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Abstract

A large number of user PCs are currently infected with different types of mali-

cious software including spyware, keyloggers, and rootkits. In general, any Internet-

connected end-host cannot be fully trusted. In addition to this compromised host

problem, attacks exploiting usability drawbacks of web services and security tools

when used by everyday users, and semantic attacks such as phishing are commonly ob-

served. In the given untrusted environment, traditional threat models which assume

trusted end-hosts need to be re-evaluated. We propose a number of techniques to im-

prove the trustworthiness of the web considering the current untrusted environment.

To understand what is expected from regular users for performing sensitive online

tasks, we review security requirements of six Canadian online banks, and identified

an emerging gap between these requirements and usability. Instead of requiring users

to follow an extensive list of security best-practices for online banking, we propose the

Mobile Password Authentication (MP-Auth) protocol. Using a trusted personal de-

vice (e.g., cellphone) in conjunction with a PC, MP-Auth protects a user’s long-term

login credentials, and offers transaction integrity assuming the user PC is untrustwor-

thy and the user is unaware of phishing attacks. MP-Auth’s security largely depends

on user-chosen passwords, which are generally weak. To assist users in generating

strong but usable passwords, we propose an Object-based Password (ObPwd) scheme

which creates text passwords from user-selected objects, e.g., photos or music files.

As part of the compromised host problem, we further assume that sensitive iden-

tity numbers (e.g., Social Insurance Number) will eventually be breached. To reduce

the value of compromised credential information to attackers in such a scenario, we

propose the use of localized ID numbers that are valid only for a particular relying

party. A similar localization approach for banking PINs to prevent exploitation of

compromised PINs from intermediate banking switches is also proposed.

viii



Acknowledgements

When I was working as a software developer in Vancouver in 2003, I had a phone

interview with Prof. Paul Van Oorschot – as part of exploring the possibility of

becoming his graduate student. During that discussion Paul raised the following

simple and apparently trivial question: “How do you verify the authenticity of a

website?” It was this question, and my appreciation for the beauty of public key

cryptography (which I got exposed to as part of an undergraduate course), that

brought me into the exciting field of security research with the focus on improving real-

world security. I thank Paul for introducing me to this field which can significantly

improve everyday people’s lives. I gratefully acknowledge his prompt, insightful, clear,

and frank feedback; his foresight on identifying values, shortcomings, and obstacles in

a particular proposal; his aptitude for putting an idea into context; his extra-ordinary

eyesight for details; for always being positive and reminding me of the bright side of

life especially in difficult times; and above everything, for being patient and helping

make the long process of this work a meaningful and worthwhile endeavour. I literally

cannot thank him enough.

The Carleton Computer Security Lab (CCSL) played a very significant role in

my life for the last few years. CCSL members – my dear friends and colleagues –

positively critiqued and supported me. Almost every part of this thesis has been

presented at CCSL meetings, and discussed/debated extensively. They helped me

sort out the better ideas from many not-so-worthwhile ones, to say the least. Several

members graciously spent their time in reviewing early drafts of my work (including

hundreds of lines of program code); even in very busy times, they managed to read

and share their insights on my preliminary drafts. Many short walks to Tim Hortons,

extended discussions at late hours, and long trips to conferences and workshops with

CCSL members significantly shaped the outcome of this thesis. It was a great honour

to work with so many bright minds. I thank all CCSL members from 2003 to 2009,

especially Glenn Wurster, Julie Thorpe, David Whyte, Abdulrahman Hijazi, David

Barrera, Mansour Alsaleh, Tim Furlong, Deholo Nali, James Muir, and Hajime Inoue.

ix



I would like to express my sincere gratitude to the members of the thesis commit-

tee: Prof. Matt Bishop for agreeing to be the external examiner; Prof. Liam Peyton

for his detailed comments; Prof. Robert Biddle for his insights on usability issues;

and Prof. Anil Somayaji for his help in shaping our threat models.

Most parts of this thesis have been peer-reviewed. I would like to acknowledge the

insightful feedback, and constructive suggestions from many anonymous reviewers.

Special thanks to Brian Snow for shepherding the ID localization proposal; Bryan

Parno (CMU) for allowing access to source code of his Phoolproof implementation,

Anupam Datta (CMU) for helping with the PCL analysis, and Masud Khan for

providing a Nokia E62 smartphone; Bernhard Esslinger of University of Siegen, and

Joerg-Cornelius Schneider and Henrik Koy of Deutsche Bank, especially regarding

attacks on the simple version of salted-PIN; and a reviewer from a large Canadian

bank. Comments and suggestions from attendees at different conferences/workshops

helped in the evaluation of the proposals from varying perspectives.

I received substantial financial support from several sources including: NSERC

Canada Graduate Scholarship (CGS-D3), Public Safety and Emergency Preparedness

Canada (PSEPC), Carleton University, and NSERC ISSNet. I am thankful to all for

easing the financial burden while doing this research.

Many people helped me prepare for this long academic journey. Special thanks to

my undergrad thesis supervisor Prof. M. Kaykobad (BUET, Bangladesh) for helping

me understand the value of academic research; Partha Pande (WSU, Pullman) for

consistently promoting the importance of graduate research; and my family members,

especially my brother Anowar Hossain, for always inspiring me to aim for the best.

Being the spouse of a grad student is not easy. Thanks to my wife Ayesha Siddiqa

for coping with my unpredictable schedules; for understanding the challenges in a

grad student’s life; for being the first one to hear my ‘innovative’ ideas; and for

always supporting me in many ups and downs in the past several years.

x



Chapter 1

Introduction

In this chapter, we discuss overall motivation for this thesis and summarize our con-

tributions.

1.1 Motivation

Since the early days of computer security, the intermediate network between two end

hosts has been treated as the primary point of compromise. Security protocols are

generally designed with a strong network adversary in mind who can learn, drop, mod-

ify any messages from the network (known as the Dolev-Yao threat model [69, 179]).

The widely used SSL protocol is a prime example of this principle – the endpoints are

trusted (i.e., malware-free), and the devil is in the network. While such assumptions

may have been true in the early days of networked computers, the evolution of the

Internet has resulted in a different reality. Today an adversary generally lives closer

to end hosts than the intermediate network. This is in fact true for both ends of a

typical communication channel: client PCs harbour numerous forms of malware, to

such extent that apparently the computer industry and security research community

have largely failed at the desktop security layer. On the other end, more and more

service providers’ systems (e.g., corporate, government) are also being compromised

by organized hackers, exposing millions of user records with sensitive identity and

financial information. Traditionally the primary focus of most computer security re-

searchers has not been threats that plague the current Internet environment, such

as keyloggers, rootkits, and phishing, although signs of awareness are slowly emerg-

ing [146]. For example, common threats to cryptographic protocols, as summarized

by Boyd and Mathuria [44, pp. 23–31], only include eavesdropping, modification, re-

play, preplay, reflection, denial of service, typing attacks, cryptanalysis, certificate

manipulation, and protocol interaction.

1
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Apparently, the battle of saving Internet-connected general purpose consumer

PCs against malware has been lost with millions of PCs in unhealthy states. For

example, according to different estimations (e.g., [126]), the botnet as created by the

Storm Worm, consisted of one to fifty million compromised PCs worldwide.1 Many

theoretical proposals and existing products that are designed to improve information

security largely fall apart when we consider the current compromised state of Internet-

enabled computers. We call this the “compromised host problem.”

Additionally, semantic attacks such as phishing/web-spoofing are also rampant in

the web world; these attacks largely exploit non-expert everyday users’ mental models

regarding the current web technologies and security products. Usability barriers as

revealed in several studies (e.g., [67]) may severely reduce the effectiveness of many

otherwise well-designed security tools. Security researchers of today are facing an

extraordinary situation: we have PCs that are not trustworthy, which are being

operated by everyday non-expert users, who are expected to use security tools that are

implicitly designed for expert users. We believe that the current web is untrustworthy

for several fundamental reasons including compromised end-hosts and the naivety of

common online users, and that it is hard to make progress without directly addressing

these fundamental issues.

Given such a scenario, we argue that many previously accepted techniques for in-

formation security should be re-evaluated to measure their efficacy in the present en-

vironment. We believe that counter-measures protecting against these current threats

must be embedded into many existing security mechanisms if the goal is to provide ef-

fective security in practice. In this thesis, we propose a number of example techniques

and protocols to improve trustworthiness of the current web environment. We also

argue that one reason for the severity of current identity fraud, spam, phishing, and

many other Internet-related attacks is the leverage gained by using data compromised

from one site at many others, repeated times. This “compromise once, reuse multiple

times” feature provides significant advantages to attackers. Part of this thesis aims

to reduce this asymmetric leverage attackers currently enjoy.

1Estimating the size of a botnet remains elusive in practice; see e.g., [207].



3

1.2 Thesis Statement

Following the above discussion, the primary thesis or doctrine which runs throughout

and motivates our work is summarized in three assertions.

Assertion 1. Many academic threat models as well as commercial security tools

that are designed to improve security of Internet-enabled consumer PCs, need

updating to reflect the current reality, e.g., to recognize the compromised host

problem and the prevalence of semantic attacks against users.

Assertion 2. Usability must be incorporated into security designs, if the security

problem we are addressing is related to consumer PCs, since past security mod-

els were mostly built for technical experts, whereas many of today’s technologies

are being used by total non-experts (everyday people, most with zero formal

computer training).

Assertion 3. The asymmetric advantage of “compromise once, reuse multiple times”

as currently exploited by attackers must be addressed to make the job of de-

fenders of sensitive information easier and more manageable than the current

arms-race.

The goals of our research are twofold: (i) to better understand the current envi-

ronment by studying proposed and available security mechanisms for everyday non-

expert users; and (ii) to explore specific problem instances which represent the above

assertions, and propose new solutions to these problems. The hope is that by doing

so, we may gain a better understanding of the broad classes these problem instances

fall into, and potentially propose broader solutions or guidelines for improving In-

ternet security mechanisms used by non-specialists. The main research questions we

would like to explore in this thesis are:

• Question 1: Can we design instances of technologies that can improve security

and privacy in real-world applications, given the current state of compromised

computing environment?

• Question 2: What would be the design criteria of such solutions? Can we

suggest any general guidelines?
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1.3 Main Contributions

In this section, we briefly outline our contributions in three areas: (i) security-usability

chasm in practice; (ii) password authentication and integrity verification; and (iii)

design for damage control.

1.3.1 Security-Usability Gap

Most security tools were designed by security experts for expert users. We explore

the gap between security and usability when security tools are used by non-expert,

everyday users.

c1: The emerging gap between security and usability. To gain insight on

what skills are expected from regular home users to perform sensitive tasks over

the Internet, we review security requirements of Canadian online banks. In one

sense, these requirements and expectations of user abilities give a snapshot of the

current state of user-centric security issues, and help us to distinguish and analyze

the major security tools that are expected to be used by non-expert users for doing

business in a malware-infested environment. We identify an emerging gap between

these requirements and usability from an analysis of online banking requirements as

found in formal (legal) client agreements for regular and electronic banking, and se-

curity and privacy requirements (and recommendations) from banks’ websites. From

a small-scale questionnaire-based survey, we found that even security-aware users fail

to satisfy most common online banking requirements such as password renewal, using

anti-malware tools, and maintaining an up-to-date (patched) operating system and

browser. Our work provides a glimpse into overall system security of home computers

owned/operated by technically advanced users. Security attributes and user habits as

revealed in our study provide a view to what security and usability researchers may

expect at best from average users; we believe this is essential for informed discussion

and design for usable security. We use insights from this study in designing security

protocols and techniques as presented in this thesis.
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1.3.2 Password Authentication and Integrity Verification

We list three major contributions in this area including two authentication protocols

and a password generation technique. A set of non-cryptographic mechanisms for

improving transaction integrity is listed as a minor contribution.

c2: Authentication technique for tasks involving sensitive information.

We argue that in the current environment, especially due to phishing and session-

hijacking attacks,2 even when the current “security best practices” are met, there is

no guarantee that a user would enjoy a safe online environment. Instead of requiring

users to maintain a healthy (malware-free) PC and be able to detect complex phishing

scams, we design a technique that will largely protect a user’s security even when the

user performs sensitive Internet tasks from a compromised PC, and is uninformed

regarding semantic attacks.

As part of addressing the compromised end-user machine problem with regard

to safeguarding sensitive long-term passwords (e.g., those used for online banking),

we build on the following simple idea: use a hand-held personal device, e.g., a cell-

phone or PDA to encrypt the password (combined with a server-generated random

challenge) under the public key of an intended server, and relay through a (possi-

bly untrusted) PC only the encrypted result in order to login to the server website.

This simple challenge-response effectively turns a user’s long-term password into a

one-time password in such a way that long-term passwords are not revealed to phish-

ing websites, nor to keyloggers on the untrusted PC. The resulting protocol, called

MP-Auth (short for M obile Password Authentication), also protects against session

hijacking, by providing transaction integrity through a transaction confirmation step.

Unlike standard two-factor techniques, MP-Auth does not store any secret on the

mobile device.

c3: Authentication technique for better privacy of personal content. Ar-

guably, most online applications are not as critical as online banking; thus MP-Auth’s

strong security features may be viewed as excessive for certain web applications such

2In a session hijacking attack, typically hidden malware on a client machine can access an estab-
lished user session, change transaction details (e.g., charging $500 for a $5 item), or perform any
unwanted operations, according to silent instructions from a remote attacker.



6

as authentication for sharing personal content on the web. Usability issues, such as

difficulties associated with managing yet more shared passwords for authenticated

personal web content distribution, cause most publishing users put their content

online without any access restrictions. In some cases, this universal access adversely

affects a web publisher’s privacy. Leveraging the circle of trust in the existing contact

list feature of Instant Messaging (IM) networks, we propose a protocol for privacy-

enhanced personal content sharing called IM-based Privacy-Enhanced Content Shar-

ing (IMPECS ). It uses IM as a (transparent) distribution channel for authentication

‘tickets’ to viewing users as allowed by content publishers. IMPECS enables a pub-

lishing user’s personal data to be accessible only to her IM contacts. A user can put

her personal webpage on any web server she wants (vs. being restricted to any specific

website, e.g., social networking sites), and maintain privacy of her content without

requiring site-specific passwords. In our opinion, easy access to usable privacy tools

may favourably change the actions of ordinary web users towards online privacy;

IMPECS is designed to be such a tool to enhance privacy of personal web content.

c4: Mechanism for increasing entropy of user-chosen passwords. Several

of our proposals (e.g., MP-Auth, IMPECS) rely on user-selected text passwords. As

evident from different studies (e.g., [90]), motivating everyday users to choose ‘strong’

passwords has largely failed; for example, ‘password1’, ‘abc123’, and ‘myspace1’ were

found to be the top three choices of passwords in one study [233]. To reduce apa-

thy towards stronger passwords, we design a technique called Object-based Password

(ObPwd) allowing users to generate strong text-based passwords from personally-

meaningful digital objects of their choice. Objects such as multimedia files, images,

and text snippets can be chosen from the web or users’ personal media. Instead of

remembering the generated password, users need to recall only the password gener-

ating object. We believe that recalling a pointer to such digital objects will be easier

than following many password rules as advised/imposed by security experts.

c5: Integrity verification for financial transactions. While it is important

and desirable to have authentication, confidentiality, integrity and privacy protec-

tions for every online/offline financial transaction, in reality, all these goals can be
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simultaneously achieved only rarely; this appears even more difficult under the cur-

rent environmental attacks (e.g., malicious software, and semantic attacks such as

phishing). Instead of aiming for ‘ideal’ security, we propose several mechanisms with

the goal of simply verifying integrity of a given transaction, and detecting misuse

of compromised credentials as early as possible. We argue that empowering users

with information regarding the actual state of their accounts and transactions may

help improve trustworthiness of online transactions. Our proposals combine and take

advantage of existing techniques and academic proposals from the recent past. These

techniques mitigate the effects of breaches which are difficult to prevent completely,

e.g., a compromised password in MP-Auth.

1.3.3 Design for Damage Control

Assuming breaches of sensitive, long-term personal identification numbers are in-

evitable, we apply a localization technique (which need not be tied to a particular

geographic or physical location) for reducing threats from such breaches.

c6: Localized identity numbers. From the endless reports of large-scale data

breaches (e.g., [58, 26, 203]) exposing sensitive personal identity numbers of millions

of consumers, we propose starting with a new assumption: sensitive user data will

eventually be breached (cf. [146]). We further assume that this will occur primarily

through “credential relying parties.” We focus on how to nonetheless prevent identity

fraud in such a scenario through the use of localized ID numbers that are tied to

each particular relying party. An individual may be required to provide their SIN

or driver’s license number to many parties, e.g., employers, banks, credit reporting

agencies, car rentals, all of whom often keep sensitive identification details for a long

time. Confidentiality of such data may be breached by any of these parties. If a

localized SIN scheme were in place, where each employer would get a “different (non-

reusable) version” of the SIN of the given individual, then a disclosure of any such

SIN would not be useful for identity fraud. We propose several techniques based on

this idea.

c7: Localized/salted banking pin. Despite best efforts from security API design-

ers, flaws are often found in widely deployed security APIs. In parallel to spending
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research efforts to improve the security of these APIs, we argue that it may be worth-

while to explore design criteria that would reduce the impact of an API exploit. We

use such a design philosophy in dealing with PIN cracking attacks on financial PIN

processing APIs. Our solution is called salted-PIN : a randomly generated salt value

of adequate length (e.g., 128-bit) is stored on a bank card in plaintext, and in an

encrypted form at a verification facility under a bank-chosen salt key. Instead of

sending the regular user PIN, salted-PIN requires an ATM to generate a Transport

Final PIN from a user PIN, account number, and the salt value (stored on the bank

card) through, e.g., a pseudo-random function. We explore different attacks on this

solution, and propose variants of salted-PIN that can protect against known attacks.

In particular, our localized salted-PIN incorporates local information such as ATM lo-

cation and identification into PIN generation. If such a localized PIN is compromised,

it can only be used from a particular ATM/location, thus limiting the exploitation of

such PINs.

1.4 Related Publications

Most parts of this thesis have been peer-reviewed. These publications are listed below

in a chronological order.

1. Using a Personal Device to Strengthen Password Authentication from an Un-

trusted Computer. M. Mannan, P.C. van Oorschot. Financial Cryptography

and Data Security 2007 (FC’07), Feb. 12-15, 2007, Scarborough, Trinidad and

Tobago.

2. Security and Usability: The Gap in Real-World Online Banking. M. Mannan,

P.C. van Oorschot. New Security Paradigms Workshop 2007 (NSPW’07), Sept.

18-21 2007, New Hampshire, USA.

3. Weighing Down “The Unbearable Lightness of PIN Cracking.” (short paper)

M. Mannan, P.C. van Oorschot. Financial Cryptography and Data Security

2008 (FC’08), Jan. 28-31, 2008, Cozumel, Mexico.
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4. Privacy-Enhanced Sharing of Personal Content on the Web. M. Mannan, P.C.

van Oorschot. World Wide Web Conference 2008 (WWW’08), Apr. 21-25,

2008, Beijing, China.

5. Digital Objects as Passwords. M. Mannan, P.C. van Oorschot. USENIX Hot

Topics in Security 2008 (HotSec’08), San Jose, California, USA, July 29, 2008.

6. Localization of Credential Information to Address Increasingly Inevitable Data

Breaches. M. Mannan, P.C. van Oorschot. New Security Paradigms Workshop

2008 (NSPW’08), Lake Tahoe, California, USA, Sept. 22-25, 2008.

7. Reducing Threats from Flawed Security APIs: The Banking PIN Case. M.

Mannan, P.C. van Oorschot. Elsevier Journal of Computers & Security (in

press; accepted on Jan. 26, 2009).

1.5 Organization

In Chapter 2, we analyze security requirements for online banking, and comment on

several usability and security issues. An authentication mechanism to perform sen-

sitive online tasks from a compromised PC, along with security and attack analysis,

and implementation detail has been provided in Chapter 3; related work and com-

plimentary techniques to this mechanism are discussed in Chapter 4. In Chapter 5,

we introduce a protocol for privacy-enhanced sharing of online personal content. A

technique for generating better text passwords (i.e., with more entropy than user-

selected passwords) is discussed in Chapter 6. Techniques for restricting threats from

breached personal identification numbers, and banking PINs are discussed in Chap-

ters 7 and 8 respectively. In Chapter 9, we provide a comparative summary of threats

addressed by our proposals, revisit the thesis objectives, and list the lessons learned

from this thesis.



Chapter 2

On the Emerging Gap between Security and Usability

Sensitive online tasks such as online banking require users to maintain a (malware-

free) clean computer, and to guard against semantic attacks such as phishing. In this

chapter, we discuss our study on online banking security requirements as expected

from regular users by several Canadian banks. One motivation behind this study is to

shed light on the absurdity of these requirements in terms of usability, and to fathom

severe limitations of these security measures even when fulfilled.

2.1 Introduction

Applications with major security and usability issues, such as online banking, are be-

ing used by more and more people who are less and less technically savvy. Most major

banks currently support online banking, as it enables them to serve far more customers

than by traditional banking, at a fraction of the cost.1 Exploiting the convenience

and overhead savings possible through the Internet, some online-only banks have also

arisen. Online access also reduces physical visits to the bank, which saves customers’

an hour and fifteen minutes (as advertised by one bank). However, the popularity of

online banking has attracted criminals exploiting (online) banking customers. Attacks

have been launched against customers of big and small banks worldwide. Canadian

banks – some of which are among the largest in the world – are no exceptions. There

are five major traditional banks operating in Canada which are quite heavily regulated

by the Canadian Bankers Association and the government of Canada. These banks

provide comprehensive guidelines to their online customers as part of the campaign

against Internet-based attacks. The 2007 Canadian Internet Use Survey [250] found

that 63% of Canadian Internet users do online banking. However, it was not studied

how many users actually fulfill their online banking responsibilities as dictated by the

1One study [141] estimates in-branch transactions cost about $1 to $4 while an online transaction
costs less than five cents.

10
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banks. As a typical example, users are expected to install and maintain a firewall,

anti-virus, and anti-spyware programs on their own. A user could be held responsible

for financial losses if their PIN or password is “easily” guessed, e.g., derived from

their phone number, birth date, address or social insurance number (SIN).

Globally, banks are becoming increasingly reluctant to reimburse users who fall

prey to online scams such as phishing. We are not aware of any such reported cases

in Canada so far although numerous such incidents have made news in the recent

past elsewhere. One report [100] indicates that U.S. victims of phishing attacks lost

five times more money in 2006 than 2005. Although 80% of the victims in 2005

got their money back, in 2006 only 54% victims were refunded by their banks. In

the U.K., bank card related frauds are on the decline over the first six months of

2006, but online banking fraud increased by 55% during this period. Online banking

fraud victims of China must prove that the bank was at fault to get any money back.

According to the 2007 Code of Banking Practice in New Zealand [187], banks may

inspect a victim’s computer in case of an Internet fraud to verify if the customer

has met all the online banking security requirements (e.g., anti-spyware, operating

system security updates). Netcraft news [182] reported that fraud victims of the Bank

of Ireland were denied reimbursement when they lost about 160, 000 euros through

phishing attacks. When threatened by lawsuits, the bank finally refunded the victims.

To avoid further losses banks worldwide are imposing increasingly more responsibility

on online banking users. The fear of losses is also having an impact on users. A survey

of 23, 000 European Internet users reported [243] that security worries deter 40% of

those surveyed from doing online banking. A Gartner survey [61] reported that online

attacks influenced nearly 30% of online banking users; more than 75% of those users

logged in less frequently, and about 14% stopped paying bills online.

In conjunction with this study, we opened personal checking accounts at the five

largest Canadian banks: CIBC, RBC Royal Bank, TD Canada Trust, Scotiabank, and

BMO Bank of Montreal.2 We also opened an account at President’s Choice Financial,

which is primarily an online-only bank. We opened these accounts during October

and November of 2006, and have been accessing them up until April 2009. Our study

2Many of the 32 million Canadians have accounts at more than one of these.
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of online banking security and usability is mostly a cognitive walk-through [277]. We

focus mainly on issues related to personal checking accounts (vs. business, trading,

or credit card accounts). We critique privacy and security requirements3 imposed

by banks on regular home-based online banking users from a usability point of view

(i.e., whether these requirements are reasonable and practical). Most of our reported

findings were derived from our on-site bank account creation experiences, content

of bank agreements (for regular and electronic use), security and privacy require-

ments and recommendations from bank websites, and our experience of using the

online banking interfaces. Our findings lead us to believe that most users fail to

meet the requirements enabling eligibility for the 100% reimbursement guarantee for

online banking fraud losses. We also conducted a questionnaire-based survey among

technically advanced users to understand whether even they satisfy online banking

requirements. The survey indicated that indeed, most participants failed to fulfill

their banks’ online banking requirements.

