96 0.09 1.63 0.26 2.08 0.07

phpBB 4.33 8.09 0.23 4.12 0.57 2.63 0.21

Top500+M 0.39 2.88 0.02 2.15 0.04 0.20 ˜0

Cfkr+M 0.17 1.75 0.02 0.75 0.02 0.13 0

JtR+M 0.31 1.17 0.01 0.54 0.01 0.10 0.01

RY5+M 0.02 0.11 ˜0 ˜0 ˜0 0.01 0

Leet 0 0 0 0 0 0 0

Yahoo! 2.44 4.57 0.13 2.16 0.30 1.44 0.11

LinkedIn 0.45 0.67 0.01 0.14 0.02 0.19 0.01

1Password - 9.12 0.17 1.69 0.65 1.34 0.11

DropBox 24.47 - 0.58 11.89 2.00 13.97 0.46

FedEx 68.02 86.75 - 72.97 96.11 94.88 14.49

KeePass 37.86 99.37 4.06 - 8.76 28.68 3.84

Microsoft v1 65.35 75.51 24.13 39.57 - 44.94 4.79

RoboForm 10.48 40.87 1.85 10.04 3.48 - 1.25

Twitter 60.85 97.51 20.45 97.51 26.93 90.52 -

other more important accounts. However, the real effects of wrong/incoherent meter
outcomes on users may be demonstrated only by a large-scale user study.

5.3. Comparison

In Sections 3 and 4, we provide results of individual meter evaluation. Here, we com-
pare the meters against each other. As strength scales vary significantly in terms of
labels and the number of steps in each scale (see Table 2.1), we simplified the scales for
our comparison. Fig. 1 shows the percentages of the dictionaries that are tagged with
an above-average score by the different web services, sorted by decreasing cumulative
percentages. To be conservative, we choose to count only the scores labeled at least
“Good”, “Strong” or “Perfect”. For KeePass, we count scores greater than 64 bits of en-
tropy (meter’s bar goes up to 128). For LastPass, we count scores greater than 50%. See
thresholds in Table 2.1. Clearly, such scores should not be given to most of our test set
(possible exceptions could be the complex passwords from leaked dictionaries).

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A Large-Scale Evaluation of High-Impact Password Strength Meters A:23

Table IV. Summary of the types of meters and their capabilities. Notation used under “Type”: LUDS (Lower-
case/Uppercase/Digit/Symbol) is a type of meter that is mainly sensitive to the number of charsets, “?” means
we are unsure. “Length”: whether the meter includes the password length in its calculation beyond a minimum
requirement. “Patterns”: ↑ denotes checks for rewarding patterns, ↓ denotes checks for penalizing patterns, “?”
means we are unsure. “Dictionary and variations”: The column “Basic” denotes whether at least a simple dic-
tionary check is performed. “Leet” represents whether a leet transformations are taken into account. “Mangling”
represents whether a dictionary check prevents bypassing by addition of few other characters before or after
the detected word. “Multiple” represents whether the meter is able to detect multiple dictionary words inside the
password. In the case dictionary checks are not performed, the last four columns are noted with a “–”.

Name Type Length Patterns
Dictionary and variations

Basic Leet Mangling Multiple

Dropbox
Advanced
patterns

X ↑↓ X X X X

Drupal LUDS × × –
FedEx LUDS X × –
Microsoft v1 LUDS X × X X × ×

Microsoft v2 LUDS X × –
Microsoft v3 LUDS1 X × –
Tencent QQ LUDS × × –
Twitter LUDS X ↑ X × × ×

Yahoo! LUDS × × –
12306.cn LUDS × × –
eBay LUDS × × –
Google ? X ? X × × X

Skype LUDS X2
× –

Yandex LUDS X × X × X ×

Apple LUDS X ↑ X × × ×

PayPal LUDS × ↓ X × X ×

1Password
(software)

LUDS X × –

1Password
(browser)

LUDS X ↑ X X X ×

LastPass LUDS X ↑ –

KeePass
Advanced
patterns

X ↑↓ X X X X

RoboForm LUDS X ↑↓ X × × ×

1 Charset check is only taken into account for the strongest label
2 Length check is only taken into account for the strongest label

In reality, Google, RoboForm, Drupal, Yahoo! and LastPass assign decent scores
to passwords from our base dictionaries; see Fig. 1a. Non-negligible percentages of
Top500 (1.6%), Cfkr (15.5%) and JtR (12%) are qualified as good both by Drupal and
Yahoo!; these checkers also tag roughly 40% of RY5 and 45% of phpBB passwords as
good. This similarity possibly originates from the simple design of their meters, which
perform similar checks. Google assigns good scores to 71.2% of C&A, 28.6% of RY5 and
44.5% of phpBB. Other checkers categorize our base dictionaries mostly as weak.