Putting our work in perspective, user-centered security [299] was introduced by

Zurko and Simon at NSPW 1996 (see also [298]). Several user non-acceptance

paradigms were explored in an NSPW 2004 panel [108]. Online banking is no longer

new, but still relatively young in its life, and increasingly new converts to online

banking are less and less technically savvy. Security and usability is still a rela-

tively new paradigm from an academic research perspective. Our work provides a

reality check on usable security, using online banking as an example of widely used

security-sensitive applications.

Contributions/discussion points. We analyze banks’ requirements for online

banking from a usable security perspective, using Canadian banks as a case study.

Our contributions and discussion points include:

1. Specific Online Banking Security and Usability Issues. We pro-

vide an analysis of online banking requirements from client agreements

3Requirements here include conditions from banks’ customer agreements (hard-copy and/or elec-
tronic) and security recommendations/advice from bank websites. The legal implications of banks’
recommendations and security guidelines are unclear.
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(for regular and electronic banking), and security and privacy require-

ments/recommendations from banks’ websites. These highlight real-world se-

curity and usability issues.

2. User Survey on Satisfying Online Banking Requirements. We report

on a questionnaire-based survey of 123 computer science students, professors,

researchers and professionals. Even most of these technically-advanced users

fail to satisfy common online banking requirements in practice.

3. Glimpse of System Security for Informed Research. What kind of

systems do people actually use for highly-sensitive online tasks such as Internet

banking? Banks’ security requirements for online banking (e.g., password, anti-

malware, up-to-date operating system and browser) encompass several aspects

of system security for average users. Our work provides a glimpse of overall

system security of home computers owned/operated by technically advanced

users. Security attributes and user habits as revealed in our study provide

a view to what security (and usability) researchers may expect at best from

average users; we believe this is essential for informed discussion and design for

usable security.

4. Who Bears the Responsibility for Security. In the future, we may be

using Internet-enabled home computers for tasks potentially even more security-

sensitive than online banking. But even for online banking, is it enough for

service providers to simply impose on users, in a customer agreement, what-

ever responsibilities they deem appropriate? On the other hand, should users

take no responsibility for the security of their PCs and Internet usage? Where

should the balance of responsibility rest? Our work aims to spur discussion on

these questions.

Overview. Related work is discussed in Section 2.2. SSL-based bank site authenti-

cation is discussed in Section 2.3.1. Banks’ anti-malware requirements are discussed

in Section 2.3.2. We discuss banking agreements in Section 2.3.3. Software updates

and miscellaneous issues (including user authentication) related to online banking are

discussed in Sections 2.3.4 and 2.3.5 respectively. We provide the results of our online

banking survey in Section 2.4. Section 2.5 concludes.
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2.2 Related Work

Related work is discussed both here and other appropriate places throughout this

chapter. Hertzum et al. [121] analyzed the usability of Danish online banking se-

curity for a particular task (money transfer to a specific account) with respect to

the usable security definition of Whitten and Tygar [278]; and evaluated installation

of special client-end e-banking software (as required by some Danish banks), logon,

money transfer, and logoff. Several usability weaknesses in online money transfer

were revealed. Chung et al. [52] studied the effectiveness of web interfaces of several

banks in New Zealand. Nilsson et al. [188] exposed the security implications of sys-

tem generated versus user-chosen password for online banking. Singh [245] examined

(through a user study) the users’ perspective on the security of online banking in

Australia, and concluded that one way to increase users’ perception of online security

is “to have customers believe the provider will not allow them to suffer fraudulent

transactions.” Edge et al. [74] analyzed online banking (money transfer in particular)

security using attack trees, and proposed solutions to known attacks using protec-

tion trees and multi-factor authentication. Karjaluoto et al. [138] conducted a survey

among non-users and users of Finish online banking, and analyzed differences of the

demographic profile of these two groups of users. A similar survey [31] attempts to

examine the effects of trustworthiness among online banking users. Jin et al. [134]

briefly analyzed online banking risks for banks, and how these risks may be managed.

As opposed to analyzing the usability of offered features or any specific security mech-

anism (e.g., password) for online banking, we focus on the usability of major online

banking requirements.

2.3 Requirements and Recommendations for Online Banking

In the following subsections, we discuss security requirements and recommendations

related to SSL certificate, anti-malware, documentation, software updates, and au-

thentication as appeared in banking sites and legal agreements (mostly from a period

of Oct. 2006 to Nov. 2007).
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2.3.1 Bank Site Authentication: SSL Certificate

In this section, we discuss what we see as serious usability issues related to SSL

certificates. Bank websites generally present an SSL certificate on an online login

page to be authenticated by a user. Banks expect users to visit the correct URL of a

bank, check for visual clues (e.g., the lock icon and https on the address bar) of an

SSL protected site, and check certain items on the site certificate before entering any

login information. Banks emphasize that the presence of an SSL certificate implies

that a website is secure and genuine, and that no one can see a user’s information

other than the bank (e.g., BMO states that an SSL certificate is an electronic passport

for a website). Although a certificate may authenticate a website, it of course does not

secure the site, and malware on a PC can easily access all (including SSL-protected)

user information. Below we discuss more SSL-related issues in detail.

Login URL. Users may be redirected to spoofed or malicious websites if a mem-

orized bank URL is misspelled. A bookmarked login URL may be replaced by a

phishing site URL by malware on a user PC. Banks strongly recommend users to

check the URL of a bank website before entering the bank card number and password.

Nevertheless, when a login URL is https://www.txn.banking.pcfinancial.ca/a/

authentication/preSignOn.ams?referid=loginBox_banking_go, it is unclear how

users should make a decision as to whether this is a correct URL. Some banks (e.g., PC

Financial) even state that the ‘s’ in the https implies the website is “secure” even

though a self-signed site certificate can easily be used to show https. In a user study

as reported by Dhamija et al. [67], 23% of users relied only on the content of a page

to determine legitimacy, i.e., did not check the URL at all, and many users did not

understand the syntax of domain names. Downs et al. [70] reported that only 35% of

the participants of a user study noticed the text https on a URL; some who noticed

the https did not understand the significance of the extra ‘s.’ Nearly 45% did not

look into the URL at all in their study. We thus believe that banks have unrealistic

expectations of users checking URLs.

The SSL lock icon. The display of an SSL padlock is strongly emphasized as an

indication of a secure website (though not all emphasize that this should be on the
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browser chrome). As banks state, generally the lock icon is displayed on the lower-

right corner of a browser. However, different browsers, and even different versions

of the same browser, show the padlock in different places on the browser chrome.

Internet Explorer 7 (IE7) has moved the padlock location from the traditional lower-

right corner to the address bar. Although CIBC and PC Financial login pages have

SSL certificates, the Opera browser (version 9.22 on Windows XP, and version 9.2 on

Mac OS X) does not display the lock icon unless the login page is re-loaded (i.e., re-

freshed); in fact, Opera’s site information dialog states that “Site not secure...The

communication is done in plain text, and there is no way to guarantee the identity of

the server.” PC Financial states that there is a known bug affecting earlier versions

of IE (e.g., 5.5); when a user selects the padlock icon, IE warns, “This certificate has

failed to verify for all of its intended purposes.” The bank advises users that this is

not a concern as the SSL certificate is actually okay.

The lock icon is displayed inside the sign-on pages of all banks. Many phishing

websites use a closed-padlock inside the browser chrome – which has nothing to do

with SSL protection – to assure users that the website is secure. Average online users

do not generally understand that any webpage can display within the page content

itself whatever icon or text the page designer wishes; thus an embedded lock icon may

conflict with the SSL lock icon (on a browser chrome) and confuse users. A website

can also display any icon at the beginning of the site’s URL as a shortcut icon. This

icon is displayed on most current browsers’ address bar. For example, the website

http://www.ljean.com (as of Aug. 27, 2007) has the lock icon as its shortcut icon

although this is not an SSL protected site.

Only a small portion of users (23%) has been reported [67] to look for or notice the

padlock icon on the browser chrome. Recently an increasing number of phishing sites

is reported to have SSL certificates (mostly self-signed) to gain confidence of somewhat

technically advanced users [181], i.e., users who might check the existence of a closed-

lock and the corresponding SSL certificate. Another user study by Downs et al. [70]

reported that most participants (85%) noticed the secure site lock icon on a website.

However, only 40% of those who were aware of the lock icon knew that the lock

must be on the browser chrome to signify an SSL-enabled website. Some participants
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stated that SSL certificates were a “formality,” like an “elevator certificate.” 32%

of users would log into a website even if the site presents a self-signed certificate.

In one real-world incident [181], only one in 300 customers of a New Zealand bank

chose to abandon the SSL session upon a browser warning indicating an expired SSL

site certificate; the bank accidentally allowed a certificate to expire for a period of 12

hours. We conclude that banks have unrealistic user expectations with respect to the

SSL lock icon.

Security toolbar. TD Canada Trust provides a free tool from Symantec called

Norton Confidence Online (NCO).4 NCO is installed as an ActiveX control in IE,

and is designed to detect spoofed TD Canada Trust websites. The tool is added to

IE toolbar, and is displayed as a closed lock, similar to the SSL lock. Such visual

similarity may confuse average online users. A user is notified with a dialog box

when a spoofed TD site is detected, but users may ignore this and visit the site

anyway [189]. NCO is available only when accessed from IE on Windows. Installation

of the ActiveX control requires administrative privileges. Also any such toolbars may

still miss a significant portion of phishing websites as revealed by Zhang et al. [297]

(similar results were reported by Wu et al. [287]). In fact, in one recent (Aug. 2007)

real-world case [33], when the Bank of India website was compromised for several

hours and serving more than 22 pieces of malware to each site visitor, most well-

known online trust brokers (e.g., Netcraft toolbar, McAfee SiteAdvisor, Google Safe

Browsing) reported the site to be valid.

Certificate components.5 Banks ask users to check the SSL site certificate of

a bank on a login page, but do not illustrate exactly what a user should look

for in a certificate. Table 2.1 summarizes important components of SSL certifi-

cates provided on sign-on pages of different banks. As evident from the Com-

mon Name (CN) column of Table 2.1, CNs are quite arbitrary and different than

banks’ advertised home-page URLs. For example, CIBC’s main webpage URL is

www.cibc.com, but the CN on the sign-on page SSL certificate is www.cibconline.

cibc.com. However, there is a different SSL certificate for CIBC’s ‘Contact Us’

4This tool is apparently unavailable as of Apr. 18, 2009.
5We do not discuss IE7 extended validation certificates, which solve some problems but arguably

raise many others [131].
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page with www.cibc.com as the CN. After logging into online banking, the TD

SSL certificate changes (for no obvious reason), showing different names as CN,

e.g., easyweb37z.tdcanadatrust.com, easyweb45z.tdcanadatrust.com. Following

the tabs on the online baking page brings other TD pages with different CNs on their

SSL certificates, e.g., www.tdcanadatrust.com, www.tdwaterhouse.com (this is true

for other banks too). Understanding the details of an SSL certificate is already com-

plicated for many users, and so many different SSL certificates may confuse users

even further.

Common Name (CN) Organization (O) Signing CA Encryption
CIBC www.cibconline.cibc.com Canadian Imperial

Bank of Commerce
RSA RC4 128

RBC www1.royalbank.com Royal Bank of
Canada

Verisign RC4 128

TD easyweb.tdcanadatrust.

com

The Toronto Do-
minion Bank

RSA AES-256

Scotiabank www.scotiaonline.

scotiabank.com

Bank of Nova Scotia RSA RC4 128

BMO www1.bmo.com Bank of Montreal Entrust.net RC4 128

PC Financial www.txn.banking.

pcfinancial.ca

Loblaw Companies
LTD

RSA RC4 128

Table 2.1: Comparing SSL certificate components

To understand CNs, a user must understand the domain name hierarchy, e.g., the

important part of www.txn.banking.pcfinancial.ca is the domain pcfinancial.

ca. Otherwise, CNs do not provide much useful information; attackers may gener-

ate SSL certificates with a CN such as www.pcfinancial.secure-banking.ca. The

Organisation (O) items on some SSL certificates also differ from a bank’s other-

wise well-known name. For example, PC Financial’s SSL certificate Organisation is

“Loblaw Companies LTD.” For average Internet users, encryption algorithm specifi-

cations and Certificate Authority (CA) names probably mean almost nothing. Users

must also know that Verisign is a trustworthy CA, but Verisecuresign is probably

an imaginary CA (generated by phishers). Also users must understand the browser

security model, i.e., there are root certificates embedded with browsers from several

(about 100) trusted CAs (trusted by browser providers – users have no role in such

decisions); these embedded CA certificates are used to verify a given website’s SSL
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certificate. Users must understand that not all CAs are trustworthy, at least not to

the same level. Shortcomings of the browser security model are well known and have

been exploited in the past; e.g., as described in an article after the Katrina disas-

ter [77]. (Note that several shortcomings of SSL are in fact inherent to public key

cryptography; see, e.g., Davis [65].)

Possible domain name conflicts. PC Financial’s online banking URL is www.

pcfinancial.ca. If a user types in www.pcfinancial.com, an under-construction

website owned by directNIC is displayed. However, for CIBC customers, www.cibc.

ca redirects to the regular CIBC site at www.cibc.com (the same is true for RBC,

TD, BMO, and Scotiabank websites). The CIBC branch locator service is provided

externally by a different company and the URL is cibc.via.infonow.net. Thus

valid CIBC pages are sometimes served from domains other than cibc.com. The

domains cibc.net and cibc.org are not owned by CIBC. The domain wwwcibc.com

is also registered by someone other than the bank; this may trick many CIBC users if

used in a phishing attack. Similar naming conflicts are quite common for other banks

as well. If we take the possible similar domain names under other countries’ top level

domains, understanding domain names gets even more complicated. In fact, a domain

name search at Netcraft’s website (searchdns.netcraft.com) results in more than

500 entries with ‘rbc’ as part of a domain name. All banks suggest users look into

the URL displayed on a browser’s address bar to identify possible phishing sites.

Nevertheless it is unclear what exactly users should look for, and how to interpret a

domain name in the presence of such conflicting names. Assuming users understand

complex domain name policies seems to be very far from a sound security principle.

2.3.2 Anti-malware Requirements

Most banks’ customer agreements require users to install and maintain up-to-date

copies of anti-virus, firewall, and anti-spyware programs. In this section, we discuss

several issues related to banks’ anti-malware requirements.

Cost of anti-malware. Banks advertise “free” anti-malware products on their web-

sites although the free products are generally trial or detection-only versions. Banks

recommend users to buy anti-malware from reputable vendors such as Symantec and
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McAfee. Users must also pay for subscription renewal fees every year; in some cases

subscription renewal is automatic and difficult to cancel [280]. The use of multiple

computers to access online accounts multiplies the anti-malware cost. Thus evidently,

users must spend a significant amount of money to be eligible to use free online bank-

ing services. For example, according to CIBC’s anti-malware recommendation, a

user must spend around $80 to buy discounted products from Symantec and Web-

root. The monthly fee for maintaining a checking account at CIBC is approximately

four dollars, thus yearly a user might be paying less than $50 for accessing all other

banking services, e.g., bank tellers, bank machines, point-of-sale payments through

a bank card, and telephone banking. Although there exist decent quality anti-virus,

firewall and anti-spyware programs (e.g., avast!, ZoneAlarm, and AdAware respec-

tively) which are offered for free for home users, banks do not mention those on their

websites. These free anti-malware programs have been rated highly by many reviews,

e.g., see AV-test.org.

In addition to anti-malware, banks also ask users to run various free security

tools. For example, RBC recommends users to test computers using Shields Up

(from Gibson Research) and Symantec Security Check. Shields Up is a web-based

Internet vulnerability profiling tool to asses file sharing, common port vulnerabilities,

messenger spam etc. Symantec Security Check is also a web-based tool for network

vulnerability tests and virus detection; it requires installing an ActiveX control and

Java run time environment. To fix any detected vulnerabilities or malware, users are

advised to buy security products from McAfee/Symantec.

Usability and maintenance. Proper installation and maintenance of anti-malware

requires time and a certain level of technical expertise. Maintenance tasks include

downloading malware signature updates (although this is somewhat automated),

product security updates (e.g., updates that fix known vulnerabilities within the prod-

uct itself), and yearly license renewal. Sometimes users may have to deal with more

complex issues such as failure of an auto-update or scheduled virus check. Complet-

ing such maintenance tasks correctly remains challenging for many average computer

users. Banks do not take any responsibility for any difficulties, consequences or costs
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of installing and maintaining any recommended anti-malware. While reporting a pos-

sible fraud, CIBC users are asked to attach scan-logs from anti-virus and anti-spyware

programs. How reliably an average Internet user can perform such operations is ap-

parently an open question. Although banks advertise that online banking can be

used from anywhere, users must ensure that up-to-date anti-malware programs exist

in all computers used for online banking “including a computer at work, the library,

an Internet cafe or another public place” (according to CIBC).

To clean a PC infected with known malware, users may need to follow one or more

steps from the following list (note, this list is not comprehensive): (i) completely

re-install the OS (as acknowledged by Microsoft [80]); (ii) check the infected PC’s

hard disk by running anti-malware from another malware-free PC; and (iii) check

the infected PC by running it in a safe mode (i.e., a reduced functionality mode).

Performing any of these tasks is challenging for average users.

Despite the efforts of making personal firewalls user friendly, a cognitive study [122]

of 13 most popular firewalls reveals several usability drawbacks of these products. (Ef-

fective use of enterprise firewalls is also subject to dispute, see e.g., Singer [244].) Like

any other security products, a misconfigured personal firewall may endanger a user’s

safety more than no firewall at all due to a false sense of security (cf. [35], [122]). One

user study [158] of 378 U.S. respondents revealed a significant gap between the user-

reported and actual state of security of their computers. For example, while 92% of

participants reported to have up-to-date anti-virus (AV) software, in reality, only 51%

had an AV signature file updated within the past week. Some statements regarding

anti-malware programs, as provided on several banks’ websites, are also misleading

and too broad in reality. For example, TD Canada states that firewalls allow only

“the connections that are known and trusted,” which is generally far from the current

Internet reality; e.g., firewalls may do nothing when a user visits a phishing site.

As a step towards the fight against spyware, RBC’s recommendations include:

(i) Google search a product name to find out whether it contains any spyware; (ii)

always carefully read licensing agreements and privacy policies of a product; and (iii)

use anti-spyware if the user “suspects” any spyware activities, e.g., frequent pop-up

advertisements, computer performance degradation. Only technically advanced users
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are likely to take advantage of Internet search to explore whether a file is malicious or

contains embedded malware. Expecting users to read and understand software agree-

ments seems unrealistic (see Section 2.3.3). Spyware may not be explicitly visible on

a PC, and a computer’s performance may degrade for several other reasons, e.g., disk

fragmentation, diminishing free disk space, increased number of start-up programs.

Therefore, it remains unclear how a user may “suspect” spyware infection on a given

PC. Removing spyware from a computer may be “difficult” as stated by BMO; the

bank encourages users to consult a trusted third party that specializes in computer

maintenance and repair assistance (at their own expense).

In a user study by Downs et al. [70], 95% of users were familiar with the term

“spyware;” 70% of the participants used online banking. Interestingly, several users

believed that spyware was “protecting” their computer. Expecting such users to

understand and follow a bank’s anti-malware requirements may lead to unwanted

consequences.

Shortcomings of anti-malware. Most current anti-virus (AV) programs are signa-

ture based, i.e., they mainly detect known malware. However, a signature is typically

generated only when malware attempts to actively propagate in the wild. Small-scale

attacks in which only a few computers are targeted, generally remain undetected

by most anti-virus solutions. Commodity anti-virus vendors generally take an ex-

tended period of time to generate signatures of such malware, if at all. For example,

Shipp [242] reported that a targeted trojan first released in June 2006 was detected by

only four AV products in Oct. 2006; other AV products could not detect the malware

even after months of its release. An AusCERT study [296] reported that popular AV

products have an 80% miss rate on new malware as malcode authors generally test

their malware against commonly used AV products before releasing it to the wild. In

a malware trend report [56], Commtouch reported to detect 42, 652 distinct variants

of the Storm-Worm in a period from Jan. 18-30, 2007, i.e., 3, 824 variants per day.

Apparently it is very difficult for traditional anti-virus to generate so many signatures

so quickly. In a recent (Aug. 2007) anti-virus test [63], only three out of ten AV prod-

ucts could catch all 18 (known) sample viruses. AV products often fail completely

against malware that exploits zero-day vulnerabilities (i.e., unknown to the public
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domain). According to one study [7], as of June 16, 2007, the average lifetime of

a zero-day bug is 348 days (with shortest and longest lifetime of 99 and 1080 days

respectively). While AV products often fail to detect malware, sometimes legitimate

programs are falsely identified as malicious, e.g., Symantec AV falsely detected mal-

ware on Filezilla and NASA World Wind [227]; such incidents further reduce users’

trust on anti-malware.

Several recent instances of malware, when installed on a PC, e.g., by exploiting a

zero-day vulnerability, attempt to remove or disable all common anti-malware on the

infected PC. Some also change the HOSTS file on a Windows PC or otherwise poison

a user’s local DNS cache to redirect security-related websites, e.g., Windows update

and McAfee, to marketing-related or malicious websites.

Virtual machine based rootkits, e.g., SubVirt [142], Blue Pill [219] may take com-

plete control over a commodity OS, and may only be removed through a complete OS

reinstallation. Rootkits installed on a graphics or network card [118] can even survive

a low-level re-formatting of an infected hard disk following a full OS re-installation.

Attackers are also targeting security flaws in widely used anti-malware programs;

one reason is that these programs generally run in a higher privilege mode than other

applications. In a 15-month period ending Mar. 31, 2005, 77 separate vulnerabilities

were discovered in security products from well-known vendors including Symantec,

F-Secure and CheckPoint [295]. Symantec has disclosed 22 security advisories for its

products in 2008.6 In Nov. 2006, bot programs were reported to spread by exploiting

known vulnerabilities in Windows and Symantec anti-virus (corporate edition) [236].

In one global snapshot7 of current attacks as of Apr. 18, 2007, 70.5% of attacks

were attributed to the Symantec anti-virus remote stack buffer overflow vulnerability

(CVE-2006-2630) even though the vulnerability was reported on May 24, 2006, and

a patch was promptly released. Evidently, users do not (or cannot) keep up with

software updates (see Section 2.3.4), and their PCs may be compromised through

their use of anti-malware tools. Of course, banks accept no responsibility of such

unfortunate situations.

6For a list of Symantec product advisories, see http://www.symantec.com/avcenter/security/
SymantecAdvisories.html.

7Arbor Network’s ATLAS Dashboard http://atlas.arbor.net.
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Banks also advise users to scan emails with an anti-virus program. Users are asked

to be cautious about emails from unknown sources to prevent users from phishing

attacks. However, phishing or spam email may be sent from a known contact’s email

address, and can even mimic patterns of a regular email from that contact [18].

Current anti-malware does not detect such attacks, and even most cautious users may

fall prey to such an attack. We thus conclude that banks have unrealistic expectations

with respect to users dealing with malware and spyware.

2.3.3 Documentation and Agreements

Banks strongly advise customers to review banking related user agreements including

online banking, client card, and privacy agreements. Users’ banking responsibilities

are outlined in these agreements and on bank websites. Users must read and review

these documents to understand important conditions and requirements of the 100%

reimbursement guarantee. When we were setting up bank accounts with the six

major banks, not one bank representative made us specifically aware of important

online banking issues other than protecting the password (e.g., not to write down a

password); we were assumed to have read and agreed to all terms and conditions as

laid out on the agreements and websites. However, all banks provided us a printed

copy of the agreements. Using the bank card or online banking confirms that “you

have read and understood the agreement and agree to its terms and conditions” (as

stated by RBC). Banks also state that agreements can be changed at any time, and

users will be notified by “a notice on our website.” We argue that many users do not

read client agreements or security advice on bank websites, and therefore may remain

unaware of the requirements they must fulfill to do online banking safely. In fact, the

survey results in Section 2.4 support our conviction.

Banks also ask users to read software agreements carefully to avoid spy-

ware/adware installation. However, RBC admits that information about spyware

installation may be embedded in a third-party license agreement, and “These refer-

ences may be hard to find and the user may not realize the full implications of the

install.” Grossklags and Good [111] conducted user studies evaluating the readability

and usability of End User License Agreements (EULAs) using 50 popular software
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programs from download.com. The average EULA length was 2752 words. (In com-

parison, lengths of RBC’s electronic access agreement,8 bank card agreement, and

privacy policy are about 5100, 3600, and 500 words respectively.) Only 1.4% of par-

ticipants reported reading EULAs often and thoroughly, while 66.2% admitted to

rarely reading or browsing the content of EULAs. It is also questionable how many

users understood the implications of EULA content even when read thoroughly. In

addition to software agreements, banks also advise users to check privacy policies of

websites where a user may provide sensitive personal information (e.g., PayPal). RBC

also asks users to check third-party security bulletins regularly, especially for OS and

browser security updates. We conclude that banks have unrealistic expectations with

respect to users reading and understanding legal and technical documents including

online banking agreements, account policies, and EULAs.

2.3.4 Software Updates

Banks strongly advise users to keep an OS and browser up-to-date with security

patches. Nonetheless, out-dated browser versions such as IE 5.5 and Firefox 1.0 re-

main listed as supported by most banks. Beyond the web browser, generally there

are many more applications commonly used by millions of users, and thereby being

targeted by attackers. Microsoft Office products such as Word and Excel are popu-

lar targets. Media players such as Windows Media Player, Realplayer, iTunes, and

Winamp also pose security threats if unpatched. Vulnerabilities in Instant Messaging

(IM) and desktop email clients have also been widely exploited. In fact, users must

keep all applications up-to-date to avoid known attacks – a daunting task even for ad-

vanced users, especially in a Windows environment. As reported from a survey [235]

of 20,000 Windows PCs, less than 2% of those were found to be fully patched. Other

operating systems, e.g., Ubuntu Linux and Mac OS X provide an update mechanism

to keep all installed (native) software packages updated – but these are used by less

than 5% of the population.

After installing a new OS, updating the OS and other software on the computer is

not the first task that a user might want to do. However, an Internet connected PC

8From https://www.rbcroyalbank.com/onlinebanking/bankingusertips/agreement/

termsindex.html (Apr. 3, 2007).
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may survive only minutes9 before being compromised via unpatched vulnerabilities. A

Windows XP installation requires downloading 70 to 260 MB of security updates from

Microsoft [164] (a 13-page SANS report [224] provides guidelines for surviving the first

day of an XP installation). Downloading such large updates is highly problematic for

users with a dial-up or slow-speed Internet connection.

Updating OS, browser, firewall and anti-malware is challenging for many Internet

users. Patch management includes collecting all necessary patches, dealing with post-

patch conflicts, and determining the trustworthiness of a patch source [35], which

is a difficult problem even for enterprise IT departments. In addition to usability

problems, such updates may even frustrate or fool diligent users. For example, Bel-

lissimo et al. [30] showed that some popular software updates (e.g., McAfee VirusS-

can) were vulnerable to man-in-the-middle attacks; i.e., a malicious party could in-

stall malware exploiting several software update vulnerabilities. Malware such as

Trojan-Dropper.MSWord.Lafool.v [140] even attempts to propagate as a security

update alert from reputable vendors (e.g., McAfee). Some critical security patches

released by Microsoft may even crash a system or make it unusable [79]. The critical

Windows XP SP2 update stopped many programs including anti-virus from work-

ing properly [267]. A Symantec signature update in May 17, 2007 falsely identified

(and deleted) two critical system files of the Chinese edition of Windows XP SP2

as trojans, and thereby failed thousands of PCs to boot [59]; even though Symantec

fixed the bug quickly, many users had to go through XP’s recovery console (a not-

so-user-friendly command-line tool) to fix the OS. Malware that upgrades exploiting

Windows Update have also been reported in the wild [25].

Only 7 days in 2004 were without an unpatched known vulnerability in IE – the

browser recommended by all banks; i.e., IE was unsafe 98% of the days in 2004 [231].

Even if IE or other popular browsers have improved their security more recently –

which is arguable – this seems untrue of application software in general on users’ PCs.

Overall, while the research community recognizes patching as an open problem,10

banks assume average home users can adequately deal with it.

9The average time between attacks is reported as 10 minutes (Nov. 15, 2008) at http://isc.

sans.org/survivaltime.html.
10However, patching is as old a problem as software, e.g., see Glass [98].



27

2.3.5 User Authentication and Other Issues

We now briefly discuss online user authentication and some other important security

and privacy related issues.

User authentication. Canadian banks largely rely on user-chosen passwords and

Personal Verification Questions (PVQs) for online authentication. We limit our dis-

cussion here as the usability of passwords has been well-studied by others (e.g., Sasse

and Adams [4]). Table 2.2 compares online password and PVQ requirements of differ-

ent banks. Passwords are case-sensitive, but some banks restrict use of special char-

acters (e.g., #, @). BMO allows only numeric passwords of length six. Fixed-length

and small upper limits (e.g., eight) on password length create usability problems.

Password PVQ answer
CIBC 6-12 4-21 (2 PVQs)
RBC 8-32 4-20 (3 PVQs)
TD 5-8 functionality absent
Scotiabank 8-16 functionality absent
BMO 6 functionality absent
PC Financial 6-12 1-20 (3 PVQs)

Table 2.2: Comparing password and PVQ answer length across six banks

Banks recommend that all passwords and PVQs be unique. Most people use

several password-protected accounts,11 and many reported having multiple bank ac-

counts in our survey (Section 2.4). It is generally difficult to create and memorize

many unique secrets [4]. Banks strongly recommend (but do not force) users to change

passwords as frequently as every month (e.g., PC Financial). Some banks force users

not to reuse a recently used password. Sasse et al. [230] reported that login failures

increase after a password change as the new password interferes with the old one.

Most users are also reported to use a word with a number at the end when a frequent

password change is enforced [229]. Such a password strategy may help attackers to

design more efficient password crackers [292]. Banks’ policies require that users log-

out from online banking when a banking session is over. However, users who navigate

11A large scale (over half a million participants) survey [90] in 2007 reported that an average user
has about 25 password-protected accounts with 6.5 unique passwords as reported (see also [96]).
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away from online banking through links on online banking pages may not see the

sign-out button.

Besides strong recommendations such as password uniqueness, CIBC asks users

to promptly reset a banking password over telephone or from a trusted computer,

after accessing online banking from a public computer. Despite such advice, most

banks allow obviously weak passwords, e.g., ‘123456’ and ‘111111.’ An example of

a “rock-solid” password according to RBC12 is iwthyh (mnemonic of The Beatles’

“I want to hold your hand”); but this does not even meet RBC’s password length

requirement. Although recommended [4] (see also [292]), no bank provides feedback

on the strength of a user selected password (cf. [162]).

Users can set up PVQs for resetting a forgotten password (e.g., CIBC, RBC, PC

Financial) or as part of the login process (e.g., RBC, CIBC). Online password reset

reduces help desk calls (and therefore costs) for banks, and is also convenient for users

at the usability cost of memorizing more secrets (cf. Section 6.3.2). As PVQs are rarely

used, i.e., users do not need to recall the secret answers often, users tend to choose

easily memorable answers. A PVQ answer is typically case-insensitive, free of any

special characters, and shorter in length than a password. A 6-character password-

protected CIBC account can be accessed by answering two PVQs, as short as 4

characters each. Interestingly, a 6-character case-sensitive password can be overridden

by a 3-character case-insensitive secret as implemented by PC Financial; there are

three PVQs, but each PVQ answer can be as short as a single character. In effect,

PVQ answers are allowed to be weaker than passwords, although PVQs are as good

as a password to get into an account. Answers to PVQs (e.g., mother’s maiden name)

may easily be guessed by close contacts of a user as reported even in a pre-Internet

era user study by Zviran and Haga [300] (see also [136]). The abundance of personal

information on the web (or otherwise available online) enables even complete strangers

to make informed guesses (e.g., [152]). Authentication guidelines of the Office of the

Privacy Commissioner of Canada [191], recommend that authentication secrets should

not be derived from personal identity facts.

12Accessed Apr. 24, 2007, from http://www.rbc.com/security/safe_passwords.html.
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Anti-phishing email tips. To distinguish phishing emails from real CIBC emails,

users are asked to look for personalized email messages (e.g., customer’s real name on

the message). Attackers may collect public domain information for deploying targeted

phishing attacks (also known as spear phishing). User accounts in social networking

websites such as MySpace have been compromised in the past to extract personal

information [183]; such information could be used to launch spear phishing attacks.

In reality, there have been reported cases of fake Microsoft Update patch email with

malicious URLs, including the targeted users’ full names in the email body [225].

CIBC reports that ‘Properties’ of the sender address in an email shows the ‘actual’

email address, although everything in an email header can be spoofed. RBC suggests

users look for misspelled words, and distorted images in emails. RBC also warns

users to be suspicious about websites that collect confidential information but are not

SSL-enabled. These recommendations are of little help as phishing attacks are now

more professional; for example, some scam-spammers are reported [37] to make use of

sophisticated mind game tricks, and some phishing sites are even SSL-protected [181].

In fact, a Microsoft sponsored survey [15] of 2, 482 American adults revealed that 58%

of the participants were not at all aware of online threats, while 17% had fallen victim

to some forms of online frauds.

Scotiabank sends news and helpful tips to users through ‘The Vault’ mailing list.

The bank does not illustrate how users can verify the authenticity of emails received

through the Vault. These emails contain live (click-able) links and users are en-

couraged to subscribe to the Vault; there is a chance to win $1000 every month for

subscribers. Such practices may help phishers in several ways, e.g., phishing email

may be sent to users stating that they have won the Vault prize, and need to sign-on

to Scotiabank online (actually a spoofed website) to collect the prize.

Several banks (e.g., CIBC, RBC) provide a secure message centre for sending

important messages/notifications to users. Users can also send messages, e.g., banking

instructions or questions, to banks using the message centre. The message centre can

only be accessed after logging into a bank website. This is apparently a more secure

way of communication than regular email. However, banks may notify users through

regular email when a new message is posted on the message centre. As viewing
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messages from the message centre requires login to online banking, such notifications

via email may open a new avenue to phishing attacks.

Unnecessary information collection. Banks suggest that users not provide their

Social Insurance Number (SIN) as an identification token when other types of iden-

tifiers may be sufficient. However, we were asked by most banks to provide the SIN

when opening even a regular checking account. Although we declined to provide

the SIN, all accounts were opened successfully. Bank representatives also asked for

several other unnecessary personal information, e.g., family size, income, rent, de-

pendents, which were in no way related to a checking account. When asked, bank

representatives told us they were collecting such information which might be required

to “better serve” us in the future, e.g., if we apply for credit cards. However, we

argue that such unnecessary information collection should be avoided as it may pose

increasing risks to privacy and security, and allows banks to collect information (for

marketing purposes) which users may misunderstand as being required by banking

standards to open new accounts.

2.4 User Survey

We conducted a survey to gain insight on user compliance with online banking re-

quirements. In this section we discuss the results. We compiled a questionnaire

(attached in Appendix A.1) from some common requirements and recommendations

of Canadian online banking. This was reviewed and approved by our university ethics

committee. The survey was anonymous and voluntary.

Participants and results. There were 123 participants in the survey. Our partic-

ipants include under-graduate (3rd and 4th year) and graduate students, professors,

post-doctoral fellows, network administrators, security researchers and professionals,

mostly from the computer science department of our university. Participants in this

study are not representative of general online banking users; but we conducted the

survey to understand whether highly technical and security-aware users fulfill a sub-

set of banks’ requirements and recommendations. In Appendix A.2, we provide our

survey data and discuss the findings in detail. Note that other than their honesty,
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participants were in no way motivated to complete the survey or answer correctly.

We presented a preliminary version of this work in a graduate course, and some par-

ticipants mentioned that they attended the class talk and their online banking habits

were thereby influenced (e.g., they became more aware of the banking requirements

– thus if anything, our results over-report actual security compliance). For some

questions a few users chose the “Don’t know” option. We did not include those an-

swers to the results. We allowed space for comments on the questionnaire. Some

other requirements and recommendations which have not been discussed earlier in

this chapter were also included in the survey; these include file sharing through Win-

dows or peer-to-peer (P2P) clients, clearing browser cache and closing the browser

after a banking session, and checking bank statements.
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Figure 2.1: Summary of conformance

Summary of results. Figure 2.1 summarizes our findings. Many users reported us-

ing Firefox/Mozilla; we did not collect data on versions. Most IE users use IE6 which

is less secure than IE7 (according to Microsoft). Many users use Linux, but other

than RBC, no banks explicitly mention supporting it. A significant portion (about

50%) of participants do not comply with anti-virus, close-browser, and unique pass-

word/PVQ requirements (or recommendations). The majority (more than 50%) do
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not comply with the requirements (or recommendations) regarding anti-spyware, file-

sharing, clear-cache, password change, and reading agreement. Very few participants

were able to state three conditions for the 100% reimbursement guarantee. Almost

all participants sign-out from online banking, and check their bank statements. Fire-

walls are deployed by a good portion of the participants. Most also reported to keep

their OS, browser, and anti-malware software up-to-date; note, however, that many

IE6 users did not upgrade to IE7.

2.5 Concluding Remarks

Banks advertise that users can start online banking “in minutes.” However, to comply

with the security requirements and recommendations, we expect most users would

be delayed hours or days, if indeed technically capable of doing so at all. Banks

state that security is a “shared responsibility.” Our analysis and survey suggest

that the users’ share of this responsibility is large and unrealistic given the current

Internet environment and available technologies. Most participants did not fulfill all

the listed requirements in our survey. We argue that if such predominantly technical

and security-aware participants fail to satisfy online banking requirements, expecting

average home users to meet all such requirements is extremely näıve. Therefore, we

conclude that most average users are ineligible for the 100% reimbursement guarantee

banks assert, and doing online banking with “confidence” and “peace of mind” is no

more than a marketing slogan which misleads users.

Indeed, as simply one recent example, in January 2007, CIBC reported the loss

of a computer hard drive with unencrypted personal financial information (including

name, address, social insurance number, date of birth, signature) of about 470, 000

mutual fund customers [178].13 Many Canadian customers are also affected by the

recently-reported (Mar. 2007) TJX data breach [58] of about 45 million users. In

customer agreements, banks do not indicate how they would notify or compensate

users in such incidents. Note that Canadian banks are currently not legally bound to

disclose such breaches. Banks also do not specify whether users will be reimbursed

other than for monetary losses, e.g., time lost in recovering from financial fraud and

13See http://www.caslon.com.au/datalossnote2.htm for well-known consumer data losses
from major banks.
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theft. Banks discourage users using P2P file-sharing from the same PC as they per-

form online banking with; ironically, analyzing P2P traffic for inadvertently disclosed

sensitive files of top 30 US banks, Johnson et al. [135] reported to discover a signif-

icant number of files with confidential banking information, including a spreadsheet

with personal details of 23, 000 business accounts, and a detailed manual of a bank’s

security review process.

As stated in an updated personal account agreement (effective from April 1, 2007),

CIBC may close a customer’s bank account “without notice...to prevent future losses

if you are a victim of fraud.” Thus a defrauded customer may lose her bank account

as a consequence of using the heavily advertised free online banking service, and

thereby becoming a double victim. Banks emphasize that as long as users maintain

the “security” of a bank card number and password, no one can gain access to their

online banking accounts. One bank (CIBC) also assures customers that the bank

will not “provide [any] service that compromises the security and confidentiality of

customer information.” In contrast, new malware attacks (bank-stealing Trojans or

session-hijacking, e.g., Win32.Grams [46]; see also CERT [165]) can perform fraudu-

lent transactions in real-time after a user has logged into an online banking account.

Banks do not specifically advise users how to protect against such attacks, nor do

they explain how unique “rock-solid” passwords, 128-bit SSL encryption or other

“enhanced” security techniques may help users against these attacks. In fact, most

existing or proposed solution techniques are susceptible to these new attacks (e.g., in-

cluding [195] and two-factor authentication such as a password plus a passcode gen-

erator token). Banks may reimburse any money lost due to online banking, at least

when users meet banks’ requirements; however, users pay with their own personal

time and mental energy to address consequences of credit-card fraud and identity

theft as enabled in part by the use of online banking. In general, we argue that sev-

eral security-sensitive online services are now being offered (and even heavily pushed)

to average home users without the availability of appropriate usable tools to perform

those tasks safely. The growing disconnect between service providers’ expectations,

and technical capabilities of the general user population, may result in increasing loss

of trust in the web over the long run.



Chapter 3

Authentication from an Untrusted Computer

In this chapter, we propose a protocol called MP-Auth (Mobile Password Authen-

tication) for authentication and integrity protection for sensitive online transactions

from a potentially untrusted computer. MP-Auth also aims to address semantic at-

tacks such as phishing. MP-Auth is an attempt to make everyday users free from

following a comprehensive list of security best practices (as discussed in Chapter 2)

for performing sensitive online tasks, e.g., Internet banking.

3.1 Introduction

In the current Internet environment, most consumer computers are infected with one

or more forms of spyware or malware. Internet connected PCs are not safe anywhere;

an improperly patched home or public computer generally survives only minutes.1

Semantic attacks such as phishing also widely target general Internet users. Software

keyloggers are typically installed on a user PC along with common malware and spy-

ware [171]. An increasing number of phishing sites also install keyloggers on user

PCs, even when users do not explicitly download or click any link on those sites [204].

Many of these attacks attempt to extract user identity and sensitive account infor-

mation for unauthorized access to users’ financial accounts; for example, user names

and passwords for thousands of bank accounts have been found on an online storage

site reportedly gathered by a botnet [210]. Passwords enjoy ubiquitous use for online

authentication even in such an environment, although many more secure (typically

also more complex and costly) authentication protocols have been proposed. Due

to the usability and ease of deployment, most North American financial transactions

over the Internet are still authenticated through only a password. Hence passwords

1An average time between attacks of 5 minutes, as of Aug. 2, 2008, is reported at http://isc.
sans.org/survivaltime.html.

34
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are a prime target of attackers, for economically-motivated exploits including those

targeting online bank accounts and identity theft.

As one example of highly sensitive Internet services, online banking often requires

only a bank card number (as userid) and password for authentication. Users input

these credentials to a bank website to access their accounts. An attacker can easily

collect these long-term secrets by installing a keylogger program on a client PC, or

embedding a JavaScript keylogger [214] on a compromised website. As plaintext

sensitive information is input to a client PC, malware on the PC has instant access

to these (reusable) long-term secrets. We argue (as do others – e.g., see Laurie and

Singer [148], Kursawe and Katzenbeisser [146]) that for some common applications,

passwords are too important to input directly to a typical user PC on today’s Internet;

and that the user PC should no longer be trusted with such plaintext long-term

secrets, which are intended to be used for user authentication to a remote server.

Additionally, phishing attacks can collect plaintext reusable userid-password pairs

even if a user’s PC is malware-free (through e.g., domain name hijacking [124], or the

Kaminsky DNS-flaw [137]).

To safeguard a long-term password, we build on the following simple idea: use a

hand-held personal device, e.g., a cellphone or PDA to encrypt the password (com-

bined with a server generated random challenge) under the public key of an intended

server, and relay through a (possibly untrusted) PC only the encrypted result in or-

der to login to the server website. This simple challenge-response effectively turns

a user’s long-term password into a one-time password in such a way that long-term

passwords are not revealed to phishing websites, or keyloggers on the untrusted PC.

The resulting protocol, called MP-Auth (short for M obile Password

Authentication), is proposed primarily to protect a user’s long-term password input

through an untrusted (or untrustworthy) client PC. The use of a mobile device in MP-

Auth is intended to protect user passwords from easily being recorded and forwarded

to malicious parties, e.g., by keyloggers installed on untrustworthy commodity PCs.

For usability and other reasons, the client PC is used for the resulting interaction

with the website, and performs most computations (e.g., session encryption, HTML

rendering etc.) but has access only to temporary secrets. The capabilities we require
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from a mobile device include encryption, alpha-numeric keypad, short-range network

connection (wire-line or Bluetooth), and a small display. Although we highlight the

use of a cellphone, the protocol can be implemented using any similar trustworthy

device (e.g., PDAs or smart phones), i.e., one free of malware. There are known at-

tacks against mobile devices [101], but the trustworthiness of such devices is currently

more easily maintained than a PC, in part because they contain far less software; see

Section 3.3.3 for further discussion on mobile device security. Note that, despite our

use of a personal device in conjunction with a PC, MP-Auth is essentially a single-

factor (password-only) authentication protocol; we do not store any other secrets on

the device.

To protect a password from being revealed to a phishing site, the password is

encrypted with the correct public key of an intended website (e.g., a bank). Thus

MP-Auth protects passwords from keyloggers and various forms of phishing attacks

(including deceptive malware, DNS-based attacks or pharming, as well as false book-

marks). MP-Auth also protects against session hijacking, by providing transaction

integrity through a transaction confirmation step. Unlike standard two-factor tech-

niques, MP-Auth does not store any secret on the mobile device.

Phishing attacks have been discussed in the literature since 1997 (see [87]); how-

ever, few, if any, anti-phishing solutions exist today that are effective in practice.

In addition to several anti-phishing proposals (e.g., [214], [293]), there exist many

software tools for detecting spoofed websites (e.g., eBay toolbar, SpoofGuard, Spoof-

stick, Netcraft toolbar). However, most of these are susceptible to keylogging attacks,2

and phishing toolbars are barely effective in reality [297]. On the other hand, sev-

eral authentication schemes which use a trusted personal device, generally prevent

keyloggers, but do not help against phishing or session hijacking attacks. New mal-

ware attacks (bank-stealing Trojans or session-hijacking, e.g., Win32.Grams [46], Tro-

jan.Silentbanker [255]; see also CERT [165], web-rootkits [130]) attempt to perform

fraudulent transactions in real-time after a user has logged in, instead of collecting

userids and passwords for later use. Most existing or proposed solution techniques

are susceptible to these new attacks, including e.g., Phoolproof [195] and two-factor

2PwdHash [214] can protect passwords from JavaScript keyloggers, but not software keyloggers
on client PCs.
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authentication such as a password and a passcode generator token (e.g., SecurID).

In contrast, the primary goals of MP-Auth are twofold: protect passwords from both

keyloggers and phishing sites, and provide transaction integrity.

Our contributions. We propose MP-Auth, a protocol for online authentication

using a personal device such as a cellphone in conjunction with a PC. The protocol

provides the following benefits without requiring a trusted proxy (e.g., [53]), or storing

a long-term secret on a cellphone (e.g., Phoolproof [195]).

1. Keylogging Protection. A client PC does not have access to long-term

user secrets. Consequently keyloggers (software or hardware) on the PC cannot

access critical passwords.

2. Phishing Protection. Even if a user is directed to a spoofed website, the

website will be unable to decrypt a user password. Highly targeted phishing

attacks (spear phishing) are also ineffective against MP-Auth.

3. Pharming Protection. In the event of domain name hijacking [124, 137],

MP-Auth does not reveal a user’s long-term password to attackers. It also

protects passwords when the DNS cache of a client PC is poisoned.

4. Transaction Integrity. With the transaction confirmation step (see Sec-

tion 3.2) in MP-Auth, a user can detect any unauthorized transaction during

a login session, even when an attacker has complete control over the user PC

(through e.g., SubVirt [142] or Blue Pill [219]).

5. Applicability to ATMs. MP-Auth is suitable for use in ATMs (automated

teller machines), if an interface is provided to connect a cellphone, e.g., a wire-

line or Bluetooth interface. This can be a step towards ending several types of

ATM fraud (see Bond [38] for a list of ATM fraud cases).

A comprehensive survey of related authentication schemes used in practice and/or

proposed to date, and a comparative analysis of these to MP-Auth are provided

in Chapter 4. We analyzed MP-Auth using the Automated Validation of Internet

Security Protocols and Applications (AVISPA [14]) protocol analysis tool; no attacks

were found. A formal proof sketch of MP-Auth using the Protocol Composition

Logic (PCL) [64, 117, 216] is also provided. We have also implemented a prototype

of MP-Auth for performance testing.
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Organization. The MP-Auth protocol, threat model and operational assumptions

are discussed in Section 3.2. A brief informal analysis of MP-Auth messages, dis-

cussion on how MP-Auth prevents common attacks, and circumstances under which

MP-Auth fails to provide protection are outlined in Section 3.3. Discussion on us-

ability and deployment issues related to MP-Auth are provided in Section 3.4. The

performance and basic implementability of MP-Auth is discussed in Section 3.5. Sec-

tion 3.6 concludes. Appendix B.1 provides AVISPA test code for MP-Auth and

related discussion. The PCL analysis of MP-Auth is provided in Appendix B.2.

3.2 Mobile Password Authentication (MP-Auth)

In this section, we describe the MP-Auth protocol, including threat model and oper-

ational assumptions, password renewal, and public key installation methods.

Threat model and operational assumptions. The primary goals of MP-Auth

are to protect user passwords from malware and phishing websites, and to provide

transaction integrity. We assume that a bank’s correct public key is available to users

(see below for discussion on public key installation), and mobile devices are malware-

free. Public keys of each target website must be installed on the device. (We assume

that there are only a few financially critical websites that a typical user deals with.)

A browser on a PC uses a bank’s SSL certificate to establish an SSL connection with

the bank website (as per common current practice). The browser may be duped to

go to a spoofed website, or have a wrong SSL certificate of the bank or the verifying

certificating authority. The protocol does not protect user privacy (of other than the

user’s password) from an untrusted PC; the PC can record all transactions, generate

custom user profiles etc. Visual information displayed to a user on a PC screen is

also not authenticated, i.e., a malicious PC can display misleading information to

a user without being (instantly) detected. Denial-of-service (DoS) attacks are not

addressed. A communication channel between a personal device and PC is needed,

in such a way that malware on the PC cannot infect the personal device.3

3The first crossover virus was reported [166] in February 2006.
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U,M,B, S User, a cellphone, a browser on the untrusted user PC, and the server,
respectively.