The mangled and leet dictionaries trigger more distinctive behaviors. Drupal, Ya-
hoo!, RoboForm, LastPass and Google still provide high scores with a minimum of
25.6% given to Top500+M and up to 100% to Leet. Google also rates 100% of Leet as
good or better. Leet also completely bypasses Microsoft v1 and PayPal. Overall, it also
scores significantly higher than other dictionaries against FedEx, eBay, Twitter, KeeP-
ass, Dropbox, Skype, 1Password, Microsoft v2 and Apple. Only Microsoft v3 is able to
catch up to 98.9% of this dictionary (due to the use of a very stringent policy).

Our comparison graphs are not a competitive ranking of the meters. Although the
ones that evaluate many of our dictionaries as good certainly have design deficiencies,
it does not imply the remaining meters are good. For example, 12306.cn seems to be
the “best” checker based on Fig. 1c as it does not classify any of our passwords as

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:24 X. de Carné de Carnavalet and M. Mannan.

TCJ
C&A
RY5
phpBB

0
20

40
60

80
10
0

Yandex Google RoboForm Drupal Yahoo! LastPass 1Password Dropbox Microsoft QQ PayPal

3
9

8
0

5
6 6
2

0
.6

7
1

2
9

4
4

5
.3

5
8

3
1

4
2

1
2

0
.1

4
0 4
5

1
2

0
.1

4
0 4
5

3
.4

1
3

2
7

3
4

0
.2

1
9

6
.5 1
1

0

1
5

1
.3

1
1

0

7
.6

0
.5 0
.5

0 0 0
.6 4
.6

0 0 0
.5 4
.3

(a) Comparison using our base dictionaries; the meters that are unlisted assign a decent strength score to
very few passwords from these dictionaries (close to 0%).

0
20

40
60

80
10
0

Yandex Drupal Yahoo! RoboForm Google LastPass 1Password QQ PayPal

8
0 8
5

6
6

7
7

9
8

6
9 7
4 7
7

6
5

1
0
0

6
9 7
4 7
5

6
5

1
0
0

6
5

7
5

4
6

5
7

1
0
0

6
1

7
4

35

5
7

1
0
0

5
8

6
6

4
6 5
0

1
0
0

6.
9 10

16

25

1
0
0

8.
4

22

9.
8

10

1
0
0

7.
9

21

8.
2 10

1
0
0

(b) Comparison using our mangled and leet dictionaries (less stringent meters)

YA
LinkedIn
TCJ+M
RY5+M
Leet

0
20

40
60

80
10
0

Dropbox eBay FedEx Twitter Skype Apple KeePass Microsoft 12306.cn

15

23

1.
5 7.
1

27

3.
1 8.
6

0 0

55

3.
8 10

3.
5 6.
3

38

2.
4 6.
8

0 0.
2

50

0.
9

1.
6

0 0

37

N
/A

N
/A

0 0

20

0.
4

0.
4

0 0.
2 6.
6

0.
9 2.
7

0.
1

1.
3

1.
1

0.
3

0.
6

0 0 0

(c) Comparison using our mangled and leet dictionaries (more stringent meters)

Fig. 1. Comparison between services assigning decent scores to our base and mangled/leet dictionaries.
Microsoft is represented by its latest checker, and 1Password is represented by its application version (v4
for YA and LinkedIn, v1 otherwise). N/A represents passwords that are not evaluated due to site policies.

good. However, this is achieved only due to the mandatory presence of the underscore
character “ ” (along with digits and mixed-case letters) for a password to be ranked as
good. Clearly, this particular requirement does not reflect a good design. Hence, Fig. 1
alone should be treated mostly as the number of false positives for each meters, i.e., the
number of weak passwords misclassified as good, but does not claim anything about
the true positives (real strong passwords detected as such), the false negatives (strong
passwords labeled as weak), and true negatives (weak passwords labeled as such).

5.4. International Characters

We have not tested passwords with international characters due to the lack of dic-
tionaries with a considerable number of such passwords. International characters are
also usually not properly handled by web servers (see e.g., [Bonneau and Xu 2012]).
We briefly discuss how such characters are taken into account by different meters.

International characters, when allowed, are generally considered as part of the sym-
bols charset (or “others” by Microsoft v2). However, this charset is limited to specific

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A Large-Scale Evaluation of High-Impact Password Strength Meters A:25

symbols for all meters except Dropbox, Drupal and KeePass. Google prevents the use
of international characters altogether, while Apple allows some of them below ASCII
code 193, but does not count them in any charset.

As for character encoding, passwords in the tested server-side and hybrid check-
ers are always encoded in UTF-8 prior to submission. This is because the registration
pages are rendered in UTF-8, and browsers usually reuse the same encoding for form
inputs by default [Bonneau and Xu 2012]. Passwords are also correctly escaped with
percentage as part of URI encoding by Apple, eBay, Google and Skype. However, Pay-
Pal shows an interesting behavior in our tests: it sends the HTTP Content-Type header
application/x-www-form-urlencoded; charset=UTF-8, meaning that a properly URI en-
coded string is expected as POST data. However, no encoding is performed and charac-
ters that require escaping are sent in a raw format, e.g., search str=myspace1&PQne)!(4,
where the password is myspace1&PQne)!(4. The character ‘&’ interferes with the pars-
ing of search str argument and the remaining of the password (PQne)!(4) is dropped
from the check. Then, as myspace1 is blacklisted, the entire password is blacklisted.
However, removing the ampersand makes the entire password being evaluated, which
in turn is not blacklisted, and even tagged as strong. Also, UTF-8 characters are sent in
a raw format (the proper Content-Type should be multipart/formdata in this case [Bon-
neau and Xu 2012]). To get the same output as the PayPal website, we carefully imple-
mented this buggy behavior in our tests.

5.5. Implications of Design Choices

Client-side checkers as tested in our study can perform either very stringently (e.g.,
FedEx, Microsoft v2), or very loosely (e.g., Drupal). Server-side checkers may also be-
have similarly (e.g., Skype vs. Google). Finally, hybrid checkers behave mostly the
same as client-side checkers with an additional (albeit primitive) server-side black-
list mechanism. Apparently, no specific checker type, web- or application-based, out-
performs others. Nevertheless, server-side checkers inherently obscure their design
(although it is unclear if such obfuscation is beneficial). Along with hybrid checkers,
a blacklist can be updated more easily than if it is hard-coded in JavaScript. Most
checkers in our study are also quite simplistic: they apply simple rules with regard
to password length and charset complexity, and sometimes detect common password
patterns; this observation also stands for server-side checkers. Dropbox is the only
exception, which uses a rather complex algorithm to analyze a given password by de-
composing it into distinguished patterns. It is also the only checker with KeePass able
to rate our leet dictionary most effectively, without depending on stringent policy re-
quirements (as opposed to Microsoft v2 and v3 checkers).

5.6. Stringency Bypass

Users may adopt simple mangling rules to bypass password requirements and im-
prove their password strength score [Shay et al. 2010]. However, most checkers (except
Dropbox, KeePass, PayPal and 1Password for Firefox), apparently disregard password
mangling. Even trivial dictionaries when mangled, easily yield better ranked pass-
words. For example, Skype considers 10.5% of passwords as medium or better, when
we combine (Top500, C&A, Cfkr and JtR) dictionaries; for the mangled version of the
combined dictionary, the same rating is resulted for 78% of passwords. This gap is even
more pronounced with Google, where only five passwords from the combined dictionary
are rated strong (0.002%), while tens of thousands from the mangled version (26.8%)
get the same score. Our mangled dictionaries are built using only simple rules (e.g., do
not result in 4-charset passwords). Our leet-transformed dictionary, which contains 4-
charset passwords, appears to be highly effective in bypassing password requirements
and resulting high-score passwords; see Fig. 5.3.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A:26 X. de Carné de Carnavalet and M. Mannan.

5.7. Password Policies

Some password policies are explicitly stated (e.g., Apple and FedEx), and others can
be deduced from their algorithms or outputs. However, policies as used for measur-
ing strength remain mostly unexplained to users. Differences in policies are also the
primary reason for the heterogeneity in strength outcomes. Some checkers are very
stringent, and assign scores only when a given password covers at least 3 charsets
(e.g., FedEx), or disallow the password to be submitted for blacklist check unless it
covers the required charsets and other possible requirements (e.g., Apple, PayPal);
other checkers apparently promote the use of single-charset passphrases. Policies also
widely vary even between similar web services. Interestingly, email providers such as
Google and Yahoo! that deal with a lot of personal information, apply a more lenient
policy than FedEx, which stores arguably less sensitive information. Since our evalua-
tion, Yahoo! has removed its strength meter, and now relies only on a stringent policy.