IDS, IDU Server ID and user ID, respectively. IDU is unique in the server
domain.

P Long-term (pre-established) password shared between U and S.
RS Random number generated by S.
{data}K Symmetric (secret-key) authenticated encryption (see e.g., [99], [28])

of data using key K.
{data}ES

Asymmetric (public-key) encryption of data using S’s long-term pub-
lic key ES.

X.Y Concatenation of X and Y .
KBS Symmetric encryption key shared between B, S (e.g., an SSL key).
f(·) A cryptographically secure hash function.

Table 3.1: Notation used in MP-Auth

Untrusted Client 

Browser (B)

Cellphone (M)

User (U)

Server (S)

1
2. SSL tunnel

4
6

5 8

3

7

9

Figure 3.1: MP-Auth protocol steps

Protocol steps in MP-Auth. For notation see Table 3.1. Before the protocol

begins, we assume that user U ’s cellphone M is connected to B (via wire-line or

Bluetooth). The protocol steps are described below (see also Fig. 3.1).

1. U launches a browser B on the untrusted PC, and visits the bank website S.

2. B and S establish an SSL session; let KBS be the established SSL secret key.

3. S generates a random nonce RS, and sends the following message to B.

B ← S : {IDS.RS}KBS
(3.1)
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4. B decrypts message (3.1) and forwards it to M .

M ← B : IDS.RS (3.2)

5. M displays IDS, and prompts the user to input the userid and password for S. A

userid (e.g., bank card number) may be stored on the cellphone for convenience;

the password should not be stored or auto-remembered.

6. M generates a random secret nonce RM and encrypts RM using ES. M calcu-

lates the session key KMS and sends message (3.4) to B (here, the userid IDU

is, e.g., a bank card number).

KMS = f(RS.RM) (3.3)

M → B : {RM}ES
.{f(RS).IDU .P}KMS

(3.4)

7. B (via SSL) encrypts message (3.4) with KBS, and forwards the result to S.

8. From message (3.4), after SSL decryption, S decrypts RM using its correspond-

ing private key, calculates the session key KMS (as in equation (3.3)), decrypts

the rest of message (3.4), and verifies P , IDU and RS. Upon successful verifi-

cation, S grants access to B on behalf of U . S sends the following message for

M to B (indicating login success).

B ← S : {{f(RM)}KMS
}KBS

(3.5)

9. B forwards {f(RM)}KMS
to M . M decrypts to recover f(RM) and verifies its

local copy of RM . Then M displays success or failure to U .

Transaction integrity confirmation. In MP-Auth, M and S establish a session

key KMS known only to them; malware on a user PC has no access to KMS. At-

tackers may modify or insert transactions through the untrusted PC. To detect and

prevent such transactions, MP-Auth requires explicit transaction confirmation by U

(through M). The following messages are exchanged (after step 9) for confirmation
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of a transaction with summary details T (RS1 is a server generated random nonce,

used to prevent replay).

M oo

{T.RS1}KMS

B oo

{{T.RS1}KMS
}KBS

S (3.6)

M
{f(T.RS1)}KMS

// B
{{f(T.RS1)}KMS

}KBS
// S (3.7)

M displays T to U in a human-readable way (e.g., “Pay $10 to Vendor V from checking

account C”), and asks for confirmation (yes/no). When the user confirms T , the con-

firmation message (3.7) is sent from M to S (via B). From message (3.7), S retrieves

f(T,RS1), and verifies with its local copy of T and RS1. Upon successful verifica-

tion, T is committed. Instead of initiating a confirmation step after each transaction,

transactions may be confirmed in batches (e.g., four transactions at a time); then, T

will represent a batch of transactions in the above message flows. The user-interface

(UI) design of the confirmation step is extremely important to reduce dangerous er-

rors; see, for example, Uzun et al. [269] for a comparative study and user-testing of

different approaches to such UI design in the context of secure device pairing.

Some transactions may not require confirmation from the mobile device. For

example, adding a new user account or setting up an online bill payment for a phone

company should require user confirmation, but when paying a monthly bill to that

account, omitting the confirmation step would seem to involve little risk. Similarly,

fund transfers between user accounts without transaction confirmation may be an

acceptable risk. A bank may configure the set of sensitive transactions that will

always require the confirmation step. Deciding to omit the requirement of explicit

confirmation should be done with hesitation. As reported in a Washington Post

article [274], attackers compromised customers’ trading accounts at several large U.S.

online brokers, and used the customers’ funds to buy thinly traded shares. The goal is

to boost the price of a stock they already have bought and then to sell those shares at

the higher price. This incident indicates that seemingly innocuous transactions may

be exploited by attackers if transactions requiring confirmation are not diligently

selected by banks.
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Password setup/renewal. In order to secure passwords from keyloggers during

password renewal, we require that the password is entered through the cellphone

keypad. We assume that the initial password is set up via a trustworthy out-of-band

method (e.g., regular phone, postal mail), and U attempts a password renewal after

successfully logging into S (i.e., KMS has been established between M and S). The

following message is forwarded from M to S (via B) during password renewal (Pold

and Pnew are the old and new passwords respectively).

M
X, where X = {IDU .Pold.Pnew}KMS

// B
{X}KBS

// S (3.8)

Public key installation. One of the greatest practical challenges of deploying

public key systems is the distribution and maintenance (e.g., revocation, update) of

public keys. MP-Auth requires a service provider’s public key to be distributed (and

updated as needed) and installed into users’ cellphones. The distribution process

may vary depending on service providers; we recommend that it not be primarily

Internet-based. Considering banking as an example, we visualize the following key

installation methods (but emphasize that we have not user-tested these for usability):

1. at a bank branch, during an account setup (see Section 3.4 for usability issues).

2. through in-branch ATM interfaces (hopefully free of fake ATMs).

3. through a cellphone service (authenticated download) as data file transfer.

4. (for web-only banks) through removable flash memory card for cellphones

(e.g., microSD card) mailed to users, containing the public key. In this case,

one might consider the cost of an attack involving fake mailings to users.

A challenge-response protocol or integrity cross-checks (using a different channel,

e.g., see [270]) should ideally be used to verify the public key installed on a cellphone,

in addition to the above procedures. For example, the bank may publish its public key

on the bank website, and users can cross-check the received public key, e.g., comparing

visual hashes [199] or public passwords [114]; to reduce usability issues, an automated

cross-check would be preferable.



43

Authentication without a personal device. It may happen that while traveling,

a user may lose her cellphone, and cannot use MP-Auth to log in to her bank. As

a secondary authentication technique in such emergency situations, one-time codes

could be used. For example, banks may provide users a list of pass-codes (e.g., 10 digit

numbers) printed on a paper which can be used for secondary login; i.e., a userid and

pass-code entered directly on a bank login page allows emergency access to a user’s

account. However, such logins should be restricted to a limited set of transactions,

excluding any sensitive operations such as adding a payee or changing postal address

(cf. TwoKind authentication [19]).

3.3 Security and Attack Analysis

In this section, we first consider an informal security analysis of MP-Auth. We moti-

vate a number of design choices in MP-Auth messages and their security implications,

and discuss several attacks that MP-Auth is resistant to. We also list successful but

less likely attacks against MP-Auth.

As a confidence building step, we have tested MP-Auth using the AVISPA [14]

protocol analysis tool, and found no attacks. AVISPA is positioned as an industrial-

strength technology for the analysis of large-scale Internet security-sensitive protocols

and applications. AVISPA test code for MP-Auth and discussion are provided in

Appendix B.1. The test code is also available online [153]. A formal proof sketch of

MP-Auth using the Protocol Composition Logic (PCL) [64, 117, 216] is also provided

in Appendix B.2.

3.3.1 Partial Message Analysis and Motivation

Here we provide motivation for various protocol messages and message parts. In

message (3.1), S sends a fresh RS to B, and B forwards IDS, RS to M . IDS is

included in message (3.2) so that M can choose the corresponding public key ES.

When U starts a session with S, a nearby attacker may start a parallel session from

a different PC, and grab M ’s response message (3.4) (off-the-air, from the Bluetooth

connection) to login as U . However, as S generates a new RS for each login session
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(i.e., U and the attacker receive different RS from S), sending message (3.4) to S by

any entity other than B would cause a login failure.

The session key KMS shared between M and S, is known only to them. Both M

and S influence the value of KMS (see equation (3.3)), and thus a sufficiently random

KMS is expected if either of the parties is honest (as well as capable of generating

secure random numbers); i.e., if a malicious party modifies RS to be 0 (or other

values), KMS will still be essentially a random key when M chooses RM randomly.

To retrieve P from message (3.4), an attacker apparently must guess KMS (i.e., RM)

or S’s private key. If both these quantities are sufficiently large (e.g., 160-bit RM

and 1024-bit RSA key ES) and random, an offline dictionary attack on P becomes

computationally infeasible. We encrypt only a small random quantity (e.g., 160-

bit) by ES, which should always fit into one block of a public key cryptosystem

(including elliptic curve). Thus MP-Auth requires only one public key encryption.

Browser B does not have access to KMS although B helps M and S establish this

key. With the transaction integrity confirmation step, all (important) transactions

must be confirmed from M using KMS; therefore, any unauthorized (or modified)

transaction by attackers will fail as attackers do not have access to KMS.

Analysis of simplified authentication messages. For the authentication phase in

MP-Auth, the browser simply forwards messages between the personal device and the

web server. Therefore for analysis, we simplify the MP-Auth authentication messages

(steps 1 through 9 in MP-Auth, see Section 3.2) in the following way.

M ← S : IDS.RS (3.9)

M → S : {RM}ES
.{f(RS).IDU .P}KMS

, where KMS = f(RS.RM) (3.10)

M ← S : {f(RM)}KMS
(3.11)

We assume that before the protocol run, M and S establish a shared secret P ,

and M has an authentic copy of S’s public key ES (e.g., obtained using an out-

of-band method). At the end of the protocol run, the goals are to achieve mutual

authentication between M and S, and establish a fresh session key known only to

M and S. We assume that all protocol messages can be intercepted, modified, and
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stored by an attacker. Also the attacker can attempt to impersonate either M or S.

However, none other than M and S knows P , and the private key corresponding to

ES is known only to S.

At the end of message (3.9), S believes that it has sent a fresh nonce RS to M . M

receives RS, but it has no assurance of the true identity of S. For message (3.10), M

generates a fresh nonce RM , and an encryption key KMS from RM and RS. M believes

that KMS is a fresh encryption key as RM is freshly generated by M . M encrypts

RM using ES so that none other than S can generate KMS and learn P . When S

verifies P from message (3.10), i.e., P matches the expected pre-shared secret, M is

authenticated to S. Also, f(RS) indicates to S that the current protocol run is fresh,

as S knows that RS is freshly generated. S believes that KMS is a fresh encryption

key as RS is freshly generated by S in the current protocol run. S also believes that

M knows KMS as M is able to encrypt P with the key. Hence for S the protocol

goals have been established, i.e., S learns the authenticated identity of M (i.e., the

user U), and S and M share a fresh encryption key KMS. When M receives message

(3.11) and verifies f(RM), M believes the following: the communication involves the

authenticated (true) party S, as none other than S can retrieve RM in message (3.10);

that S knows KMS; and that the current protocol run is fresh. Hence the protocol

goals for M are also established. Messages (3.9) and (3.10) are cryptographically

linked by RS, and messages (3.10) and (3.11) are cryptographically linked by RM .

This chaining prevents replay and interleaving attacks [68].

We now make a few additional comments regarding possible alternatives. Appar-

ently f(RS) could be removed from message (3.10), as verification of P requires use of

KMS, thereby indicating freshness of the current protocol run to S; however, verifica-

tion of P would generally require a database access (where userid and password pairs

are stored). Using f(RS) in message (3.10) enables S to determine freshness of the

current protocol run directly from this message; thus the preference to retain f(RS)

in message (3.10). Note that the use of f(RM) in message (3.11) is intended to allow

verification by M that S knows KMS; thus alternately f(RM) might be replaced by

any constant in this message. Also, while calculating f(RS) and f(RM), f(·) can be

as simple as an identity function instead of a cryptographically secure hash function.



46

3.3.2 Unsuccessful Attacks Against MP-Auth

We list several potential attacks against MP-Auth, and discuss how MP-Auth pre-

vents them. We also discuss some MP-Auth steps in greater detail, and further

motivate various protocol components/steps.

a) Remote desktop attacks. A malicious browser B can collect message (3.4) and

then deny access to U . B can use message (3.4) to login to S, and provide an attacker

a remote desktop, e.g., a Virtual Network Computing (VNC) terminal, in real-time

to the user PC. However, this attack will be detected by the transaction integrity

confirmation step of MP-Auth.

b) Session hijacking attacks. In a session hijacking attack, malware may take

control of a user session after the user successfully establishes a session with the

legitimate server; e.g., B may leak KBS to malware. The malware may actively

alter user transactions, or perform unauthorized transactions without immediately

being noticed by the user. However, such attacks will be detected by the transaction

integrity confirmation step of MP-Auth.

Untrusted Host’s 

Browser (B)
Remote

server (S)

 

Attacker (A)

Malware in B

communicates with A

A’s SSL session 

B’s SSL session 

Figure 3.2: Setup for a parallel session attack

c) Parallel session attacks. In a parallel session attack [68], messages from one

protocol run are used to form another successful run by running two or more proto-

col instances simultaneously. Generally a parallel session attack may effectively be

prevented through the proper chaining of protocol messages. However, in MP-Auth,

there is no authentication between M and B, making such an attack possible even
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when protocol messages are linked correctly. An attack against MP-Auth is the fol-

lowing (see Fig. 3.2). When U launches B to visit S’s site, malware from U ’s PC

notifies a remote attacker A. A starts another session with S as U , and gets mes-

sage (3.1) from S, which the attacker relays to U ’s PC. The malware on U ’s PC

drops the message (3.1) intended for U when B attempts to send the message to M ,

and forwards the attacker’s message to M instead. The malware then relays back

U ’s response (i.e., from M) to A. Now A can login as U for the current session, al-

though A is unable to learn P . However, the transaction integrity confirmation step

in MP-Auth makes such parallel session attacks meaningless (view-only).

3.3.3 Remaining Attacks Against MP-Auth

Although MP-Auth apparently protects user passwords from malware installed on a

PC or phishing websites, here we discuss some other possible attacks against MP-Auth

which, if successful, may expose a user’s plaintext password.

a) Mobile malware. We have stated the requirement that the personal (mobile)

device be trusted. An attack could be launched if attackers can compromise mobile

devices, e.g., by installing a (secret) keylogger. Malware in mobile networks is in-

creasing as high-end cellphones (smart phones) contain millions of lines of code. For

example, a Sept. 2006 study [101] reported that the number of existing malware for

mobile devices is nearly 162; in comparison, the number of viruses has reportedly

crossed the one million mark in the PC world in 2007 [57]. Worms such as Cabir [81]

are designed to spread in smart phones by exploiting vulnerabilities in embedded

operating systems. Regular cellphones which are capable of running J2ME MIDlets

have also been targeted, e.g., by the RedBrowser Trojan [82]. However, currently

cellphones remain far more trustworthy than PCs, thus motivating our proposal.

In the future, as mobile devices increasingly contain much more software, the re-

quirement of trustworthy cellphones becomes more problematic, and their use for sen-

sitive purposes such as online banking makes them a more attractive target. Limited

functionality devices (with less software, implying more trustworthy, see e.g., Laurie

and Singer [148]) may then provide an option for use with MP-Auth. Even if MP-

Auth is implemented in such a special-purpose or lower functionality device (e.g., an
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EMV CAP reader4), the device can hold several public keys for different services; in

contrast, users may require a separate passcode generator for each service they want to

access securely in standard two-factor authentication proposals. Another possibility

of restricting mobile malware may be the use of micro-kernels [119], formally verifiable

OS kernels [266], protections against virtual-machine based rootkits (VMBRs) [142],

or a virtualized Trusted Platform Module (vTPM) [251] on cellphones to restore

a trustworthy application environment. The Trusted Computing Group’s (TCG’s)

Mobile Phone Work Group (MPWG) is currently developing specifications [168] for

securing mobile phones.

In version 9 of the Symbian OS (a widely used cellphone OS), Symbian has

introduced capabilities and data caging [240]. A capability allows access to a set

of APIs for an application, which is managed through certification, e.g., Symbian

Signed.5 About 60% of APIs are available to all applications without any capabili-

ties. Some capabilities are granted at installation time by a user. Some sensitive APIs

(e.g., ReadDeviceData, TrustedUI) are granted only after passing Symbian Signed

testing. Capabilities such as DRM must be granted by the device manufacturer,

e.g., Nokia. Controlled capabilities may restrict functionality of unauthorized appli-

cations (or malware). Access to the file system for applications and users is restricted

through data caging. Caging enforces data privacy so that an application can access

only its private directories and directories marked as open.

Enforcement of capabilities and data caging is done by Symbian Trusted Com-

puting Base (TCB). TCB is a collection of software including the kernel, file system,

and software installer. However, TCB will become an attractive attack target, and it

may contain bugs in itself. Secure hardware, e.g., Trusted Platform Module (TPM)

may help achieve goals of Symbian Platform Security.

4EMV is a commercial standard (Europay, MasterCard and Visa) for interoperation of chip
cards. EMV CAP (Chip Authentication Programme) is a two-factor authentication system for
bank customers with chip cards where a card is used to generate a one-time password; see https:

//emvcap.com. A chip card is inserted into a small CAP reader (which includes a small display,
keypad and a low-end processor), and using the PIN associated with the card, a user can generate
one-time passwords, respond to a server’s challenge and MAC over transaction data. See Drimer et
al. [71, 72] for recent attacks on such EMV CAP implementations as deployed in in the U.K.

5www.symbiansigned.com
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Anti-virus software (e.g., Trend Micro [264]) for mobile platforms may also help

maintain trustworthiness of cellphones. Malware targeting mobile phones is still lim-

ited, and leveraging the experience of working to secure traditional PC platforms may

help us achieve a relatively secure mobile computing environment. However, consid-

ering the current state of mobile phone security, MP-Auth would perform better on

devices whose software upgrade is tightly controlled (e.g., only allowing applications

which are digitally signed by a trustworthy vendor).

b) Common-password attacks. Users often use the same password for different

websites. To exploit such behaviour, in a common-password attack, attackers may

break into a low-security website to retrieve userid/password pairs, and then try

those in financially critical websites, e.g., for online banking. MP-Auth itself does

not address the common-password problem (but see e.g., PwdHash [214]).

c) Social engineering. Some forms of social engineering remain a challenge to MP-

Auth (and apparently, other authentication schemes using a mobile device). For ex-

ample, malware might prompt a user to enter the password directly into an untrusted

PC, even though MP-Auth requires users to enter passwords only into a cellphone.

In a mixed phishing attack,6 emails are sent instructing users to call a phone number

which delivers, by automated voice response, a message that mimics the target bank’s

own system, and asks callers for account number and PIN. Fraudsters may also ex-

ploit transaction integrity confirmation using similar payee names, e.g., Be11 Canada

instead of Bell Canada, or modifying a transaction amount e.g., from $100 to $1000.

User habit or user instruction may provide limited protection against these. However,

we argue that phishing attacks against transaction confirmation may be more easily

detected than those attacks against financial sites; apparently users possess better

understanding of the consequences of “pay $1000 to party X” than the security cues

of a given site (e.g., detecting correct URLs, and comprehending SSL site certificates).

d) Private key disclosure. It would be disastrous if the private key of a bank is

compromised. This would require, e.g., that the bank generate and distribute a new

public key. However, this threat also exists for currently deployed SSL (server site)

certificates, and root keys present in current browsers. If a user has multiple bank

6http://www.cloudmark.com/press/releases/?release=2006-04-25-2
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accounts that use MP-Auth, compromising one of those bank private keys may expose

passwords for other accounts. The attack7 may work in the following way. Assume

a user has accounts in banks S1 and S2 with server IDs IDS1 and IDS2, and the

private key for S1 has been compromised. The user goes to S2’s website for online

banking. Malware in the user’s PC forwards IDS1 to the cellphone while displaying

S2’s website on the PC. If the user inputs the userid and password for her S2 account

without carefully checking the displayed server ID on her cellphone, the attacker can

now access the user’s password for S2 (using S1’s private key). Displaying a distinct

image of the requesting server on the cellphone may reduce such risks.

e) Shoulder surfing attacks. A nearby attacker may observe (shoulder surf ) while

a user enters a password to a mobile device. Video recorders or cellphones with

a video recording feature can also easily record user passwords/PINs in a public

location, e.g., in an ATM booth. MP-Auth does not stop such attackers. Methods

resilient against shoulder surfing have been proposed (e.g., [275], [215]), and may be

integrated with MP-Auth, although their practical viability remains an open question.

f) Online password guessing. Since MP-Auth assumes passwords as the only

shared secret between a user and a server, online password guessing attacks can

be launched against MP-Auth. Current techniques, e.g., locking online access to an

account after a certain number of failed attempts, can be used to restrict such attacks.

3.4 Usability and Deployment

In this section, we discuss usability and deployment issues related to MP-Auth. Us-

ability is a great concern for any protocol intended to be used by general users,

e.g., for Internet banking and ATM transactions. In MP-Auth, users must connect

a cellphone to a client PC. This step is more user-friendly when the connection is

wireless, e.g., Bluetooth, than wire-line. Then the user browses to a bank website,

and enters into the cellphone the userid and password for the site (step 5 in MP-Auth,

see Section 3.2). We also assume that typing a userid and password on a cellphone

keypad is acceptable in terms of usability, as many users are accustomed to type SMS

7An anonymous FC 2007 referee pointed us this attack.
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messages or have been trained by BlackBerry/Treo experience. However, verification

of transactions may be challenging to some users. We have not conducted any user

study to this end.

During authentication the cryptographic operations a cellphone is required to

perform in MP-Auth include: one public key encryption, one symmetric encryption

and one decryption, one random number generation, and three cryptographic hash

operations. The most expensive is the one public key encryption, which is a relatively

cheap RSA encryption with short public exponent in our application; see Section 3.5

for concrete results.

For authentication in MP-Auth, a bank server performs the following operations:

one private key decryption, one symmetric key encryption and one decryption, three

cryptographic hash operations, and one random number generation. The private key

decryption will mostly contribute to the increment of the server’s computational cost.

Verification of one-time passcodes generated by hardware tokens or SMS passcodes (as

deployed in many two-factor authentication schemes) also incurs extra processing and

infrastructure costs. However, currently we are unable to compare the costs of MP-

Auth with that of existing two-factor techniques due to unavailability of such data.

Banks may also hesitate in distributing software programs for a user’s PC and

mobile device as required by MP-Auth, apparently due to software maintenance is-

sues. Standardization of such software APIs might enable interoperable independent

tools development, and thus reduce maintenance burdens. If a specialized device like

the EMV CAP reader is used for MP-Auth, banks may pre-package all require soft-

ware on the device and relieve users from installing anything on a personal device.

However, users and banks may still need to deal with software for communications

between a PC and personal device.

We now discuss other usability and deployment aspects which may favour MP-

Auth (see also Section 4.1).

1. As it appears from the current trend in online banking (see Section 4.1.1),

users are increasingly required to use two-factor authentication (e.g., with a

separate device such as a SecurID passcode generator) for login. Hence using

an existing mobile device for online banking relieves users from carrying an
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extra device. Also, a user might otherwise require multiple hardware tokens

(e.g., SecurID, Chip and PIN card) for accessing different online accounts (from

different banks).

2. MP-Auth offers cost efficiency for banks – avoiding the cost of providing users

with hardware tokens (as well as the token maintenance cost). The software

modification at the server-end is relatively minor; available SSL infrastructure

is used with only three extra messages (between a browser and server) beyond

SSL. MP-Auth is also compatible with the common SSL setup, i.e., a server

and a client authenticate each other using a third-party-signed certificate and

a user-chosen password respectively.

3. Several authentication schemes involving a mobile device store long-term secrets

on the device. Losing such a device may pose substantial risk to users. In

contrast, losing a user’s cellphone is inconsequential to MP-Auth assuming no

secret (e.g., no “remembered password”) is stored on the phone.

4. Public key distribution and renewal challenges usability in any PKI. Key up-

dating is also troublesome for banks. However, key renewal is an infrequent

event; we assume that users and banks can cope with this process once every

two to three years. If key updates are performed through the mobile network

or selected ATMs (e.g., within branch premises), the burden of key renewal is

largely distributed. For comparison, hardware tokens (e.g., SecurID) must be

replaced approximately every two to five years.