6. DIRECTIONS FOR BETTER CHECKERS

In this section, we briefly discuss few suggestions to improve current meters as appar-
ent from our analysis. For challenges in designing a reliable meter, including impli-
cations of online vs. offline attacks, password leaks, passphrases, and relative perfor-
mance of dictionaries, see our NDSS paper [Carnavalet and Mannan 2014].

Several factors may influence the design of an ideal password checker, including:
inherent patterns in user choice, dictionaries used in cracking tools, exposure of large
password databases, and user-adaptation against password policies. Designing such
a checker would apparently require significant efforts. In terms of password creation,
one may wonder what choices would remain for a regular user, if a checker prevents
most logical sequences and common/leaked passwords.

Checkers must analyze the structure of given passwords to uncover common pat-
terns, and thereby, more accurately estimate resistance against cracking. Simple
checkers that rely solely on charset complexity with stringent length requirements
may mislead users about their password strength. Full-charset random passwords are
still the best way to satisfy all the checkers, but that is a non-solution for most users
due to obvious memorability issues. On the positive side, as evident from our analy-
sis, Dropbox’s rather simple checker is quite effective in analyzing passwords, and is
possibly a step towards the right direction (KeePass also adopts a similar algorithm).

If popular web services were to change their password-strength meter to a
commonly-shared algorithm, part of the confusion would be addressed. At least, new
web services that wish to implement a meter, should not start the development of yet
another algorithm, but rather consider using or extending zxcvbn [Wheeler 2012] (un-
der a permissive license). Meters embedded in software such as password managers
should also consider KeePass’ open-source implementation (under GNU GPLv2).

However, the limitation of embedded dictionaries in meters is still present. One of
the common basic weaknesses is to assign a large entropy to a section of a password
that is not identified as a dictionary word or as another pattern. In practice, an at-
tacker may try to use a more exhaustive dictionary than the ones considered by these
meters, before resorting to a simple unintelligent brute-force attack. Meters may be-
come more realistic if they were to include known dictionaries available to attackers.
The total number of dictionary words may then reach a hundred million (consider-
ing the Openwall Project’s, CrackStation’s, and Wikipedia-derived wordlists), which
is impractical to embed in client applications. Compression algorithms such as the
ones proposed in the 1990s or early 2000 [Spafford 1992; Davies and Ganesan 1993;
Bergadano et al. 1998; Blundo et al. 2004] to compress megabytes into kilobytes may
be reused to compress gigabytes into megabytes.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

A Large-Scale Evaluation of High-Impact Password Strength Meters A:27

As discussed, current password meters must address several non-trivial challenges,
including finding patterns, coping with popular local cultural references, and dealing
with leaked passwords. Considering these challenges, with no proven academic solu-
tion to follow, it is possibly too demanding to expect a correct answer to: is a given
password “perfect”? We believe password meters can simplify such challenges by lim-
iting their primary goal only to detecting weak passwords, instead of trying to distin-
guish a good, very good, or great password (as adopted by Intel’s independent password
checker,4 although with a poor implementation). Meters can also easily improve their
detection of weak passwords by leveraging known cracking techniques and common
password dictionaries. In contrast, labeling passwords as perfect may often lead to er-
rors (seemingly random passwords, e.g., Ph’nglui mglw’nafh Cthulhu R’lyeh wgah’nagl
fhtagn1 may not be as strong as they may appear [ArsTechnica.com 2013]).

7. RELATED WORK

Below we discuss few selected studies related to password policies, meters and crack-
ing. A more comprehensive discussion is available elsewhere [Carnavalet 2014].

Florêncio and Herley [2010] review the password requirements of 75 commercial,
government, and educational websites. They report that stringent policies are unex-
pectedly found at websites that may not need them, while easily-interchangeable ser-
vices adopt more lenient policies for usability. This may explain why services as Google,
Yahoo! and Yandex Mail have very lenient meters as evident from our results.

In a recent user study, Ur et al. [2012] tested the effects of 14 visually-different
password meters on user-chosen password creation for a fake email account (users
were informed that passwords were the object of study). They found that meters in-
deed positively influence user behavior and lead to better password quality. Users tend
to reconsider their entire password when a stringent evaluation is given, rather than
trying to bypass the checker. Passwords created under such strict evaluation were sig-
nificantly more resistant to guessing attacks. However, meters with too strict policies
generally annoyed users and made them put less emphasis on satisfying the meters.
We focus on the algorithms behind several currently deployed meters, and identify
weaknesses that may negatively impact regular users.

Egelman et al. [2013] also reported positive influence of password meters. This study
also considered context-dependent variations in the effectiveness of meters, and found
that passwords created for an unimportant account are not significantly influenced
by the presence of a meter. They found that the presence of a meter during password
change for an important account resulted in stronger user-chosen passwords. The idea
of a peer-pressure meter design was also introduced, where a user is given feedback on
the strength of her password compared to all other users of a particular service.

Furnell [2011] analyzed password guidelines and policies of 10 major web services.
The study primarily relied on stated guidelines/policies, and used selective passwords
to test their implementation and enforcement. Several inconsistencies were found, in-
cluding: differences in meters/policies between account creation and password reset
pages; the vagueness of recommendations given to users for password strengthening;
and the disconnect between stated password guidelines and effective password evalu-
ation and enforcement. We provide a more comprehensive analysis, by systematically
testing widely-deployed password meters against millions of passwords, and uncover-
ing several previously unknown weaknesses.

Castelluccia et al. [2012] leverage the use of Markov models to create an adaptive
password-strength meter (APSM) for improved strength accuracy. Strength is esti-
mated by computing the probability of occurrence of the n-grams that compose a given

4https://www-ssl.intel.com/content/www/us/en/forms/passwordwin.html

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

https://www-ssl.intel.com/content/www/us/en/forms/passwordwin.html

A:28 X. de Carné de Carnavalet and M. Mannan.

password. The APSM design also addresses situations where the n-gram database of a
given service is leaked. APSMs generate site-dependent strength outcomes, instead of
relying on a global metric. The n-gram database is also updated with passwords from
new users. To achieve good strength accuracy, APSMs should be used at websites with
a large user base (e.g., at least 10,000).

In its community-enhanced version, John the Ripper [OpenWall.com 2014] offers
a Markov cracking mode where statistics computed over a given dictionary are used
to guide a simple brute-force attack; only the most probable passwords are tested.
This mode is based on the assumption that “people can remember their passwords
because there is a hidden Markov model in the way they are generated” [OpenWall.com
2014]. In fact, this mode is an implementation of a 2005 proposal from Narayanan and
Shmatikov [2005], which predicts the most probable character to appear at a certain
position, given the previous characters of a password. The Markov mode in JtR is
more suitable for offline password cracking than generating a dictionary for online
checkers as it produces a very large number of candidate passwords (e.g., in the range
of billions). Therefore, we did not consider using such dictionaries in our tests.

8. CONCLUSION

Passwords are not going to disappear anytime soon and users are likely to continue
to choose weak ones because of many factors, including the lack of motivation/feasi-
bility to choose stronger passwords (cf. [Herley and van Oorschot 2012]). Users may
be forced to choose stronger passwords by imposing stringent policies, at the risk of
user resentment. An apparent better approach is to provide appropriate feedback to
users on the quality of their chosen passwords, with the hope that such feedback will
influence choosing a better password, willingly. For this approach, password-strength
meters play a key role in providing feedback and should do so in a consistent manner
to avoid possible user confusion. In our large-scale empirical analysis, it is evident that
the commonly-used meters are highly inconsistent, fail to provide coherent feedback,
and sometimes provide strength measurements that are blatantly misleading.

We highlighted several weaknesses in currently deployed meters, some of which are
rather difficult to address (e.g., how to deal with leaked passwords). Designing an ideal
meter may require more time and effort; the number of academic proposals in this area
is also quite limited. However, most meters in our study, which includes meters from
several high-profile web services (e.g., Google, Yandex, PayPal) and popular password
manager applications (e.g., LastPass, 1Password) are quite simplistic in nature and
apparently designed in an ad-hoc manner, and bear no indication of any serious efforts
from these service providers and application developers. At least, the current meters
should avoid providing misleading strength outcomes, especially for weak passwords.
We hope that our results may influence popular web services and password managers
to rethink their meter design, and encourage industry and academic researchers to
join forces to make these meters an effective tool against weak passwords.

ACKNOWLEDGMENTS

We are grateful to anonymous NDSS2014 and TISSEC reviewers for their insightful suggestions and advice.