5. One usability problem of MP-Auth is that users must deal with two devices (a

trusted device and a PC) for online banking. Since usability of smartphones is

increasing with the adoption of a full QWERTY keyboard and a relatively large

(e.g., 320 x 240 pixel) colour screen, it would be better if MP-Auth could be

used directly from such a device (i.e., without requiring a PC). However, we do

not recommend such an integration as it may be vulnerable to phishing attacks

when a phishing website mimics MP-Auth’s user-interface for password input.

Although we have not tested MP-Auth for usability, the above suggests that compare

to available two-factor authentication methods (see Section 4.1.1), MP-Auth may be
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as usable or better. However, we hesitate to make strong statements without usability

tests (cf. [51]).

3.5 Implementation and Performance

Figure 3.3: MP-Auth login

We developed a prototype of the main authenti-

cation and session key establishment parts of MP-

Auth to evaluate its performance. Our prototype

consists of a web server, a Firefox extension, a

desktop client, and a MIDlet application on the

cellphone. We set up a test web server (bank),

and used PHP OpenSSL functions and the mcrypt

module for the server-side cryptographic opera-

tions. The Firefox extension communicates be-

tween the web server and desktop client. The desk-

top client forwards messages to and from the cell-

phone over Bluetooth. We did not have to modify

the web server or Firefox browser for MP-Auth be-

sides adding PHP scripts to the login page (note

that Phoolproof [195] requires browser code mod-

ifications). We used the BlueZ Bluetooth protocol

stack for Linux, and Rococosoft’s Impronto De-

veloper Kit for Java. We developed a MIDlet – a Java application for Java 2 Micro

Edition (J2ME), based on the Mobile Information Device Profile (MIDP) specifi-

cation – for a Nokia E62 phone (commercially available circa Sept. 2006, running

Symbian Series 60 r3 on a Texas Instruments processor at 235 MHz); see Fig. 3.3.

For cryptographic operations on the MIDlet, we used the Bouncy Castle Lightweight

Crypto API.

To measure login performance, we used MP-Auth for over 200 successful logins,

and recorded the required login time, i.e., the time to complete steps 1 through 9

in (see Section 3.2; excluding userid and password input in step 5). We carried

out similar tests for regular SSL logins. The results are summarized in Table 3.2.
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Avg. Time (s) [Min, Max] (s)
MP-Auth 0.62 [0.34, 2.28]
Regular SSL 0.08 [0.06, 0.22]

Table 3.2: Performance comparison be-
tween MP-Auth and regular SSL login ex-
cluding user input time (in seconds)

Public key encryption RSA 1024-bit
Symmetric encryption AES-128 (CBC)
Hash function SHA-1 (160-bit)
Source of randomness /dev/urandom,

SecureRandom

Table 3.3: Cryptosystems and parame-
ters for MP-Auth

Table 3.3 summarizes other implementation details. Although regular SSL login is

almost eight times faster than MP-Auth, on average, it takes less than a second for

MP-Auth login. We believe that this added delay would be acceptable, given that

entering a userid and password takes substantial additional time.

3.6 Concluding Remarks

We have proposed MP-Auth, a protocol for web authentication which is resilient to

keyloggers (and other malware including rootkits), phishing websites, and session hi-

jacking. Recently, many new small-scale, little-known malware instances have been

observed that install malicious software launching keylogging and phishing attacks;

these are in contrast to large-scale, high-profile worms like Slammer. One reason for

this trend might be the fact that attackers are increasingly targeting online finan-

cial transactions.8 Furthermore, such attacks are fairly easy to launch; for example,

attackers can gain access to a user’s bank account simply by installing (remotely) a

keylogger on a user PC and collecting the user’s banking access information (userid

and password). MP-Auth is designed to prevent such attacks. MP-Auth primarily

focuses on online banking but can be used for general web authentication systems

as well as at ATMs. Our requirement for a trustworthy personal device (i.e., free

of malware) is important, and becomes more challenging over time, but as discussed

in Section 3.3.3, may well remain viable. In our MP-Auth implementation, cryp-

tographic computations and Bluetooth communications took less than a second for

login (excluding the user input time), which we believe to be an acceptable delay for

the added security. Despite a main objective of preventing phishing and keylogging

8According to one report [13], 94.2% of all phishing sites in Feb. 2008 targeted online financial
services, e.g., online banking and credit card transactions.
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attacks, MP-Auth as presented remains one-factor authentication; thus an attacker

who nonetheless learns a user’s password can impersonate that user. Consequently,

the server side of MP-Auth must be trusted to be secure both against insider attacks

and break-ins. We revisit these attacks in Section 4.2.

Users often input reusable critical identity information to a PC other than userid

and password, e.g., a passport number, social security number, driver’s licence num-

ber, or credit card number. Such identity credentials are short, making them feasible

(albeit tedious) to enter from a cellphone keypad. In addition to protecting a user’s

userid/password, MP-Auth may easily be extended to protect other identity cre-

dentials from the reach of online attackers, and thereby might be of use to reduce

online identity theft. We believe that the very simple approach on which MP-Auth is

based – using a cellphone or similar device to asymmetrically encrypt passwords and

one-time challenges – is of independent interest for use in many other applications,

e.g., traditional telephone banking directly from a cellphone, where currently PINs

are commonly transmitted in-band without encryption.



Chapter 4

MP-Auth: Background and Enhancements

We introduce the Mobile Password Authentication (MP-Auth) protocol in Chapter 3.

In this chapter, we discuss related work to MP-Auth, including commercial one-time

password generators, and a number of web authentication techniques proposed in the

literature. We also discuss two proposals complementary to MP-Auth.

4.1 Survey of MP-Auth Related Work

In this section, we summarize and provide extended discussion of related online au-

thentication methods used in practice or proposed in the literature, and compare

MP-Auth with these techniques.

4.1.1 Online Authentication Methods

We first discuss several online authentication methods commonly used (or proposed

for use) by banks, and briefly discuss their security.

a) Password-only authentication. Most bank websites authenticate customers

using only a password over an SSL connection. This is susceptible to keyloggers

and phishing. Banks’ reliance on SSL certificates does not stop attackers. Attackers

have used certificates – both self-signed, and real third-party signed certificates for

sound-alike domains, e.g., visa-secure.com – to display the SSL lock on phishing

websites. In 2005, over 450 phishing websites were reported to deploy SSL [181]. A

trojan (with rootkit capabilities) has been reported [89] to inject a spoofed HTML

form (from the local PC) inside a SSL-protected bank website for collecting banking

and identity information; the form appears to be served by the real bank site, and

the browser displays the correct SSL site certificate when verified by the user. Also,

the bank site remains uncompromised in this attack.

56
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In a cross-site/cross-frame scripting attack, vulnerable website software is ex-

ploited to display malicious (phishing) contents within the website, making such at-

tacks almost transparent to users. Past vulnerable websites include Charter One

Bank, MasterCard, Barclays and Natwest [294]. In a March 2006 phishing attack, at-

tackers broke into web servers of three Florida-based banks, and redirected the banks’

customers to phishing websites.1 In another high-profile phishing attack, attackers

manipulated a U.S. government website to forward users to phishing websites.2

Reliance on SSL itself also leads to problems. For example, only one in 300 cus-

tomers of a New Zealand bank [181] chose to abandon the SSL session upon a browser

warning indicating an expired SSL site certificate; the bank accidentally allowed a cer-

tificate to expire for a period of 12 hours. A user study by Dhamija et al. [67] also

notes that standard (visual) security indicators on websites are ineffective for a sig-

nificant portion of users; over 90% participants were fooled by phishing websites in

the study.

As front-end (client-side) phishing solutions are failing in many instances, some

banks are putting more resources at back-end fraud detection to counter phishing

threats. For example, HSBC in Brazil uses the PhishingNet3 back-end solution from

The 41st Parameter. PhishingNet uses user machine identification, and monitors on-

line account activities, without requiring any user registration or software downloads.

Such a solution is almost transparent to end-users, and may help detect fraudulent

transactions. The RSA Adaptive Authentication for Web4 also provides similar back-

end fraud detection capabilities. However, in case of session hijacking attacks when

fraudulent transactions are performed from a user’s own machine, back-end solutions

may not help much.

The above suggests password-only web authentication over SSL is inadequate in

today’s Internet environment. This is motivating financial organizations towards two-

factor authentication methods.

1http://news.netcraft.com/archives/2006/03/27/phishers_hack_bank_sites_redirect_

customers.html
2http://www.eweek.com/article2/0,1895,1894746,00.asp
3http://www.the41.com/site/solutions_phishing.html
4http://www.rsa.com/node.aspx?id=3018
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b) Two-factor authentication. Traditionally, authentication schemes have relied

on one or more of three factors: something a user knows (e.g., a password), something

a user has (e.g., a bank card), and something a user is (e.g., biometric characteristics).

Properly designed authentication schemes that depend on more than one factor are

more reliable than single-factor schemes. Note that the authentication scheme used

in ATMs through a bank card and PIN is two-factor; but, an online banking authen-

tication scheme that requires a user’s bank card number (not necessarily the card

itself) and a password is single-factor, i.e., both are something known. As a step to-

ward multi-factor authentication, banks are providing users with devices like one-time

password generators, to use along with passwords for online banking, thus making

the authentication scheme rely on two independent factors. Examples of two-factor

authentication in practice are given below.

1. Several European banks attempt to secure online banking through e.g., stand-

alone, offline passcode generators.5

2. U.S. federal regulators have provided guidelines for banks to implement two-

factor authentication by the end of 2006 for online banking [83].

3. The Association of Payment and Clearing Systems (APACS) in the U.K. is

developing a standard6 for online and telephone banking authentication. Most

major U.K. banks and credit-card companies are members of APACS. The stan-

dard provides users a device to generate one-time passwords using a chip card

and PIN. The one-time password is used along with a user’s regular password.

Two-factor web authentication methods may make the collection of passwords less

useful to attackers and thus help restrict phishing attacks. However, these methods

raise deployment and usability issues, e.g., cost of the token, and requirement to

carry the token. Also malware on a client PC can record the device-generated secret

(which a user inputs directly to a browser), and log on to the bank website before the

actual user. This is recognized as a classic man-in-the-middle (MITM) attack [234].

Apparently showing a pre-selected user image or phrase on the login page, or “device

5For a list of bank sites that use SSL login and/or two-factor authentication see https://www.

securewebbank.com/loginssluse.html.
6http://www.chipandpin.co.uk/
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fingerprinting” (information specific to a user PC, e.g., client browser, OS, CPU type,

and screen resolution) are considered as a second factor by several U.S. banks; see

O’Connor [190] for how easily these second factors can be defeated by traditional

phishing/MITM attacks.

In an interesting real attack [260] against a one-time password scheme imple-

mented by a Finnish bank, the bank provided users a scratch sheet containing a

certain number of one-time passwords. By setting up several phishing sites, attackers

persuaded users to give out a sequence of one-time passwords in addition to their

regular passwords. This attack is made more difficult if one-time passwords expire

after a short while (e.g., 30 to 60 seconds in SecurID); then the collected one-time

passwords must be used within a brief period of time from a user’s login attempt. A

July 2006 phishing attack [180], attackers collected userid, password, as well as one-

time password (OTP) generated by time-based passcode generators from Citibank

customers, and launched a real-time MITM attack against compromised accounts.

Also, such time-based passcode generators, e.g., SecurID, typically have time syn-

chronization problems between a client device and the server [289], and expire in 2-5

years. Other security issues of such devices (e.g., [279], [173], [34], [198]) are not

directly relevant to our discussion; we assume that any weaknesses could be repaired

by superior algorithms or implementations overtime, albeit with the usual practical

challenges, e.g., backwards compatibility.

Note that, even when a one-time password is used along with a user’s (long-

term) regular password, gathering long-term passwords may be still be of offline

use to an attacker. For example, if flaws are found in a one-time key generator

algorithm (e.g., differential adaptive chosen plaintext attack [34]) by which attackers

can generate one-time keys without getting hold of the hardware token, keylogging

attacks to collect user passwords appear very useful.

Instead of gathering passwords, attackers can simply steal money from user ac-

counts in real-time, immediately after a user completes authentication [165, 130, 255].

Therefore, transaction security becomes critical to restrict such attacks.

c) Transaction security and complimentary mechanisms. To protect impor-

tant transactions, and make users better able to detect break-ins to their accounts,
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some banks have deployed security techniques which are generally complementary to

authentication schemes. Examples include:

1. Two New Zealand banks require online users to enter a secret from a cellphone

(sent as an SMS message to the phone) for transfers over $2500 from one account

to another [259]. Bank of America also offers a similar feature called SafePass7

for authorizing new payees and online money transfers, and allowing higher

transfer limits. The passcode is sent to a user’s cellphone, or can be generated

from a wallet-sized stand-alone card.

2. Customers of the Commonwealth Bank of Australia8 must answer (pre-

established) identification questions when performing sensitive transactions.

Email alerts are sent to users to confirm when users’ personal details have

been changed, or modifications to user accounts are made.

3. Bank of America uses SiteKey9 to strengthen online authentication. If a user

PC is recognized by the bank, a secret pre-shared SiteKey picture is displayed;

upon successful verification of the SiteKey picture, the user enters her password.

A confirmation question is asked if the user PC is not recognized, and the

SiteKey picture is displayed when the user answers the question correctly. The

SiteKey picture provides evidence that the user is entering her password to the

correct website.

In principle, the above mechanisms (as well as MP-Auth’s transaction integrity con-

firmation) are similar to integrity cross-checks by a second channel [270]. These

appear to be effective only against high-impact online frauds. Attackers may be able

to defeat some of these techniques; e.g., if a bank requires SMS verification on large

transactions, attackers can commit several relatively small transactions (e.g., $10 in-

stead of $1000) to avoid the verification step. Also, SMS verification requires access

to cellphone networks which is a problem when a phone network is not available

(e.g., while traveling).

7http://www.bankofamerica.com/privacy/index.cfm?template=learn_about_safepass
8http://www.commbank.com.au/Netbank/faq/security.asp
9http://www.bankofamerica.com/privacy/passmark/
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d) Using a cellphone alone for important Internet services. Some [107] believe

cellphones have the potential to replace commodity PCs entirely. One proposed

solution to keyloggers is to perform all critical work through a cellphone browser, or

through a PDA. However, a combination of the following usability and security issues

may restrict such proposals being widely deployed.

1. The display area of a cellphone/PDA is much smaller than a PC, limiting us-

ability for web browsing.

2. Users may still reveal passwords to phishing sites controlled by malicious par-

ties (through e.g., domain name hijacking [124], Kaminsky DNS-flaw [137]).

Thus even a trusted browser in a trusted device may not stop phishing attacks;

i.e., such a setup may allow a secure pipe directly to phishing sites.

3. In many parts of the world, airtime costs money. So Internet browsing through

a mobile network remains, at least presently, far more expensive than wire-line

Internet connections.

e) Comparing MP-Auth with existing online authentication methods. In

contrast to two-factor authentication methods, by design MP-Auth does not provide

attackers any window of opportunity when authentication messages (i.e., collected

regular and one-time passwords of a user) can be replayed to login as the legitimate

user and perform transactions on the user’s behalf. The key observation is that,

through a simple challenge-response, message (3.4) in MP-Auth (Section 3.2) effec-

tively turns a user’s long-term static password into a one-time password in such a

way that long-term passwords are not revealed to phishing websites, or keyloggers

on an untrusted PC. In contrast to transaction security mechanisms, MP-Auth can

protect both large and small transactions as long as users diligently check integrity

confirmation messages, and transactions are prudently labled for user confirmation

from the device; for example, even small transactions to an unknown/unregistered

party should be categorized as sensitive. Also, MP-Auth does not require text or

voice communications airtime for web authentication or transaction security. (See

also Section 3.4 for more comparison on usability and deployment issues.)
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4.1.2 Academic Proposals

Here we summarize selected academic proposals for authentication from an untrusted

PC using a mobile device. MP-Auth shares several design goals with these, and is

influenced by the ideas and experiences of these past proposals. We also compare

MP-Auth to these in terms of technical merits and usability.

a) Splitting trust paradigm. Abadi et al. [1] envisioned an ideal smart-card (with

an independent keyboard, display, processor) as early as 1990, and designed proto-

cols using such a device to safeguard a user’s long-term secrets from a potentially

malicious computer. In 1999, Balfanz and Felten [20] proposed a scheme to deliver

smart card functionality through a PalmPilot assuming the availability of user-level

public key systems. They introduced the splitting trust paradigm to split an applica-

tion between a small (in size and processing power) trusted device and an untrusted

computer. Our work is based on such a paradigm where we provide the long-term

password input through widely available cellphones, and use the untrusted computer

for computationally intensive processing and display. However, we do not use any

user-level PKI.

b) Phoolproof phishing prevention. Parno, Kuo and Perrig [195] proposed a

cellphone-based technique to protect users against phishing with less reliance on users

making secure decisions. With the help of a pre-shared secret – established using an

out-of-band channel, e.g., postal mail – a user sets up an account at the intended

service’s website. The user’s cellphone generates a key pair {KU , K
−1
U }, and sends

the public key to the server. The user’s private key and server certificate are stored

on a cellphone for logins afterward. During login (see Fig. 4.1), a user provides

userid and password to a website on a browser (as usual), while in the background,

the browser and server authenticate (using SSL mutual authentication) through the

pre-established client/server public keys in an SSL session; the browser receives the

client public key from the cellphone. (See also the Personal Transaction Protocol

(PTP) [167] for a similar approach from leading mobile phone manufacturers.)

In Figure 4.1, DHS, DHC represent the Diffie-Hellman public key parameters for

the server and client browser respectively, and h is a secure hash of all previous SSL

handshake messages of the current session. As noted [195], attackers may hijack
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Device Browser Server

oo

Hello Msgs
//

oo

CertS, DHS, {DHS}K−1

S

, Hello Done

oo

CertS, domain

CertKU
//

oo
h

{h}K−1

U
//

CertKU
, DHC , {h}K−1

U
//

oo

Change Cipher Msgs
//

Figure 4.1: Phoolproof login process (adapted from [195])

account setup or (user) public key re-establishment. Phoolproof assumes that users

can correctly identify websites at which they want to set up an account. Public key

creation in Phoolproof happens in the background and is almost transparent to users.

However, users must revoke public/private key pairs in case of lost or malfunctioning

cellphones, or a replacement of older cellphone models. Expecting non-technical users

(e.g., typical bank customers) to understand concepts of revocation and renewal of

public keys may not be practical yet.

It is also assumed in Phoolproof that the (Bluetooth) channel between a browser

and cellphone is secure. Seeing-is-believing (SiB) [159] techniques are proposed to

secure local Bluetooth channels, requiring users to take snapshots using a camera-

phone, apparently increasing complexity to users. If malware on a PC can replace

h (when the browser attempts to send h to the cellphone) with an h value from an

attacker, the attacker can login as the user (recall Parallel Session Attacks in Sec-

tion 3.3.2). Also, Phoolproof is not designed to provide protection against session

hijacking attacks, which are becoming more common, and easy to develop and de-

ploy [130]. MP-Auth achieves such protection at the (human interaction) cost of

transaction integrity confirmation.
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c) Bump in the Ether. Bump in the Ether (BitE) [160] proxies sensitive user

input to a particular application via a trusted mobile device, bypassing the Linux

X-windowing system. Users receive verifiable evidence regarding the integrity of the

host kernel and whether the intended user application has been loaded. Only the tar-

get application receives user input from the mobile device through a user-verifiable

trusted tunnel (between the device and application). BitE assumes the OS kernel is

trustworthy, and the BIOS and OS are TPM-enabled and perform integrity check of

code loaded for execution. BitE requires a user’s mobile device to be cryptographi-

cally paired with the OS kernel. For establishing a trusted tunnel between the user

device and an application, (symmetric) cryptographic keys for each BitE-aware appli-

cation must be shared beforehand (e.g., during application installation/registration).

Keystrokes from the trusted device is then sent encrypted from the device to the

target application.

BitE can protect user input against user-space malware. However, BitE does

not protect user inputs from a phishing website, or compromised (e.g., Trojaned)

user applications. BitE also stores cryptographic keys to the mobile device, which

are subject to compromise if the device is lost or left unattended (if not protected

otherwise, e.g., through TPM). Session hijacking is also not addressed by BitE.

SpyBlock

Authentication

Agent

(on host OS)
SpyBlock

Browser 

Helper

Browser

Application Env. 

(on guest OS)

User PC

App1

Internet

Real

site 

Fake

site

Figure 4.2: SpyBlock setup (adapted from [129])

d) SpyBlock. Jackson, Boneh and Mitchell propose SpyBlock [129] (see also [130])

to provide spyware-resistant web authentication using a virtual machine monitor

(VMM). The SpyBlock authentication agent runs on a host OS (assumed to be

trusted), and user applications including a web browser with a SpyBlock browser

helper run inside an untrusted guest VM on the trusted host OS. See Figure 4.2.
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A user authenticates to a website with the help of the SpyBlock authentication

agent. The site password is given only to the authentication agent which supports

several authentication techniques, e.g., password hashing, strong password authen-

tication, transaction integrity confirmation. The authentication agent provides a

trusted path to the user through a pre-shared secret picture.

SpyBlock does not require an additional hardware device (e.g., a cellphone). How-

ever, a VMM must be installed; the current reality is that most users do not use any

VMM. Also, users must know when they are communicating with the authentication

agent; user interface design in such a setting appears quite challenging. Another

assumption in SpyBlock is that the host OS is trusted. In reality, maintaining trust-

worthiness of any current consumer OS is very difficult (which is in part why secure

web authentication is so complex).

Home PC

SSL tunnel

direct

connection

(temp keys)

SSL tunnel

Untrusted PC

Trusted PDA

keyboard

and mouse

events

Figure 4.3: Three-party VNC protocol (adapted from [193])

e) Three-party secure remote terminal protocol. Oprea et al. [193] proposed

a three-party protocol (see Fig. 4.3) to provide secure access to a home computer

from an untrusted public terminal. A trusted device (e.g., PDA) is used to delegate

temporary credentials of a user to an untrusted public computer, without revealing

any long-term secret to the untrusted terminal. Two SSL connections are established

in the protocol: one from the trusted PDA and another from the untrusted terminal to

the home PC using a modified Virtual Network Computing (VNC) system. The PDA

authenticates normally (using a password) to the home PC, and forwards temporary
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secret keys to the untrusted terminal. A user can control how much information from

the home PC is displayed to the untrusted PC. Control messages to the home VNC,

e.g., mouse and keyboard events, are only sent from the PDA.

This protocol safeguards user passwords only when users access a PC (or appli-

cation) that they control, e.g., a home PC. Also, the trusted device must have SSL

capabilities, and is required to maintain a separate SSL channel from the PDA to the

home PC.

Trusted device

(camera phone)
Trusted proxy

Remote server

Untrusted PC

User

Figure 4.4: Camera-based authentication

f) Camera-based authentication. Clarke et al. [53] proposed a technique using

camera-phones for authenticating visual information (forwarded by a trusted service)

in an untrusted PC. This method verifies message authenticity and integrity for an

entire user session; i.e., it authenticates the content displayed on a PC screen for every

webpage or only critical pages in a user session. A small area on the bottom of a PC

screen is used to transmit security parameters (e.g., a nonce, a one-time password,

or a MAC) as an image, with a strip of random-looking data. Figure 4.4 outlines the

proposed protocol.

To access a service from the Internet through an untrusted PC, this scheme re-

quires a trusted proxy. A user’s long-term keys are stored on the camera-phone,

protected by a PIN or biometric measurement. With a stolen phone, an attacker

may successfully impersonate the user or retrieve the stored long-term keys from the



67

phone. Camera-based authentication also creates a much different user experience:

users are expected to take snapshots and visually verify (cross-check) images in terms

of colours and shades. A calibration phase may also be required to construct a map-

ping between PC screen pixels and camera pixels (in one implementation, reported to

take about 10 seconds). It attempts to authenticate contents of a visual display, which

is apparently useful in a sense that we can verify what is displayed on the screen.

Untrusted Host (K)

Trusted proxy (T)

Cellphone (M)

User (U)

Remote

server (R)

1

5

6

4

7

32

8

Figure 4.5: Web authentication with a cellphone

g) Secure web authentication with cellphones. Figure 4.5 shows the secure

web authentication proposed by Wu et al. [286]. User credentials (userid, password,

mobile number etc.) are stored on a trusted proxy server. The protocol involves the

following steps (see Fig. 4.5 for symbol definitions).

1. U launches a web browser at K, and goes to T ’s site.

2. U types her userid and K sends it to T .

3. T chooses a random session name, and sends it to K.

4. T sends this session name to M as an SMS message.

5. U checks the displayed session name at K.

6. U verifies the session name at M .
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7. If session names match, the user accepts the session.

8. If U accepts the session, then T uses U ’s stored credentials to login to R, and

works as a web proxy.

This protocol requires a trusted proxy, which if compromised, may readily expose

user credentials to attackers. A well-behaved proxy may also be tricked to access a

service on behalf of a user. Hence the proxy may become a prime target of attacks.