We also thank the members of Concordia’s Madiba Security Research Group, especially Arash Shahkar and
Jeremy Clark, for their suggestions and enthusiastic discussion on this topic. The second author is supported
in part by an NSERC Discovery Grant and FRQNT Programme établissement de nouveaux chercheurs.

REFERENCES

ArsTechnica.com. 2013. How the Bible and YouTube are fueling the next frontier of pass-
word cracking. (8 Oct. 2013). News article. http://arstechnica.com/security/2013/10/
how-the-bible-and-youtube-are-fueling-the-next-frontier-of-password-cracking/.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

http://arstechnica.com/security/2013/10/how-the-bible-and-youtube-are-fueling-the-next-frontier-of-password-cracking/
http://arstechnica.com/security/2013/10/how-the-bible-and-youtube-are-fueling-the-next-frontier-of-password-cracking/

A Large-Scale Evaluation of High-Impact Password Strength Meters A:29

A. Barth. 2011. The Web Origin Concept. RFC 6454. (Dec. 2011). http://www.ietf.org/rfc/rfc6454.txt

Francesco Bergadano, Bruno Crispo, and Giancarlo Ruffo. 1998. High Dictionary Compression for Proactive
Password Checking. ACM Transactions on Information and System Security 1, 1 (Nov. 1998), 3–25.

Matt Bishop and Daniel V. Klein. 1995. Improving System Security via Proactive Password Checking. Com-
puters & Security 14, 3 (May/June 1995), 233–249.

Carlo Blundo, Paolo D’Arco, Alfredo De Santis, and Clemente Galdi. 2004. Hyppocrates: a new proactive
password checker. The Journal of Systems and Software 71, 1-2 (2004), 163–175.

Joseph Bonneau and Rubin Xu. 2012. Character encoding issues for web passwords. In Web 2.0 Security &
Privacy (W2SP’12). San Francisco, CA, USA.

Mark Burnett. 2005. Perfect Password: Selection, Protection, Authentication. Syngress, Rockland, MA, 109–
112. The password list is available at: http://boingboing.net/2009/01/02/top-500-worst-passwo.html.

Mark Burnett. 2011. 10,000 Top Passwords. (June 2011). https://xato.net/passwords/
more-top-worst-passwords/.

William E. Burr, Donna F. Dodson, and W. Timothy Polk. 2006. Electronic authentication guidelines. NIST
Special Publication 800-63. (April 2006). http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1
0 2.pdf.

Xavier de Carné de Carnavalet. 2014. A Large-scale Evaluation of High-impact Strength Meters. Master’s
thesis. Concordia University, Montreal.

Xavier de Carné de Carnavalet and Mohammad Mannan. 2014. From Very Weak to Very Strong: Analyzing
Password-Strength Meters. In Network and Distributed System Security Symposium (NDSS’14). San
Diego, CA, USA.

Claude Castelluccia, Markus Dürmuth, and Daniele Perito. 2012. Adaptive password-strength meters from
Markov models. In Network and Distributed System Security Symposium (NDSS’12). San Diego, CA,
USA.

CSO Online. 2014. After celeb hack, Apple patches password guessing weakness in iCloud. (2014). News
article (Sep. 2, 2014). http://www.cso.com.au/article/553965/after celeb hack apple patches password
guessing weakness icloud/.

Chris Davies and Ravi Ganesan. 1993. BApasswd: A New Proactive Password Checker. In National Com-
puter Security Conference. Baltimore, MA, USA.

Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov, and Cormac Herley. 2013.
Does My Password Go up to Eleven? The Impact of Password Meters on Password Selection. In ACM
Conference on Human Factors in Computing Systems (CHI’13). Paris, France.

Dinei Florêncio and Cormac Herley. 2010. Where do security policies come from?. In Symposium On Usable
Privacy and Security (SOUPS’10). Redmond, WA, USA.

Dinei Florêncio, Cormac Herley, and Baris Coskun. 2007. Do Strong Web Passwords Accomplish Anything?.
In USENIX Workshop on Hot Topics in Security (HotSec’07). Boston, MA, USA.

Dinei Florêncio, Cormac Herley, and P van Oorschot. 2014. An Administrator’s Guide to Internet Password
Research. In USENIX LISA. Seattle, WA, USA.

Steven Furnell. 2011. Assessing password guidance and enforcement on leading websites. Computer Fraud
& Security 2011, 12 (Dec. 2011), 10–18.