Also, losing the cellphone is problematic, as anyone can access the trusted proxy

using the phone, at least temporarily. Delegate [133] is another similar trusted proxy

based solution for secure website access from an untrusted PC which also provides

protection against session hijacking.

Filtering PDA

Internet

SSL

SSL

I/O
Direct I/O

when required

Untrusted PC

User

Figure 4.6: Guardian setup (adapted from [156])

h) Guardian: a framework for privacy control. The Guardian [156] framework

has been designed with an elaborate threat model in mind. Its focus is to protect

privacy of a mobile user,10 including securing long-term user passwords and protecting

sensitive information, e.g., personal data from being recorded (to prevent identity

profiling). Guardian works as a personal firewall but placed on a trusted PDA. In

effect, the PDA acts as a portable privacy proxy. See Figure 4.6.

10A user who uses several different public terminals to access critical online services, e.g., banking.
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Guardian keeps passwords and other privacy sensitive information out of the reach

of keyloggers and other malware installed on an untrusted PC. However, phishing

attacks still may succeed. Guardian attempts to manage a large set of sensitive user

details, e.g., PKI certificates, SSL connections, and cookies as well as real-time content

filtering. Thus its implementation appears to be complex, and requires intelligent

processing from the PDA.

i) Comparing MP-Auth with existing literature. Table 4.1 summarizes a com-

parison of MP-Auth with several academic proposals. An (7) means a special re-

quirement is needed. An empty box indicates the stated protection is not provided

(first three columns), or the stated requirement is not needed (last four columns). NA

denotes non-applicability. (All Xand no 7 would be optimal.) For example, Phool-

proof [195] provides protection against phishing and keylogging, but it is vulnerable

to session hijacking; it requires a malware-free mobile and stores long-term secrets

on the mobile, but does not require a trusted proxy or trusted PC OS. We acknowl-

edge that although this table may provide useful high-level overview, this does not

depict an apple-to-apple comparison. Several solutions listed here require a trusted

proxy, thus introduce an extra deployment burden, and present an attractive target

to determined attackers. Also, fraudsters may increasingly target mobile devices if

long-term secrets are stored on them.

Protection against Requirement
Session-
hijacking

Phishing Key-
logging

Trusted
proxy

On-
device
secret

Trusted
PC OS

Malware-
free
mobile

MP-Auth X X X 7

Phoolproof [195] X X 7 7

BitE [160] X 7 7 7

SpyBlock [129] X X X NA 7

Three-party [193] NA NA X 7 7

Camera-based [53] X X X 7 7 7

Web-Auth [286] X X 7 7 7

Guardian [156] X 7 7

Table 4.1: Comparing MP-Auth with existing academic proposals
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4.2 Integrity Verification for Financial Transactions

In Chapter 3, we introduced MP-Auth which appears to be a simpler but more ef-

fective solution for web authentication and transaction security than other available

techniques. However, if a user’s password is compromised, MP-Auth cannot pre-

vent or even detect unauthorized transactions, and as currently implemented cannot

directly be used for more general web transactions such as credit card transactions.

Below we discuss two preliminary non-cryptographic proposals complementary to

MP-Auth, for protecting integrity of online, on-site, and phone/fax/email transac-

tions. Financial organizations in different parts of the world currently employ several

innovative techniques to prevent or detect transaction fraud. Our proposals combine

and take advantage of those and several academic proposals from the recent past.

1. request

product/service

2. transaction 

    details

3. verif ication 

        code

4. verif ication 

       code

1. verif ication 

      code

2. transaction 

      details

verif ication service, run by the Bank or another party 

         (website, automated phone service, SMS)

(a) executing a transaction (b) verifying a transaction

Bank

online/offl ine 

    business

Figure 4.7: Executing and verifying a transaction
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4.2.1 Verification through a Second Channel

Figure 4.8: QR code for

“FC2009BARBADOS”

Executing a transaction in this model remains largely the

same as the current practice. The difference is that for

each transaction (involving a credit or debit card), the

corresponding financial institution provides a unique ver-

ification code V (similar to tracking numbers used by

postal services); see Figure 4.7(a). V should be of suf-

ficient length (e.g., 20 digits/characters long) to prevent

collision and guessing attacks. For online transactions,

V can be displayed at the end of a transaction; for on-

site transactions, V can be printed on the receipt; and

for phone/fax/email transactions, V can be transmitted

through the same media used for a given transaction. V may also be displayed

(on a browser or in a printed receipt) using QR codes ; these are two-dimensional

bar codes, also known as quick response codes, specifically popular in Asian nations

such as Japan; see e.g., Figure 4.8 for the QR code representation of the string

“FC2009BARBADOS” (generated through http://qrcode.kaywa.com/). Users can

take a snapshot of a QR code using a camera phone, and decode V from the QR code

(requires QR code reader software).

For verifying a transaction, an independent channel of communication is used,

which may include the following. Using V at a verification website (run by the

user’s bank, or the online/on-site merchant), users can retrieve the corresponding

transaction details (T ). Users may also call an automated toll-free phone service

provided by the bank or merchant to get T . Similarly, users can simply send V as

an SMS to their bank and get T as a response SMS (or in multiple messages). If

QR code is used, users can take a snapshot of the code, convert it to V , and send

V as an SMS message, or verify V through the camera-phone’s web interface (at a

designated/implied website). Emailing V to a pre-specified address may also allow

retrieval of T . See Figure 4.7(b). If a discrepancy is found, users can notify their

financial institution or the merchant, and resolve the issue as appropriate.
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Security of this technique relies on the following assumptions: (i) integrity of

the verification service (website/phone/SMS) must be maintained, i.e., attackers can-

not insert, remove, or modify transaction details or verification code at the verifica-

tion service provider or bank sites; (ii) verification codes must be updated immedi-

ately after each transaction; (iii) users are aware of the verification service location

(e.g., URL/phone number) and can freely and instantly access the service; and (iv)

users carefully check the detail of a given transaction. Users may choose to verify only

a subset of all transactions, e.g., high-value transactions, and transactions executed

at less known websites/merchants.

The “security by integrity” paradigm [270] has been proposed for providing data

origin assurance through public corroboration (i.e., by cross-checking with information

posted at a known or implied website). As an example, if the recipient B of an email

wants to verify the integrity of the received email from sender A, B computes a

fingerprint/digest (e.g., SHA-1 hash) of the received message, and then verifies the

fingerprint at a publicly available trusted verification website. Of course, A must

publish fingerprints of all emails at the same site (A also must control access to

that site). Our proposed scheme is similar in spirit, although we do not require

verification codes (corresponding to message fingerprints) to be publicly listed online.

Also, we argue that providing means for integrity verification through traditional

channels (e.g., voice message) is critical for usability reasons. We require retrieval of

transaction details from the verification service; in contrast, message authentication

through corroboration [270] requires posting only the fingerprint of a message.

Another related commercial implementation for online banking transaction verifi-

cation is “visual cryptogram” [62]. When a user initiates a transaction on a banking

site, an encrypted visual challenge corresponding to the transaction (consisting of a

matrix of coloured dots) is displayed on the user’s browser. The user uses a camera-

phone (pre-loaded with required software and key) to take a snapshot of the visual

challenge, and then the transaction details are displayed on the phone’s screen. A

confirmation code is generated if the user choose to approve the displayed transaction,

which is then typed into the PC browser for confirming the transaction.
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4.2.2 Notification through Multiple Channels

In this model users are notified by their banks when a transaction is performed on

their account (debit or credit accounts). Notification channels may include email,

SMS, Instant Messaging (IM), microblog services (e.g., twitter), phone call, and voice

mail. Users can select one or more communication channels of their choice, and when

a transaction occurs on a user’s account, the corresponding bank sends details of that

transaction to all user chosen media. Banks may require users to act on a notification

message by confirming the transaction, or the notification message can simply serve

as a log message. In the later case, users can check the messages at their convenience,

e.g., putting all messages under a certain email ‘label’ or ‘folder’ and check them

daily.11 Alternatively, banks can summarize all transaction for a day in a single

email. This instant or daily notification apparently puts users in control, and reduces

11Most email clients, including some web email applications facilitate rule-based classification
(based on e.g., ‘from’ address and keywords in a subject line).
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the burden of checking all transactions from a monthly statement at once. Certain

transactions such as issuing of a new credential, high-value transfers should require

phone/voice/video confirmation (see e.g., VideoTicket [175]). To counter automatic

approval from a malware-infected personal device (e.g., cellphone, PDA), physical

presence mechanisms (e.g., a hardware switch, vertical/horizontal shaking) of Trusted

Platform Module (TPM)-enabled devices [265] may be used.

In this model, we assume that users will select one or more notification channels

of their choice, and keep those (e.g., email address/twitter) up-to-date with their

financial institutions. Security of this proposal lies on the following assumptions:

(i) attackers cannot control all user-selected channels; (ii) attackers cannot suppress

notification messages originating from a bank or notification service provider; and (iii)

users will carefully check those messages. User interface design can positively influence

how diligently users check notification messages (see e.g., [269]). Notification service

providers also must communicate to users that these messages contain information

only about transactions without any actionable items (e.g., live links/URLs or phone

numbers to callback) which can lead to phishing attacks or malware infection.

A legitimate concern about this approach is information overload, especially for

those users who make several transactions (through e.g., online banking, credit/debit

cards) a day. However, in general we believe that receiving at least a summary message

(email/IM/twitter) each day (when non-zero number of transactions are performed)

may be easily accepted by users. Also we should bear in mind that an average user

possibly receives several phone calls, SMS messages, or voice mails each day. Average

Internet-connected users also regularly deal with an increased number of emails, IM

messages, and messages at social networking (e.g., Facebook Wall) and microblogging

sites (e.g., twitter). For sending notification messages directly to a user’s voice mail,

services such as slydial (slydial.com) can be used. At the end, users are in control

of how many notification messages they want to receive, and through which channels.

Real world examples of notification services close to our idea already exist. Online

financial management sites such as mint.com and yodlee.com notify users through

email or SMS in certain cases, e.g., when suspicious transactions are detected or when

an account’s balance reaches a certain threshold. These sites can also aggregate
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all financial accounts (e.g., bank and credit card accounts) into one place for easy

tracking. Users must sign-up for online banking and share their banking passwords

with these services to enjoy the benefits of account aggregation. However, some

banks prohibit sharing of passwords in their agreement, and from security and privacy

perspective, such sharing could increase risk. We argue that sending notification

messages directly from banks or credit card companies is inherently more trustworthy,

and avoids the additional risk of trusting a third party.

4.3 Concluding Remarks

For protecting online transactions in the current untrusted environment, several

academic proposals have been made recently. Financial institutions have also de-

ployed several practical measures to deal with these attacks. We summarize several

of these to put our proposed MP-Auth protocol into context; we also also expect

this comprehensive review of current literature and existing solutions will motivate

future proposals.

New attacks (e.g., Trojan.Silentbanker [255], web-rootkits [130], Kaminsky DNS

attack [137]) have surfaced which can defeat existing counter-measures including two-

factor authentication (e.g., [190]), and schemes using stand-alone smartcard read-

ers (e.g., [88]). To win in this arms-race, we propose two simple non-cryptographic

techniques complementary to existing cryptographic measures, including MP-Auth.

These techniques assume multi-channel communication between users and service

providers (such as banks), and may help users stop worrying about their financial

credentials, and feel more confident about online transactions. However, the pro-

posed techniques as introduced are preliminary; our goal is to motivate research in

this direction assuming existing cryptographic techniques will eventually be defeated.

Our proposals introduce additional burdens on users, and as such lead to decreased

usability; it seems apparent, however, that some price must be paid for increased

security, albeit less clear whether the particular tradeoffs are tolerable in practice, for

some set of users.



Chapter 5

Privacy-Enhanced Sharing of Personal Content on the Web

Publishing personal content on the web is gaining increased popularity with dramatic

growth in social networking websites, and availability of cheap personal domain names

and hosting services. Although the Internet enables easy publishing of any content

intended to be generally accessible, restricting personal content to a selected group

of contacts is more difficult. In this chapter, we introduce an authentication mecha-

nism for sharing personal content online in a privacy-friendly manner. We focus on

improving sharing mechanisms of personal content, and addressing the compromise

of web servers hosting such content.

5.1 Introduction

Through social networking and photo-sharing websites, and personal blogs, it is be-

coming increasingly popular to make personal content available on the Internet. For

some users, these sites provide a textual and/or pictorial documentary of life. Pri-

marily because it is the easiest mode of operation, many users of these services allow

their personal web content to be accessed by all other Internet users, often with the

false impression that none other than their family or friends would look into their

personal online posts [177]. Privacy concerns are largely being ignored (sometimes

unknowingly) in the current rush to online lifecasting.

Social networking websites such as Facebook and MySpace provide access control

mechanisms for partially restricting personal content to a known circle of contacts;

photo-sharing websites such as Flickr and Shutterfly provide similar mechanisms. A

user can invite her friends and family to be added to her permitted list, and can

authorize only such people to view her web content, but only if they create accounts

at the publishing user’s social networking site. Although users reportedly disclose

personal data in abundance at these social networking sites, a relatively small number

76
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of users limit access to their profiles only to a friends’ circle; several studies provide

evidence of such behaviour [110, 177, 213, 284]. While this limited restriction might

help users’ privacy, this applies only for the content on those (few) sites.

We focus on the general problem of privacy-enabled web content sharing from

any user-chosen web server. Many users now own domain names for hosting personal

websites, facilitated by the very low price; as of October 2007, a top-level domain

name may cost less than $6/year, with $4/month commercial hosting fees. Most

ISPs also offer free web spaces for home users. It is thus cheap and easy to make

any personal data available to anyone around the globe through a website; however,

restricting such content to a selected group of people is more difficult. Currently

this is achieved primarily by either (i) advertising an obscure link through personal

email, i.e., a URL which is not linked from any other webpage; or (ii) protecting

a webpage with a password, and distributing that password among chosen contacts

through email, instant messaging (IM), or phone.

Emailing an obscure URL to many contacts (friends and family members) is a

rather cumbersome approach, especially if the shared URLs are often updated. Pass-

word protection (e.g., HTTP Authentication [93], forcing a login dialogue/page) is

not uncommon among the more technically inclined, but this leads to yet one more

password to share and maintain, and once a password is shared with someone, the

access grant cannot be retracted without changing the password (which also requires

distributing the new password to all other contacts). Also, anyone who learns the

shared password can view the protected content without the publishing user’s con-

sent; anyone knowing the password can pass it on to others, and such transitive access

is not generally preventable.

Relying on the immense popularity of public instant messaging (IM) networks,1

we propose a scheme called IM-based Privacy-Enhanced Content Sharing (IMPECS )

to disseminate personal web content by leveraging the established circle of trust on

IM networks; by a circle of trust we mean the mutually trustworthy relationship (to

some extent) as formed through the IM contact list feature which requires explicit user

permission for being added to another user’s contact list. We assume both publishing

1For example, according to one estimation [16], there are about 350 million user accounts in MSN
and Yahoo! IM networks in total.
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and viewing users can, or already do use IM. A user’s web content can be viewed

only by her IM contacts. Further restrictions can be applied depending on which

group of users (e.g., family, friends, co-workers) a specific contact is placed in by a

publishing user, i.e., one who originally makes personal content available for her IM

contacts. A viewing user is one who wants to view such content. We assume that a

web server and an IM server share a user-specific content sharing key; a ticket (similar

to a session cookie) is generated by the IM server for a viewing user using the content

key of a publishing user, and the web server validates the ticket before serving data

from a user’s web folder (cf. Kerberos [184], ORiginator CONtrolled (ORCON) access

control [105]).

Our primary goal is to enhance privacy (i.e., confidentiality) of users’ personal web

content; we do not aim for very high-end or military-grade security, as the security of

IMPECS is limited by the underlying IM and web communication protocols, which in

current practice transfer most content in plaintext although authentication passwords

are generally sent over SSL (cf. [155, 43]). The main intended feature of IMPECS

is that total strangers are precluded from direct access to a user’s personal web

content, but “friends” as designated by the user’s IM contact list are allowed access

(without requiring any special shared password). IMPECS also prevents large-scale

web crawlers and auto-indexers from tagging personal data and pictures (see e.g., [11,

157]). However, malicious IM contacts of a publishing user may of course re-post the

user’s private content to a public web forum, and we are not proposing any form of

digital rights management (DRM) control.

In summary, IMPECS offers the following features and benefits.

1. Privacy-Enhanced Sharing. A publishing user’s personal web content can

be viewed only by the IM contacts that she pre-approves. Thus privacy of a

user’s web content is restricted to a designated group. For many existing IM

users, such groups can be leveraged without additional setup costs.

2. Usable Security. The privacy enhancement does not require a viewing user

to separately update his IM client, or remember the publishing user’s URL, or

have access to a site-specific password to view the publisher’s content. Similarly,
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the publishing user need not carry out any extra steps beyond existing man-

agement of an IM contact list, although finer granularity lists can optionally be

created by advanced users.

3. Interoperability. In contrast to social networking websites, a user can pub-

lish her web content at any web server of her choice, and yet be able to maintain

greater access control on her content.

4. Decreased Risks Related to Sharing. By restricting open access to

personal details, IMPECS reduces opportunities for launching context-aware,

targeted phishing attacks [183, 238, 282].

5. Protection Against Web Server Compromise. A variant of IMPECS

(Section 5.4) can prevent en masse drive-by-downloads [205, 252] as currently

being enabled by the compromise of a hosting provider with a large number

of customers.

To test our design, we built a prototype of IMPECS using the IETF standardized

Extensible Messaging and Presence Protocol (XMPP [220, 221], i.e., the Jabber IM

protocol). This required only minor modifications to the IM server, and PHP scripts

on a web server. Our implementation source code is available on request.

Organization. In Section 5.2, we discuss the proposed IMPECS scheme, threat

model and operational assumptions. Our prototype implementation is discussed in

Section 5.3, along with brief comments on deployment issues. A variant of IMPECS

is discussed in Section 5.4. Section 5.5 provides further motivation, an overview of

existing and proposed work related to personal content sharing, and a comparison of

IMPECS with these in terms of user convenience and usability. Section 5.6 concludes.

5.2 IM-based Privacy-Enhanced Content Sharing (IMPECS)

In this section, we describe the proposed IMPECS scheme, threat model and oper-

ational assumptions. Table 5.1 summarizes our notation. We assume readers are

familiar with basic IM definitions such as presence and contact list (e.g., see [154]).

Overview of IMPECS. Assume user A maintains a website on a web server Sw. A

registers her site with an IM server Si, and sets permission for the site, e.g., which
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A,B Two IM users Alice and Bob, both members of each other’s respec-
tive contact lists. A is the publishing user; B is the viewing user.

Si, Sw IM and web servers, respectively. Both A and B have accounts with
Si, and A maintains an account with Sw.

IDAw A’s user ID at Sw (unique in Sw’s domain).
KAw A’s content sharing key, shared with both Sw and Si.
{data}K Authenticated encryption [99, 28] of data using symmetric key K.
URLA The URL of A’s publishing web folder on Sw.
R Access restrictions on URLA as imposed by A.
Tiw An access control ticket for viewing URLA (generated by Si, and

validated by Sw).
URLAR A registration URL generated by Sw when requested by A. The

content sharing key and restrictions are shared between Sw and Si

through this URL.
URLAT A viewing URL (for accessing URLA) containing a ticket Tiw, gen-

erated by Si at the request of B.

Table 5.1: Notation used in IMPECS

contacts can access which pages/folders. For example, contacts in the group “friends”

may have different permissions than the group “family.” Sw and Si share a user-

specific content sharing key for A. IM contacts of A can see (through their IM

clients) whether A offers any personal URL which they are permitted to view. When

a contact B wants to visit A’s advertised personal website (or any pages thereon), B

sends a request to Si to visit the website. Depending on restrictions R (e.g., duration,

frequency) for viewing webpages at URLA, Si generates a ticket (similar to a session

cookie), and sends a special URL to B along with the ticket. B receives the URL

instantly (e.g., as an IM text message) from Si, and can visit URLA within a time

period as specified by the ticket. Note that A need not be online to provide this

permission. We now describe the scheme in greater detail.

Setup. A and B are two IM users who maintain IM accounts at the same IM server

Si. (Note that A and B may use different IM servers, as long as their IM servers

facilitate communication between the users, e.g., as in distributed XMPP [220], Win-

dows Live/Yahoo! Messenger.) Both users have added each other into their contact

lists; adding someone to a contact list requires explicit permission from the user being

added (a common practice in most IM networks). A also puts B into an appropriate

group of her contact list (e.g., “family”, “friends”, “co-workers”). A maintains an
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account with a web server Sw, and uploads some personal pictures or files under a

web folder URLA at Sw. A wants to share URLA with a select group of IM contacts

including B.

Publisher (A) IM Server (Si) Web Server (Sw)

oo

Authentication (between A, Sw)
//

Request a registration URL for URLA, specifying restrictions R
//

oo

URLAR

oo

Authentication (between A, Si)
//

URLAR
//

Figure 5.1: Registering a URL in IMPECS

Registering a URL with the IM server. We now describe the steps for publishing

a content-hosting URL in IMPECS. Figure 5.1 outlines the following steps.

1. A logs into Sw (e.g., using a pre-established password over SSL).

2. A uploads her personal files and sets restrictions on URLA, e.g., the length of

time a ticket will remain valid after being generated by Si (using e.g., HTML

check-boxes or drop-down lists). A then requests Sw to generate a registration

URL for URLA.

3. Sw generates a random content sharing key KAw (e.g., 128 bits, sufficient for

precluding offline dictionary attacks) and stores it in a protected database,

or in a file under A’s private space. Sw constructs the registration URL,

URLAR = http://<URLA>/?userid=IDAw&key=KAw&restrictions=R, and

sends URLAR to A (e.g., through HTTPS). Here, by <URLA> we mean the

actual URL (without the scheme name), not a label for that URL (i.e., not the

string “URLA”).

4. A logs into Si (e.g., using her regular IM password over SSL).

5. A forwards URLAR to Si, for the purpose of registering this information with

Si. Si stores URLA, IDAw, KAw and R for future ticket generation.
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Viewer (B) IM Server (Si) Web Server (Sw)

oo

Authentication (between B, Si)
//

Request to access URLA
//

oo

URLAT

URLAT
//

oo

Content hosted at URLA

Figure 5.2: Viewing a personal URL in IMPECS

Viewing a protected URL via an IM server. We now describe the steps for

viewing a content-hosting URL in IMPECS. Figure 5.2 outlines these steps.

1. B logs into Si (e.g., using his regular IM password over SSL), and receives his

contact list as usual in IM. As part of IMPECS, B also receives a list of private

URLs, offered by his contacts, which are authorized to be accessed by B.

2. B sends a request to Si for a ticket to view one of these URLs, say A’s web

content at URLA.

3. Si generates a ticket Tiw = {IDAw, R}KAw
, constructs URLAT = http://

<URLA>/?userid=IDAw&ticket=Tiw , and sends URLAT to B.

4. B forwards URLAT to Sw. Sw retrieves KAw using IDAw as embedded in B’s

request. Then Sw decrypts the ticket Tiw, and compares whether A’s user ID

in the URL is the same as inside the ticket. Sw also checks the restrictions;

e.g., R could be as simple as a timestamp, in which case Si encrypts the current

timestamp into the ticket and Sw accepts that ticket if received within a specific

time period (e.g., 60 seconds, as set by A).

5. Sw sends the content hosted at URLA to B after validating B’s ticket Tiw in

URLAT (as in step 4). If a valid ticket is not supplied, Sw denies access to URLA.

Caveats. A malicious user B can compromise the privacy of content hosted at URLA,

by making a copy of the website and posting it on a publicly accessible site, or sending
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a valid ticket to anyone B wants. Although A cannot stop copying of her personal

content, she may limit (to some extent) forwarding of a valid ticket with the help

of Si and Sw in the following way. Si can encrypt B’s current IP address into the

ticket, and Sw can check whether it receives the ticket from the specified IP address

as embedded inside the ticket (assuming both Si and Sw have access to the same IP

address of B).

If a content key KAw is leaked, anyone can generate valid tickets with that key, and

thus compromise the privacy of content hosted at URLA. If A changes her content key

KAw, this threat can be minimized. Note that A’s modifications to her web content,

and key updates, are transparent to viewing users. Although valid tickets can be

generated with a compromised KAw, this key does not enable access to modify A’s

content on Sw.

Most IM and web accounts are currently authenticated by user-chosen (generally

weak) passwords. A compromised IM account enables an attacker to add any mali-

cious link (as personal URLs) to that account. A compromised web account enables

an attacker to post any content on the compromised user’s web space, and modify

content keys (although he cannot update the content key at Si). However, these

threats exist currently for both IM and web accounts; IMPECS does not increase

these existing risks nor does it attempt to address them.

If user content is distributed across many different hosting sites (rather than being

concentrated only to few sites as in current social networking sites), then an adversary

cannot easily track users by collecting their personal web content from only a few

selected sites. However, in IMPECS if the IM server Si is compromised (or cooperates

with the adversary), privacy of user content is lost for all IMPECS users of Si even if

their content is hosted at different providers; from compromised content keys, anyone

can generate valid tickets for accessing user data. Thus the IM server is a potential

single point of privacy breach (if compromised or hostile).

If attackers can compromise the web server of a publishing user A, they can

display whatever content they want from A’s site, or spread malware to users visiting

the site [205]. Compromise of a web server that hosts content from a large number

of users is particularly more risky, and has been reported in the past (e.g., [252]).
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We briefly outline a variant of IMPECS to mitigate such a large scale compromise in

Section 5.4.

Threat model and operational assumptions. We assume that the circle of trust

as built into IM networks is reliable, i.e., a viewing user is not malicious. A publishing

user A cannot be added to anyone’s contact list without being explicitly approved by

A (as is the common practice in most IM networks). To achieve fine-grained access

control, we also assume that a publishing user groups contacts appropriately, and

authorizes access to these groups conscientiously (e.g., which group can access which

URLs). IMPECS trusts that the IM server checks publishing user A’s permissions

properly, and only sends tickets to authorized users. The web server is trusted to

deliver A’s content only after validating an appropriate access control ticket. The

availability of usable site maintenance tools (e.g., HTML editing, file uploading) is

also assumed for publishing users.

If a publishing user A’s IM client offers a user interface for setting a personal URL

(which is the norm in many IM clients, e.g., Yahoo! Messenger), we can use that to

send the registration URL (containing the content key and restrictions), and thus

may avoid changing A’s IM client. A viewing user B’s IM client can also remain the

same if it offers viewing IM contacts’ personal URLs (e.g., the ‘View Profile’ option

in Yahoo! Messenger provides a ‘Home Page’ field in a profile webpage). We require

only minor modifications to a web server through server-side scripts (assuming the

server allows such scripts). The web server may optionally maintain a database of

user-specific content keys; otherwise, the content key of a user must be stored in

the user’s private space on that web server. For an IM server, enforcing restrictions

(in ticket generation) is easy; the server already restricts text (and other request)

messages sent to a user from any other IM users according to the receiving user’s

preferences. However, users must register their URLs with the IM server; most IM

services currently enable users to register personal URLs on their profiles. Leaking

these URLs (without the corresponding content keys) will not by itself authorize

access to any web content; they are inaccessible unless someone gets a valid ticket

from the IM server.
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Communication in most public IM networks (client-server and client-client) and

web servers (client-server) is plaintext, although a password for authentication is gen-

erally sent over SSL. Note that our design involves the content key KAw (i.e., URLAR)

being sent over SSL. An attacker with access to the communication link may eaves-

drop on private content of a user when the user uploads content to the web server,

or when content is served to a (valid) viewing user. Using a variant of IMPECS (see

Section 5.4), or at the added cost of SSL, these attacks can be addressed.

Figure 5.3: A viewing URL instance in IMPECS

5.3 Implementation

In this section we discuss our prototype implementation, and computational and

deployment costs of IMPECS.

We implemented a prototype of IMPECS using the Extensible Messaging and

Presence Protocol (XMPP [220, 221], based on the popular Jabber2 IM protocol). As

XMPP server and client, we chose jabberd2 [128] and Pidgin [200] (previously known

as Gaim) respectively, on a Linux platform. For cryptographic library, we use OpenSSL

and the PHP mcrypt module; we use AES-CBC-128 for symmetric encryption, and

/dev/urandom for random number generation. MySQL is used for database support.

Our implementation source code for the prototype is available on request.

2www.jabber.org
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We assume that the publishing user A can run PHP scripts on the web server Sw.

Sw also stores A’s content sharing key in a database. We create a web folder for A

on Sw which is accessible for writing (and viewing) when A logs into Sw. Other than

login as A, for viewing any content of the folder, one must supply a ticket containing

a valid timestamp (and IDAw) encrypted under A’s content key. We assume that

system clocks of Si and Sw are (more or less) synchronized. Sw checks whether a

requesting URL contains a valid ticket; we accept a timestamp to be valid if it arrives

within 60 seconds of being generated by Si. A and B also add each other to their

respective contact lists.

XMPP uses the vCard [66] format for personal profile information storage, which

facilitates advertising one’s personal URL. We use this field in vCard for storing a

user-specified URL, and added one field called content-key into the vCard table for

storing a user’s content sharing key (along with IDAw).3 Ideally an XMPP user can

set vCard values from any XMPP client. However, as the Pidgin implementation we

used (version 2.0.1) lacks any such user interface for setting vCard values, we directly

inserted URLA and KAw to A’s vCard table on the jabberd2 server database. For

viewing a contact’s vCard, a user can select the contact from the Pidgin contact list,

and choose the “Get Info” option from the context menu. When Si receives such

a request for A’s vCard from B, Si retrieves A’s content key KAw, and generates a

ticket by encrypting the current time and IDAw with the key. Si then constructs a

URL using URLA as the base, and IDAw and the (hexadecimal encoded) ticket as

parameters. Figure 5.3 shows one example of Si’s response to B. Then B can click

on the link and be able to view URLA, if validated by Sw.

Computational and deployment costs. In addition to retrieving A’s vCard in-

formation from a database (as required by a regular XMPP server), IMPECS requires

one symmetric-key encryption by Si. One symmetric-key decryption is required by

Sw when a viewing URL is received (for ticket validation). Sw also must generate

a 128-bit random number when A requests a registration URL (for the content key

3Instead of inserting the content-key field, IDAw and KAw could be embedded into the URL
field, allowing Si to remain in conformance with the vCard standard.
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generation). These operations are relatively light-weight for the IM and web servers;

no practical deployment barrier in terms of performance is expected.

In a distributed IM service such as XMPP or Windows Live/Yahoo! Messenger,

where A and B may have accounts with different IM servers, IMPECS does not require

any changes to B’s server or client software. (Note that as of Feb. 2008, XMPP is

supported by several large IM services, e.g., Google Talk, IBM Lotus Sametime, and

AOL/ICQ.) We require changes to A’s IM and web servers. The changes in Sw are

mostly achieved through PHP scripts. A’s content key and restrictions can be stored

in a file under a private folder (on A’s web space), or in a database if Sw provides

database access. Also, B remains anonymous to Sw in IMPECS; i.e., B does not need

an account at Sw for viewing A’s content, as opposed to social networking websites

(although a ticket is required in IMPECS). Note that all publishing users at Sw can

reuse the same PHP scripts for our scheme; i.e., users are not required to write or

modify the PHP scripts (these scripts may be provided by, e.g., Sw or the open-source

community).

Why not to implement IMPECS as a Facebook application. For ease of de-

ployment, we could implement IMPECS in Facebook Platform4 or Google OpenSo-

cial.5 Instead we chose to base our IMPECS design and implementation on IM for

the following reason. We believe that storing relationship information and user data

at the same site may undermine privacy; for example, a single entity then learns too

much about users and may use that knowledge to launch unfriendly (in regard to

users’ privacy) campaigns such as targeted advertisements, sharing user data with

government agencies and third-party businesses. This also makes such sites an at-

tractive target to compromise. These threats are quite evident from the short history

of Facebook and MySpace. IM networks have also been targeted for malicious pur-

poses such as spreading worms and phishing URLs; however, such attacks generally

compromise relationship information (i.e., email addresses) but not user content.

4http://developers.facebook.com/
5http://code.google.com/apis/opensocial/
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5.4 A Variant of IMPECS

In this section, we briefly outline a variant of IMPECS that can prevent malware-

spread from a compromised web hosting provider. We have not implemented this

variant yet.

Some large hosting providers (e.g., godaddy.com) currently facilitate web hosting

for thousands of personal and corporate sites. If many IMPECS users host their

content at such a provider, a successful attack against the provider might possibly

affect all those IMPECS users. The compromised user sites could be used for malicious

purposes, e.g., hosting malware for drive-by-downloads [205, 252]. This could be

particularly bad for IMPECS users as private URLs as shared through IMPECS may

appear to be more trustworthy. Here we outline a proposal that can guard against

such en masse exploits.

Additional steps during URL registration. The following additional steps are

required from a publishing user.

1. A uses a local application (in-browser JavaScript plug-in or an independent

content editing application) to generate an encryption key Kenc, 128 bits long.

A then uses Kenc to encrypt her personal files and upload the encrypted result

(i.e., {data files}Kenc
) to Sw. This is done at the beginning of step 2 in URL

registration of IMPECS (see Fig. 5.1 in Section 5.2).

2. A appends Kenc to the registration URL received from Sw before sending the

URL to the IM server Si. This is done at the end of step 3 in URL registration

of IMPECS (see Fig. 5.1 in Section 5.2).

Additional steps for a viewing user. The following additional steps (although

transparent) are required from a viewing user.

1. When Si generates URLAT (step 3 in Fig. 5.2; see Section 5.2), it also appends

the URL with Kenc as a URL fragment, i.e., <URLAT>#Kenc. When B visits

this URL, URLAT is forwarded to Sw but not the fragment, i.e., Sw does not

receive Kenc (cf. [5]).
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2. In step 5 (Fig. 5.2) Sw sends the requested (encrypted) content. B’s browser

uses Kenc as received from Si to display the decrypted content.

The encryption key Kenc is not accessible to Sw at any time. Thus by compro-

mising Sw, an attacker cannot control what is served to the visiting IMPECS users.

Note, however, that regular visitors to such a site are not protected by this technique.

The publishing user A may update Kenc in a similar way to the content key KAw.

However, an update to Kenc does not mandate updating KAw or vice-versa, and both

key updates are transparent to viewing users.

5.5 Motivation, Related Work and Comparison to IMPECS

In this section we discuss existing and proposed work related to personal web pub-

lishing, and contrast IMPECS with these in terms of privacy and user convenience.

Popular IM networks, e.g., Yahoo!, AOL, and Windows Live enable users to main-

tain a profile accessible as a webpage. Microsoft offers free web spaces for sharing

personal web content (e.g., profile, photos, blogs, guestbook) through its Windows

Live Spaces social networking website at www.spaces.live.com. Live Spaces is inte-

grated with the Windows Live Messenger IM client. User A can control who may view

her Live Spaces’ webpage. A can invite friends to join the Windows Live Messenger

network to view her content. A may authorize only her IM contacts (or a subset

of the contacts) to view her space. Alternatively, A may make her space accessible

to anyone on the web. If A’s space is restricted to IM contacts, a contact B (from

A’s contact list) can login to Live Spaces using B’s Windows Live Messenger login

credential for viewing A’s space. If logged into the IM network, B can also select

A’s profile from a context menu from the Live Messenger client; from A’s profile, B

can access A’s space without further authentication. However, in either case, simi-

lar to the common social networking practice (e.g., as in Facebook or MySpace), B

must join A’s network to view any access-restricted content. In contrast, when using

IMPECS, B does not need to know where his (IMPECS-enabled) IM contacts host

their content.
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To partially relieve users from the necessity of creating multiple web credentials,

Microsoft permits third-party businesses to use its Windows Live ID Web Authentica-

tion6 (previously known as Microsoft Passport). Similarly, Yahoo! offers the Browser-

Based Authentication7 (BBAuth) service that enables third-party web applications

to be authenticated through widely used Yahoo! IDs. OpenID (openid.net) is an

initiative from the open source community to unify online authentication, also re-

ducing the burden of creating multiple web credentials. AOL has enabled the use

of OpenID (through openid.aol.com) for its IM service and AOL Pages social net-

work. OpenID can also be used for Yahoo! login (through openid.yahoo.com).

Liberty Alliance (projectliberty.org) is another holistic approach to establish an

open standard for online identity. If any such unified identification framework be-

comes widely accepted in the long-run, IMPECS would become even more appealing

(e.g., through a common login credential). However, IMPECS does not address user

authentication across websites per se, but rather focuses on how the existing trust

network and interactiveness of a popular service like IM can be leveraged to offer

privacy-enhanced personal content sharing on the web.

Most IM networks offer file sharing from user machines generally through custom-

built file transfer protocols. An IM user can restrict which contacts in her IM contact

list can access the shared files. However, IM file transfer protocols may not work in

some cases (e.g., due to firewall restrictions), and a publishing user must be online to

make her files available to others.

YouServ [23] is an end-user P2P application to enable people to easily share per-

sonal content (e.g., photos, music, presentations, work documents) with little to no

cost.8 Instead of a specialized P2P protocol, all YouServ content is served through

standard web protocols (i.e., DNS with HTTP). An implementation of YouServ was

used by thousands of users internally at IBM and Carnegie Mellon University (ap-

parently the web interface for this service at YouServ.com is now defunct). YouServ

requires two centralized components called YouServ Coordinator (for authentication

6http://msdn2.microsoft.com/en-us/library/bb676633.aspx
7http://developer.yahoo.com/auth/
8Note that when this research [23] was published in 2002, the cost of hosting a personal website

at a third-party hosting company was much higher than today.
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and peer coordination) and YouServ Dynamic DNS (for finding a peer site’s dynamic

IP address). A user’s YouServ content remains available even when the user’s PC

is offline (through a peer hosted site), or firewalled (through a proxy site). Authen-

tication is provided using a single sign-on password scheme (valid for any YouServ

site). Access to any specific file can be limited to certain members of the YouServ

community. Using YouServ, Bayardo et al. [22] proposed a technique to make IM file

transfer easier by making local files available through transient web links; the web

link of a file is sent to the recipient simply as an IM text message. In contrast to

YouServ, publishing users in IMPECS make their personal content available from a

third-party hosting site (as is the current common practice) instead of their own PC

(or any of their peers’ PC).

The popularity of social networking websites, e.g., Facebook, MySpace, Twitter,

Bebo, is apparently comparable to the early years of large-scale IM networks. By

joining Facebook or MySpace, users can search and connect with friends, share per-

sonal content such as photos, videos, blogs, contact information, and preferences. In

Facebook, users generally locate friends from groups, e.g., classmates from the same

school or university, co-workers, geographical locations. MySpace generally catego-

rizes user groups by interests, e.g., music, photography. To add to the interactive

power of IM, MySpace offers its own IM client called MySpaceIM (accessible only to

MySpace users). Facebook also has recently (Oct. 2007) added IM capability through

the FriendVox browser-based IM client. Twitter enables users to send short messages

to selected friends through the web, SMS messages, or IM. Most social network-

ing sites enable limited access control through explicitly creating a “friends’ list.”

Online photo sharing website Flickr offers creation of a list of friends through Ya-

hoo! login credentials. Other photo-sharing websites such as Shutterfly offer similar

privacy-enhancing mechanisms. We discuss the effectiveness of such access control

mechanisms below.

Privacy issues in social networking websites. Although social networking sites

enable publishing users to partially restrict access to their personal content, privacy

concerns are emerging quickly regarding the use of these networks. People have

been denied or lost jobs because of their comments on MySpace or Facebook profiles
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(e.g., [185, 186]), a grocery chain dismissed employees for comments on Facebook

(e.g., [97]), and students were suspended for their Facebook comments (e.g., [48]).

Government agencies such as the CIA are suspected of tracking users with special

interests (e.g., [202]); apparently under the U.S. Patriot Act, state agencies can look

into a job interviewee’s Facebook profile, even if the profile is “privacy-protected,”

i.e., permitted to be viewed only by the publisher’s circle of friends (e.g., [174]). If

a user removes content from his/her profile that may be deemed offensive or was

posted as a momentary emotional response, or even if the user deletes the entire

profile, personal content may still reside in (incremental) archives for a long time

(cf. [157]).

Many users of social networking sites keep their profiles and friends list publicly ac-

cessible. A user survey [177] of social networking websites reported that 74% of adult

users of those sites exposed their personal information such as email address, name,

birthday, home and work address, and even Social Security Number (SSN). Only 39%

of respondents chose to restrict their personal profiles only to friends. Initial results

from another survey [253] of Facebook users reported that 67% of the participants

kept their personal profile open for all. Another study [209] of the LinkedIn social

networking website (used mostly for business purposes, e.g., to find potential clients,

service providers, business opportunities, job listings) reported that people gener-

ally expose detailed and (possibly) confidential information on their profiles. Dwyer

et al. [73] compared information disclosure and perceptions of trust and privacy in

an online survey of Facebook and MySpace users. Facebook users were reported to

reveal more identifying information than MySpace users. For example, real name,

email address, and IM screen name have been disclosed by 100%, 94%, and 71% of

Facebook users respectively (in contrast to 66.7%, 40%, and 49.8% of MySpace users

respectively).

Gross and Acquisti [110] investigated patterns of personal information revelation

and associated privacy implications using more than 4,000 publicly available Carnegie

Mellon University (CMU) users’ Facebook profiles. Most users provided (seemingly

highly accurate) personal information including profile image, full birth date, home-

town, current residence, and phone number. Personal preferences, interests, and
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political views were also disclosed by the majority of CMU users. Although Face-

book offers privacy control, most users did not change the default privacy preferences

which grant access to a user’s full profile by any member of the user’s groups/networks

(e.g., place, institution, interest); only three CMU users’ profiles (0.06%) were pre-

cluded from view by unconnected users (i.e., not a friend or friend-of-a-friend). Based

on the revealed personal information, the authors outlined a number of privacy im-

plications including online and real-world stalking, digital dossier of participants (by

any third-party), and demographics and face re-identification (i.e., relating seemingly

anonymous data to explicitly identifying information). The authors also discussed

how a user’s SSN may be estimated from disclosed birth date, hometown, current

residence and phone number. A similar study [86] on 20,000 MySpace user-profiles

reported that 68% of users kept their personal profiles open for all. Almost half of

a randomly selected 1000 users’ group provided global access to all elements of their

personal profile. Rosenblum [213] analyzed privacy risks of social networking sites,

including privacy options as provided by major networking sites and limitations of

such privacy settings. In addition to highlighting privacy issues of social network-

ing sites, Barnes [21] emphasizes that a significant educational effort from parents,

schools, social networking sites, and government agencies, is required to address the

emerging privacy issues related to these sites.

Jagatic et al. [132] collected publicly available “circles of friends” data from several

social networking websites by using web crawlers; this enabled the researchers to

quickly build a database of tens of thousands of relationships. When a (benign)

phishing attack was launched by using the collected social network database, 72% of

social networking targets fell victim to the phishing attack, while only 16% of regular

users were fooled by the attack. In fact, social networking websites are specifically

being targeted for launching context-aware phishing attacks (see e.g., [183, 238, 12,

282]), spreading spyware [45] and malware [239], and even for building botnets [226].

Cross-site scripting flaws in the MySpace website have been reported [262] in the

past which could have been exploited to disclose even privacy-protected user content.

Social networking websites with personal details of millions of users would also seem to

be lucrative targets to online attackers (e.g., for targeted phishing or identity theft),
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and government agencies (e.g., for tracking citizens’ digital identities). Equifax, a

leading consumer credit reporting firm, has recently (July, 2007) warned [211] that

user profiles on social networking sites are a “goldmine” for ID thieves. MySpace

acknowledged [2] that as of July 2007, it had removed more than 29,000 registered

sex offenders profiles from the MySpace website, indicating that criminals with other

than monetary motives are also exploiting the abundance of personal information

freely available at social networking sites.

Ahern et al. [6] examined privacy decisions in mobile and online photo sharing

using Flickr. Most interviewed users in the study showed little or no concern regarding

exposure of aggregated contextual information, e.g., time, location (embedded with

some uploaded photo files), arising from their photo-sharing habits. In addition to

manual photo-tagging as offered by common photo-sharing websites such as Flickr

and Shutterfly, Polar Rose (www.polarrose.com) uses facial recognition algorithms

for tagging unknown images of a subject if there is a tagged image of the subject

on Polar Rose’s image database (see [11] regarding the inadequacy of current privacy

laws in this regard). Search engines, e.g., Spock (www.spock.com), customized for

finding personal profiles posted at different websites, may provide even easier access

to personal web content. Since September 2007, Facebook is allowing non-members

to search for user profiles that are not access-restricted; third-party search engines

such as Google and Yahoo! are also authorized to index such profiles (as of Feb. 2008).

Convenience and usability of IMPECS. IM contact lists are already in place for

IM users, whereas social networking sites require users to invite friends and family

members through, e.g., email to join a user’s “friends’ list”; sometimes these stan-

dardized, impersonal invitation emails simply irritate the recipients. IM is more in-

teractive than social networking sites despite the immense recent popularity of those

sites. For many IM users, IM clients start automatically after users log into their

PC, and many IM users remain signed-on to an IM network as long as they use their

computer. Social networking sites require a user to open a web browser, load a site,

and sign into that site for maintenance or to view a friend’s profile. IM users can

view and control more effectively what content is being shared at any given time;
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information regarding who viewed what, and how frequently, may also be gathered

from the IM server’s ticket-issuing statistics.

We believe the following factors make IMPECS appealing. The viewing user B’s

role in IMPECS is simplified in comparison to the current social networking practice.

B need only log into his IM client, and select an intended contact’s URL for viewing.

In contrast to social networking sites, B can remain unaware of who hosts his contact’s

web content. B need not even store or memorize A’s URL; in fact, a bookmarked

URL may not work depending on A’s restrictions. However, B must realize that

private URLs as shared through IMPECS are different than regular static URLs.

The publishing user A’s content sharing key KAw must be shared between Si and

Sw. This can be accomplished by any of the following means (in increasing order

of convenience): (i) A manually copies the registration URL (containing KAw) from

Sw to Si using an interface provided by her IM client; (ii) Sw forms an XMPP URI

(xmpp: [222]) embedding the key with URLA, and A activates the URI (e.g., by a

mouse click) to be processed by a locally installed XMPP client;9 the client sends

URLA and KAw to Si; or, (iii) Sw forwards KAw to Si if there exists a pre-established

relationship between the servers. A content key update is also similar to updating

a URL link at Si. To revoke B’s viewing permission, A can simply place B on a

separate IM contact group which does not have access to URLA (or remove B from

her contact list). Thus it is natural to expect that IMPECS is more convenient than

current content sharing/limiting techniques on the web (e.g., password protection,

obscure links). However, we hesitate to make any stronger usability claims without

formal user testing.

Once published on the Internet, private content may become permanent,

e.g., through archived search engine queries and web crawlers [157]; in essence, the

Internet does not forget anything published on it, although much of the personal

information on the web (e.g., blogs, emotional responses, criticisms of friends and

authorities) is meant to be transient. Unfortunately, momentary emotional responses

to an event, if posted as text or image on the publicly accessible Internet, may bring

unpleasant consequences at a later time. Our approach can enhance forgetfulness

9Most popular IM protocols provide custom URI handlers, e.g., ymsgr: (Yahoo! Messenger),
aim: (AOL Instant Messenger).
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of the web by not making personal content public in the first place (cf. [43]). Web

pages meant for certain personal contacts, friends and family will remain among the

pre-established circle of trust as long as none of the trusted IM contacts make copies

of a web page and republish it on the public Internet.

5.6 Concluding Remarks

Privacy is typically violated as a consequence of any of a number of factors. These

seem to include: (i) oppressive administrations or large corporations (sometimes by

exploiting the common misconception of “I’ve got nothing to hide” [248]); (ii) a

shortage of usable tools to guard online privacy; (iii) apathy towards privacy; and

(iv) a misunderstanding of the implications of lost privacy. In our opinion, easy

access to usable privacy tools may change the actions of ordinary web users towards

online privacy; IMPECS is designed to be such a tool to enhance privacy of personal

web content (i.e., we focus on addressing factor (ii) as listed above). We leverage the

existing circles of trust among IM contacts, as well as encourage further refinements

of trust in popular IM networks. Unlike current social networking websites, users do

not need to (re-)build a “friends’ list” in parallel to IM contact lists. In addition,

users can publish their content at any website of their choice, and still be able to

maintain privacy of their content (without being limited to use only a particular

social networking site). Note that the general idea behind IMPECS extends beyond

IM and IM circles of trust; any equivalent scheme, (ideally) containing pre-arranged

groups, could similarly be leveraged (cf. Liberty Alliance People Service [151]).

As reported in a user survey [177], even most adult users of social networking

websites keep their personal profiles open for all. We believe that such behaviour

results largely from practical issues such as difficulties in ensuring close contacts

join the same social networking site as the publishing user (just to view a friend’s

profile), or simply ignorance of the privacy implications of posting personal details

on the Internet. IM is a very popular Internet application, possibly with a greater

user base than social networking sites. Distributed IM services such as XMPP and

Windows Live/Yahoo! networks enable IM communication between users of differ-

ent IM networks. Therefore, we believe that IMPECS has significant deployment
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advantages over other personal content sharing techniques (e.g., password protec-

tion). By restricting personal content to a closed group of IM contacts, we believe

IMPECS reduces opportunities for launching context-aware, targeted phishing at-

tacks [183, 238, 282] where fraudsters collect social context of a target victim from

their seemingly innocuous unprotected personal data, and enhances forgetfulness [157]

of transient personal content on the web.