Nico Van Heijningen. 2013. A state-of-the-art password strength analysis demonstrator. Master’s thesis. Rot-
terdam University.

Cormac Herley and Paul van Oorschot. 2012. A research agenda acknowledging the persistence of pass-
words. IEEE Security & Privacy 10, 1 (2012), 28–36.

Shiva Houshmand and Sudhir Aggarwal. 2012. Building Better Passwords using Probabilistic Techniques.
In Annual Computer Security Applications Conference (ACSAC’12). Orlando, FL, USA.

Immunity Inc. 2014. Immunity Debugger. (2014). https://www.immunityinc.com/products-immdbg.shtml.

Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek, Lujo Bauer, Nicolas Christin,
Lorrie Faith Cranor, and Serge Egelman. 2011. Of passwords and people: measuring the effect of
password-composition policies. In ACM Conference on Human Factors in Computing Systems (CHI’11).
Vancouver, BC, Canada.

LifeHacker.com. 2008. Five Best Password Managers. (2008). Blog article (Aug. 08, 2008). http://lifehacker.
com/5042616/five-best-password-managers.

Robert Morris and Ken Thompson. 1979. Password security: A case history. Commun. ACM 22, 11 (Nov.
1979), 594–597.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

http://www.ietf.org/rfc/rfc6454.txt
http://boingboing.net/2009/01/02/top-500-worst-passwo.html
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://www.cso.com.au/article/553965/after_celeb_hack_apple_patches_password_guessing_weakness_icloud/
https://www.immunityinc.com/products-immdbg.shtml
http://lifehacker.com/5042616/five-best-password-managers
http://lifehacker.com/5042616/five-best-password-managers

A:30 X. de Carné de Carnavalet and M. Mannan.

Arvind Narayanan and Vitaly Shmatikov. 2005. Fast dictionary attacks on passwords using time-space
tradeoff. In ACM Conference on Computer and Communications Security (CCS’05). Alexandria, VA,
USA.

OpenWall.com. 2014. John the Ripper password cracker. (2014). http://www.openwall.com/john.

Oxid.it. 2014. Cain & Abel. (2014). http://www.oxid.it/cain.html.

PCMag.com. 2014. The Best Password Managers. (2014). Magazine article (Aug. 22, 2014). http://www.
pcmag.com/article2/0,2817,2407168,00.asp.

Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. 2010. Popularity is Everything: A new ap-
proach to protecting passwords from statistical-guessing attacks. In USENIX Workshop on Hot Topics
in Security (HotSec’10). Washington, DC, USA.

Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Giovanni Leon, Michelle L Mazurek, Lujo
Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2010. Encountering stronger password requirements:
user attitudes and behaviors. In Symposium On Usable Privacy and Security (SOUPS’10). Redmond,
WA, USA.

Sophos.com. 2009. Passwords used by the Conficker worm. (2009). Blog article (Jan. 16, 2009). http://
nakedsecurity.sophos.com/2009/01/16/passwords-conficker-worm/.

Eugene H. Spafford. 1992. OPUS: Preventing weak password choices. Computers & Security 11, 3 (May
1992), 273–278.

TheNextWeb.com. 2014. This could be the iCloud flaw that led to celebrity photos be-
ing leaked. (2014). News article (Sep. 1, 2014). http://thenextweb.com/apple/2014/09/01/
this-could-be-the-apple-icloud-flaw-that-led-to-celebrity-photos-being-leaked/.

Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, Michelle Mazurek, Timothy
Passaro, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2012.
How does your password measure up? The effect of strength meters on password creation. In USENIX
Security Symposium. Bellevue, WA, USA.

Rafael Veras, Christopher Collins, and Julie Thorpe. 2014. On the Semantic Patterns of Passwords and their
Security Impact. In Network and Distributed System Security Symposium (NDSS’14). San Diego, CA,
USA.

Matthew Weir. 2010. Using probabilistic techniques to aid in password cracking attacks. Ph.D. Dissertation.
Florida State University.

Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. 2010. Testing metrics for password creation
policies by attacking large sets of revealed passwords. In ACM Conference on Computer and Communi-
cations Security (CCS’10). Chicago, IL, USA.

Dan Wheeler. 2012. zxcvbn: realistic password strength estimation. (10 April 2012). Dropbox blog article.
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/.

World Wide Web Consortium (W3C). 2013. Cross-Origin Resource Sharing. (29 2013). W3C Candidate Rec-
ommendation. http://www.w3.org/TR/cors/.

ZDNet.com. 2012. 6.46 million LinkedIn passwords leaked online. (2012). News article (June 6, 2012). http://
www.zdnet.com/blog/btl/6-46-million-linkedin-passwords-leaked-online/79290.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

http://www.openwall.com/john
http://www.oxid.it/cain.html
http://www.pcmag.com/article2/0,2817,2407168,00.asp
http://www.pcmag.com/article2/0,2817,2407168,00.asp
http://nakedsecurity.sophos.com/2009/01/16/passwords-conficker-worm/
http://nakedsecurity.sophos.com/2009/01/16/passwords-conficker-worm/
http://thenextweb.com/apple/2014/09/01/this-could-be-the-apple-icloud-flaw-that-led-to-celebrity-photos-being-leaked/
http://thenextweb.com/apple/2014/09/01/this-could-be-the-apple-icloud-flaw-that-led-to-celebrity-photos-being-leaked/
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/
http://www.w3.org/TR/cors/
http://www.zdnet.com/blog/btl/6-46-million-linkedin-passwords-leaked-online/79290
http://www.zdnet.com/blog/btl/6-46-million-linkedin-passwords-leaked-online/79290

A Large-Scale Evaluation of High-Impact Password Strength Meters A:31

Appendix

ALGORITHM 1: 1Password: main password checking algorithm (ver: 1.0.9.340 for Windows)

Input: Candidate password
Output: Score in percentage and label related to the strength of the password
if master password then

length← number of bytes taken by the password;
else

length← number of characters in the password;
end
charset← 0;
symbols← !"#$%&’()*+,-./:;<=>?@[\]^ ‘{|}~;
forall the matching patterns ∈ {password contains lowercase letters, uppercase letters, digits, symbols} do

charset← charset+ 1;
end
if password contains spaces and charset = 0 and length > 0 then

charset← 1;
end

score←
∥
∥3.6 · length · 1.2charset−1

∥
∥;

if score > 100 then
score← 100;

end
label← getLabelF romScore(score);
//returns: Terrible (0-10), Weak (11-20), Fair (21-40), Good (41-60),

//Excellent (61-90), or Fantastic (91-100).

return score, label;

ALGORITHM 2: KeePass password checker pattern detection algorithm

Input: Password
Output: Password decomposed into overlapping patterns with their corresponding entropy
Assign each characters a pattern type from the 6 sets of characters (L, U, D, S, H, X);
forall the repetitive patterns in password do

Consider identified substring as pattern of type R;
Assign repetitive occurrences with entropy of log2(pattern offset · pattern length);

end
forall the numbers of 3 digits or more do

Consider identified substring as pattern of type N;
Assign number an entropy of log2(number);
if number has leading zeros then

Add log2(number of leading zeros + 1) to the entropy assigned;
end

end
forall the sequences of 3 characters or more whose code points are distanced by a constant do

Consider identified substring as pattern of type C;
Assign pattern an entropy of log2(charset size matching the first character · (sequence length− 1));

end
forall the substring of password do

size← number of words of same length in dictionary;
if substring included in lowercase in dictionary then

Consider identified substring as pattern of type W;
distance← number of differences between substring and word in dictionary;

Assign substring an entropy of log2
(
size ·

(
n

distance

))
;

else if unleeted substring included in lowercase in dictionary then
Consider identified substring as pattern of type W;
distance← number of differences between substring and word in dictionary;

Assign substring an entropy of 1.5 · distance+ log2
(
size ·

(
n

distance

))
;

end

end
return password with assigned patterns;

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January 2015.

	Introduction
	Meters Characterization
	Overview
	Test Automation
	Web-Based Client-Side Meters
	Web-Based Server-Side Meters
	Web-Based Hybrid Meters
	Application-Based Meters

	Tested Dictionaries
	Overall description
	Sources of tested dictionaries
	Mangled Dictionaries
	Leet Transformations

	Empirical Evaluation of Web-based Meters
	Highlights of previous findings
	China railway customer service center
	Tencent QQ
	Yandex
	Changes in Apple, eBay and Yahoo!

	Empirical Evaluation of Password Managers
	1Password
	LastPass
	KeePass
	RoboForm

	Results Analysis
	Summary
	Meters Heterogeneity and Inconsistencies
	Comparison
	International Characters
	Implications of Design Choices
	Stringency Bypass
	Password Policies

	Directions for Better Checkers
	Related work
	Conclusion