Chapter 6

Digital Objects as Passwords

Our proposed protocols such as MP-Auth (Chapter 3) and IMPECS (Chapter 5)

involve the use of user chosen text passwords. Such passwords may be viewed as

the weakest link to security in those protocols (and in many other existing password-

based protocols). To improve the strength (i.e., entropy) of these passwords, in this

chapter we introduce a password generation technique that relies on digital content

controlled by or accessible to everyday users.

6.1 Introduction and Motivation

Despite all their shortcomings, text-based passwords are still heavily used by every-

day users and security experts. Decades apart independent studies reveal that people

consistently choose weak passwords [170, 90, 233]. There are several apparent rea-

sons for such behaviour. Strong or high-entropy passwords are difficult for users to

generate, memorize, and reproduce at a later point in time. Also as the benefits of a

strong password over a weak one are not readily noticed, there is little apparent mo-

tivation for users to spend extra effort in choosing strong passwords. Blaming users,

or restricting password choice with complex rules (see e.g., [163, 246]) usually do not

help. Alternatives to text-based passwords such as biometrics, hardware tokens, and

two-factor methods are still far from being widely deployed, and password use is likely

to dominate user authentication in the foreseeable future [94]. The existence and in-

deed recent rise in SSH password-guessing attacks1 indicates that stronger passwords

still increase security despite the proliferation of password stealing attacks, phishing

and keylogging (cf. [91]).

1One experimental setup [208] reported an average of 2,805 SSH login attempts per computer
per day.
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Let us assume that with continual education, motivating efforts [92, 276], re-

strictions or proactive checking [292], users are persuaded to choose strong (random-

looking, high entropy) passwords for everyday use. These strong passwords generally

remain usable (i.e., well-remembered) only if used often. However, passwords em-

ployed to access rarely-used services, or in secondary authentication (e.g., when a

user has lost/forgot the primary password) are not frequently recalled, motivating

users to choose weak passwords/secrets that are difficult to forget or obvious when

given a hint. We introduce an Object-based Password scheme called ObPwd which

may be best used for passwords that are (i) infrequently used, or (ii) used for sec-

ondary or fall-back authentication, e.g., Password Verification Questions (PVQs); see

for example, Rabkin [206] for a discussion of serious security weaknesses of PVQs as

used in a number of current online banking sites.

The basic idea of ObPwd is the following. Many users currently possess a large

collection of digital content such as photos, mp3s, and videos. Much of this content

is mobile: users may keep it on personal devices (e.g., USB sticks, cellphones), or

upload it to personal sites (in some cases, password-protected). Many users also have

instant access to static content from the web, e.g., Internet Archive (www.archive.

org), Project Gutenberg (www.gutenberg.org), and Google Books (books.google.

com). An ObPwd password can be generated from such digital content as follows:

compute a hash of user selected content, such as a photo file from the user’s USB

stick, and then convert the hashed bitstring to a password (a random-looking string

of keyboard characters or as an option, a human readable sequence of words using

existing techniques [115, 161, 114, 214]). Users keep a record (memorized or written)

of a pointer to their content used in generating each password. Users can write

down the password in a secure place, or re-create it from the content when needed.

ObPwd requires no modifications to the software interface of password-based systems.

Also, authenticating parties (remote or local) are not required to be aware of ObPwd

(e.g., storing of a user’s password-generating objects is not required).

ObPwd may offer the following benefits over existing techniques (see also Section 6.3).

1. Reduced Memory Load. Instead of requiring users to remember exact pass-

words or passphrases, ObPwd only expects them to recall a semantic pointer to
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their password object (e.g., hints for an image, video, entire/partial document,

executable, URL, or highlighted text passage from a webpage).

2. Resistance to Offline Dictionary Attack. Without having access to

all of a user’s possible password objects (from local media and web), attackers

cannot build a password dictionary. Assuming password objects significantly

vary among users (e.g., each user may have an independent collection of pho-

tos), creating a generalized password dictionary for ObPwd seems impractical.

In contrast, building a dictionary of popular passphrases is apparently feasi-

ble [145], and general password dictionaries are already available [192].

3. Written Record of Passwords. In contrast to most graphical pass-

words [254], users can easily keep a written copy of ObPwd passwords (e.g., in

a safe place as backup). Thus ObPwd enables converting an image-based pass-

word into human readable text (which also facilitates sharing – see below), and

benefits from the easy memorability of object or image hints while keeping the

simplicity of text passwords (easy deployment, written records).

4. Password Sharing. In cases where objects are already shared (e.g., photos,

documents), ObPwd allows safer password sharing through a hint or description

of the password object, without transmitting the actual password over the net-

work. This seems preferable to some current practices such as sending shared

passwords over email. It also allows sharing of the text-form output, which

although often discouraged, may nonetheless be an important usability feature.

6.2 Object-based Password (ObPwd)

In this section, we discuss the ObPwd scheme in more detail, threat model, variants

of the basic idea, and a prototype implementation.

Threat model, operational assumptions, and notation. We assume that

password-generating objects in ObPwd are selected from a large public collection,

e.g., files (including pdf) from the ACM digital archive (containing millions of archived

documents), or from personal digital content (inaccessible to others). Hopefully ei-

ther the large size of pools of such source objects, or the inaccessibility of private
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content will impede attempts to build offline dictionaries. Ideally users would not

choose password objects from their (publicly accessible) personal website or public

profiles as in Facebook/MySpace sites. (However, appending such objects with a salt

apparently reduces some risks; see under ‘Variants’ below.) To enable access-from-

anywhere, users either carry password-generating objects with them, or have online

access to those objects. ObPwd passwords, and hints (text reminders) to password

objects can optionally be written down. Passwords must be written down if a user

does not want to carry content files with her.

If a password is directly generated from the password object and users copy-paste

that password instead of typing it in (see ‘Implementation’ below), keylogging attacks

on passwords may be restricted. However, if ObPwd is used in regular web login, we

strongly suggest that the password objects should be stored in local media (i.e., user

devices) when passwords are generated on-the-fly (right before login). If a password is

re-created from (plaintext) web content the following attack is possible. An attacker

observes or records traffic from the intermediate network looking for a user to go into

a content-hosting site right after or before requesting an authenticating website; thus

the attacker can capture or narrow down candidates for the password-generating

content. When ObPwd is used for encryption/decryption in a user’s local media,

getting access to password-generating objects from the network does not allow the

attacker to gain any protected content (as the network attacker does not have access

to the user’s local encrypted files). Of course if the attacker already controls the user

PC, neither ObPwd nor other password schemes can help. Similarly, this scheme is

vulnerable to shoulder surfing and phishing (but see ‘Variants’ below). When a user

has multiple password objects for different accounts/applications, the usual issue of

password interference may also surface (which object is used for which account).

However, ObPwd is focused to increase usability of a strong password by leveraging

distinctive object choices that might be made by a user, including leveraging their

personal content. Table 6.1 summarizes our notation.

Steps in ObPwd. The steps in ObPwd are as follows; see also Figure 6.1.

1. U selects an easy to remember object M from her personal media or from the

web. To preclude offline dictionary attacks and predictable object prefixes,
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U An ObPwd user.
M A password object selected by U for a particular site/application.
h(·) An appropriate cryptographic hash function.
Hash2Text(·) A function (e.g., based on [115, 161, 114, 214]) for converting

hashed bits into a string of keyboard characters, or optionally,
words.

pwd A password as generated by Hash2Text(·).

Table 6.1: Notation used in ObPwd

M should be required to exceed a minimum size (perhaps 30 bytes). Consid-

ering the time that may be required to hash very large objects (in step 2),

such as a movie, M is ideally truncated to an appropriate number n of bytes

(e.g., n = 100000).

2. U indicates the selected object to the ObPwd tool, which generates the hash H

of M using a secure hash function h: H = h(M).

3. H is used to generate pwd = Hash2Text(H).

H may be truncated depending on the required size of an output password.

pwd (and M) should not be stored at the same place or media as the protected

content. If used as a site password, pwd may require special encoding depending

on the particular site; we do not address encoding issues separately here (but

note that encoding techniques are addressed elsewhere [214]).

Variants. The basic idea of ObPwd can be extended as follows. A user-selected,

ideally memorable salt string (s) may be appended as a second input to the hash

function h: H = h(M, s). The salt could be a 4-digit PIN, or a dictionary word. This

enhancement may impede attackers even when a user’s password object is exposed,

albeit at the cost of memorizing a salt string. If used only rarely, then the salt need

not be memorized but rather could be looked up from where it was written down.

While the ObPwd scheme as proposed is vulnerable to phishing attacks, this weakness

can be addressed, by appending the URL of a target site (as in [214], this can be done

without user involvement) with the password object, i.e., H = h(M,url).
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Hashed value

Apply hash function

Convert hash to password

(a) Generic steps in ObPwd

Password

User selected content

( image, text, binary)

(b) An example of ObPwd

SHA-1

XLVe1DSkCHeEWA2qhK6QSnvOJXA

e1DSkCHeRXLV

PwdHash [214]

Figure 6.1: ObPwd steps with an example

Implementation. We have implemented a basic prototype of ObPwd as a browser

extension for Firefox (Fig. 6.2), and also as a stand-alone application in Windows

XP (developed in C#). When a user clicks the right mouse button on a web object

(an image, highlighted text, or a file URL), the browser extension inserts a menu

item (e.g., “Get ObPwd from Image” in Fig. 6.2) into the context menu; if selected,

the extension generates a password from the underlying content and displays the

password in a dialog box (Fig .6.3). In the local application, a user selects a partic-

ular file, which is then used as the password-generating object, and the password is

displayed in a text box. For both implementations, we use SHA-1 as the hash func-

tion, and PwdHash [214] for converting hash values into a password (12 characters

long, alphanumeric). We use at most n = 100000 bytes from a password object, and

require a minimum of 30 bytes. Both implementations are available online (see Sec-

tion 6.4). For mobility, if the ObPwd extension or application is not available from

a remote computer, a website for generating passwords from user objects could be

designed (cf. pwdhash.com [214]). We do not make any claims about the usability of

the present prototype, but if the idea generates interest, would hope to pursue this

and to host such a site.
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Figure 6.2: ObPwd extension menu in Firefox

Figure 6.3: Password generated from the selected image

6.3 Related Work and Comparison

There have been countless publications on passwords. Here we discuss only a selec-

tive subset of schemes designed to strengthen passwords (i.e., improving entropy) or

to enhance usability (i.e., improving the ease-of-use). Infrequently used passwords

such as Personal Verification Questions (PVQs) are discussed separately as ObPwd

is apparently most suitable for these.
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6.3.1 Schemes for Improving Password Strength/Usability

Cheswick [50] proposed an obfuscated challenge-response based authentication scheme

assuming people can compute a simple response to a given challenge according to

a (user-selected) pass-algorithm. Both the challenge and response are obfuscated

with decoy information. This scheme offers several desirable features (e.g., protection

against keyloggers and phishing). Challenges noted by the author include users may

forget the pass-algorithm/obfuscation technique more readily than a regular pass-

word, if used infrequently.

Florêncio et al. [91] argue that relatively weak passwords (e.g., with 20 bits of

entropy) may provide enough security for web accounts assuming that: (i) a three-

strike type rule (i.e., login is blocked after three failed attempts) is deployed to counter

brute-force attacks; (ii) the user ID space is much larger than the IDs in actual use;

and (iii) the valid user ID list is not readily available to attackers. Meeting these

assumptions requires assistance from authenticating sites.

To improve password strength while maintaining usability, Forget et al. [92] pro-

posed Persuasive Text Passwords (PTP) wherein system-generated characters are in-

serted at random positions into a user-chosen initial password. Users can accept the

proposed password, or request (until satisfied) alternate suggestions. PTP essentially

provides a middle ground between system-chosen (strong but difficult to remember)

and user-chosen (weak but memorable) password schemes.

Yan et al. [291] conducted a user-study to compare regular user-chosen passwords,

random passwords and mnemonic phrases. They reported finding that mnemonic

phrases are as good as random passwords, and easier to remember. However,

passphrases (and mnemonic passwords generated from them) may also be attacked

by building a dictionary from commonly used phrases as available on the web [145].

Disk encryption software TrueCrypt allows users to use any local file along with a

possibly empty password as an encryption key.2 Users cannot write down the actual

encryption key as a backup, and the generated key is used only with TrueCrypt.

ObPwd was conceived independently.

2This feature is apparently available since version 4.0 (Nov. 2005); see http://www.truecrypt.

org/docs/?s=keyfiles.
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Apparent advantages of ObPwd. In addition to web authentication, ObPwd

passwords can arguably be used for applications which must withstand offline dictio-

nary attacks (e.g., file encryption). Also, the deployment of ObPwd does not require

any changes in system-side processing or password verification, or to the user interface

in a web or local application.

ObPwd enables converting image-based passwords into text, and thus may be

viewed as a middle ground between text and image-based password schemes. ObPwd

can use (memorable) images while retaining simple advantages of text passwords

(no-cost deployment, written records). While some people think writing passwords

down and sharing passwords are poor practice, this arguably depends on the threat

model, and usage. Certainly, being able to write down and backup infrequently

used passwords seems essential. The fear of not writing down passwords may also

encourage users to choose weak passwords.

Sharing of passwords (quite common in the real world; see e.g., [196]) in most

graphical schemes is awkward if not impossible. ObPwd may enable better password

sharing than text and graphical schemes without sacrificing confidentiality to third

parties. For example, if two users share a digital photo folder (e.g., through personal

media), then one user can choose a specific image as the password object, and send the

other user a hint or description of the image (e.g., “our whitewater kayaking photo”)

over public media or email. Now an eavesdropper can see the hint,3 but cannot gen-

erate the shared password without having access to the image object itself. Although

this is in effect equivalent to sharing a list of secret keys, arguably the advantage here

is that we use more meaningful objects than randomly generated keys.

6.3.2 Personal Verification Questions

Personal Verification Questions (PVQs) are used for resetting a forgotten password or

as part of login. While generally weaker than passwords, PVQ answers are typically

equally useful to access an account. The availability of personal information on the

web has apparently made it easier to correctly guess PVQ answers [206] (see also [109,

232]). As an example, Hollywood actress Paris Hilton’s private photos and close

3Here we assume that the hint is not an obvious link to a publicly-accessible web object.
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contacts’ phone numbers were exposed when an attacker was able to log into her

T-mobile web account by answering her pet dog’s well-known name to a PVQ [152].

Academic work on PVQ. Early work on PVQs includes cognitive passwords4 and

a related user study by Zviran and Haga [300]. It was reported that users could

recall cognitive passwords more accurately than regular passwords. The authors also

tested guessing attacks on cognitive passwords by significant-others of a user. Fact-

based questions such as “mother’s maiden name” and “name of your best friend in

high school” were correctly guessed by 57% and 43% of users respectively. Opinion-

based questions such as “favourite colour” and “last name of your favourite college

instructor” were correctly guessed 41% and 10% of the time, respectively. The authors

used 20 questions, of which users must answer five randomly selected questions at each

login attempt.

Ellison et al. [76] proposed using personal questions and answers for recovering

secret keys. Instead of using a passphrase, they require a user to pre-register n

personal questions and answers (usually low-entropy), and then recover the secret

key by correctly answering some t < n of the questions. Thus a user can forget some

answers, but still recover the secret.

Recently, Rabkin [206] analyzed over 200 PVQs as used in 17 financial websites.

Taking the “era of Facebook” into account, different classes of attacks are considered

(e.g., random guessing, attacks automatically using online information, dedicated hu-

man attackers, and knowledge through personal acquaintance). As a possible defense,

the following use of personal content was suggested. A user may upload an image of a

person, and an answer to the question “what is the name of this individual?” However,

as noted, any tagged photo of that person enables attackers to answer the question.

ObPwd as PVQs. If ObPwd is used in certain types of PVQ schemes (which

allow free-format questions/answers), attackers cannot succeed without getting the

actual password object. Many PVQ answers have quite low entropy (“What is your

favourite colour?”). ObPwd password entropy is expected to be significantly higher.

4These are questions and answers related to a user’s personal facts or opinions; they were designed
to be used as regular passwords.
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Also ObPwd requires no uploading of multimedia content to an authenticating site,

and an exact copy of the password object is required for a successful attack (cf. [206]).

6.4 Concluding Remarks

Humans are not good at choosing high-entropy secrets that are easily memorable

for a long time. Arguably, current password generation techniques and password-

restricting rules have largely failed to improve password strength. Creating passwords

from personally meaningful/memorable digital objects may be more user-friendly

than any existing password rules; we emphasize, however, that we have not yet carried

out any user testing. Depending on the application, variants of the basic ObPwd

scheme may be suitable; for example, URLs can be appended to password objects (as

in PwdHash [214]) if phishing is a concern.

Apparently passwords generated by our method would have more entropy than

regular passwords. We have yet to devote serious attention to the question of deter-

mining defendable estimates of the security gains that might result, or a method to

quantify guessability in the absence of very large-scale user trials (e.g., of millions of

users). Indeed, despite existing password crack papers (e.g., [288]), it is not clear that

the community even has a strong understanding of the empirical security of existing

text passwords chosen by the mythical typical user for the mythical typical password

application. Studies of even as many as 500,000 users are too small for the long-

tailed distribution of user-chosen passwords, and obtaining or publishing cleartext

passwords in such studies is complicated by privacy concerns [90].

Our proposal has obvious limitations. Losing the pointer or the password object

itself (if no written copy is kept) is equivalent to forgetting a regular password. Also,

obvious and publicly accessible choices of password objects, e.g., the profile photo

of a user’s Facebook account, could result in even less security than text passwords.

The potential security of ObPwd relies on the richness of the universe from which

public objects are selected, and/or the inaccessibility of personal objects. ObPwd

is introduced here to solicit feedback and promote discussion, to help advance the

eternal quest for a better password scheme. We encourage readers to try out our

implementation available at http://www.ccsl.carleton.ca/~mmannan/obpwd/.



Chapter 7

Localization of Identity Numbers for Addressing Data

Breaches

In this chapter and the following (Chapter 8), we explore a design philosophy called

“design for damage control,” which focuses on restricting threats from compromised

sensitive data assuming that we cannot perfectly secure such data. Here we introduce

a novel localization technique to reduce the value of personal identity numbers in case

they are breached from (often large) corporate/government databases.

7.1 Introduction and Motivation

Currently personal identity information is stored in a number of different places in-

cluding small and large corporations, government agencies, educational institutes,

hospitals, and financial data processing centers. Coupled with such data replica-

tion, insider abuse (e.g., [49]), negligence (e.g., [112, 55]), inadequacy of existing

technology for protecting user data, and a computing environment arguably “under

occupation” [146] (by e.g., malicious software and semantics attacks) have resulted

in numerous large-scale data breaches. The U.S. Government Accountability Of-

fice (GAO) defines data breach as “an organization’s unauthorized or unintentional

exposure, disclosure, or loss of sensitive personal information, which can include per-

sonally identifiable information such as Social Security numbers (SSN) or financial

information such as credit card numbers” [102]. Data breaches from organizations,

small and large, considered to be highly secure or otherwise, make the news almost

every day, and now seem to be the business norm. Beyond simple credit card num-

bers, leaked information now includes SSN, drivers’ licenses, dates-of-birth, and bank

account numbers. Aside from privacy exposure, these breaches facilitate identity

109



110

fraud,1 heavily exploited by underground criminal networks. For example, according

to Symantec [256, p.23], an individual’s full identity (which may include name, ad-

dress, date of birth, SSN, driver’s license number) can be bought for only $1-15. One

primary reason for the enormous demand of compromised personal records is that

most existing ID numbers are static, and thus reusable elsewhere (especially where

the corresponding physical ID token is not required or the token can be easily forged).

In response to large-scale data breaches, security proponents have placed increased

importance on data encryption, use of sophisticated intrusion detection technologies,

etc. However, these conventional techniques are still not widely deployed, and also

have been subject to a continual stream of innovative attacks, from side-channel

analysis of cryptographic keys (e.g., timing/power analysis attacks), to the recent

cold boot attacks [113]. Additionally, such technologies are of limited help in the case

of organizational mismanagement.2 In the financial sector, as credit card number

disclosures increased, some banks started to offer one-time use credit card numbers

for online transactions around Sept. 2000. Several research proposals (e.g., [218,

149, 169]) have been made focusing mainly on enhancing such credit card number

generation and user-friendliness.

We argue that improving data security mechanisms or new legislation for pro-

tecting consumer information is of limited use. Identity fraud originating from data

breaches will grow as more and more identity information is collected and stored

digitally.3 In an environment where data breaches are evidently inevitable, it is our

main thesis that the use of static/reusable ID numbers should be reduced, if not com-

pletely eliminated, to fight identity fraud. Building on existing ideas and experience

regarding disposable credit card numbers, we propose a more general approach and

technique to deploy an ID number localization approach to restrict and/or detect

abuse of a wide variety of sensitive personal identification numbers. Our use of the

term localization is primarily intended to mean customizing ID numbers to a specific

1We define identity fraud as unauthorized exploitation of credential information through the use
of false identity [176].

2According to one study [273], 87% of the breach cases analyzed could have been prevented with
“reasonable security controls.”

3“...the difference between such crimes [ID theft] today and in the future is the scale of the data
involved” [285].
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relying party, which need not be tied to a particular geographic or physical location.

We also outline four variants of our main proposal. Despite these proposals, our

primary goal is to increase awareness of the new environmental attack paradigm by

which ID numbers ultimately become compromised; different solutions are explored

here to motivate further research in this area.

An individual may be required to provide their SSN or driver’s license number

to several parties (employers, banks, credit reporting and car rental agencies), all of

whom store sensitive identification details for a long time. Confidentiality of such

data may be breached by any of these parties. If a person has worked for five differ-

ent companies in the past, her SSN may leak from any of those, and once disclosed

may facilitate identity fraud. If a localized SSN scheme were in place, where each em-

ployer would get a different (non-reusable) version of the SSN of the given individual,

then a disclosure of any such SSN would not be useful for identity fraud. We base

example solutions on this idea and explore several variants. Again, our fundamental

assumption is that user data will eventually be breached (cf. [263, 146, 47]) primarily

through relying parties; we focus on how to nonetheless mitigate identity fraud.

In a broader sense, one obvious reason for the severity of current identity fraud,

spam, phishing, and many other Internet-related attacks is the leverage gained by us-

ing data compromised from one site at many others, repeated times. This compromise

once, reuse multiple times feature provides significant advantages to attackers. Our

approach is a defensive paradigm of (virtual) localization for the use of credential in-

formation on the Internet and in the physical world. Localized identification numbers

as generated by our scheme are valid only for a particular relying party. This appar-

ently reduces the value of compromised credential information to attackers, thereby

reducing the threat and also the cost to defend adequately. Our approach attempts

to undermine the asymmetric leverage attackers currently enjoy.

In summary, our contributions and discussion points include:

1. New Paradigm for Protecting Personal Identity Information.

Legislative and technical efforts such as encryption alone to better secure per-

sonal identification data are evidently inadequate in today’s untrusted comput-

ing environment. As one response, we propose the use of localized, restricted-use
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identification numbers instead of static, reusable ID numbers to limit large-scale

identity fraud.

2. Breadth of Scope. We focus on protecting all types of identification num-

bers in general instead of solely credit card numbers. Where most previous

solutions focus on card-not-present transactions, we address both card-present

(ID-present) and card-not-present transactions. Furthermore, our approach ad-

dresses breaches resulting from real-world (offline) incidents such as lost or

stolen disk drives, and backup tapes (i.e., independent of computers being com-

promised by malware).

3. Variations. To take into account deployment feasibility, and cost-benefit

trade-offs, we explore several variants of our proposal (appropriate for vary-

ing scenarios).

Overview. We outline our main proposal along with threat model, notation and

operational assumptions in Section 7.2. Four variants of the main proposal are intro-

duced in Section 7.3. In Section 7.4 we briefly discuss related work and representative

examples of recent data breach incidents. Section 7.5 concludes.

7.2 ID Number Localization

In this section, we outline our proposed ID localization scheme. Threat model, nota-

tion and operational assumptions are also discussed here.

Overview. A credential issuing party provides each user a smart card (chip-card)

with a unique identification number for the user and a secret key both stored on

the chip and in print on the card itself.4 For example, the credential issuing party

for SSNs is the Social Security Administration (SSA), a user’s SSN is a unique ID

number (issued by SSA), and a secret key is a random string of digits or characters

of sufficient length (e.g., 128 bits). As the secret key is stored on an ID card, the user

does not have to memorize it. Using a software program (preferably on a trustworthy

platform) or a chip card reader, a user generates a (virtual) localized identification

4The printed secret key is used when a chip card or card reader is unavailable (variant 2 in
Section 7.3); see item 1 under “Assumptions.”
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number for a credential relying party from the issued identification number, the secret

key, and the registered identifier (e.g., a business name) of the credential relying party.

For verification, the relying party forwards its registered identifier, the localized SSN,

and the user’s name and address to the issuing party. From name and address, the

issuing party can uniquely index or identify the user, re-create a localized SSN, and

verify whether the supplied SSN is valid (i.e., was created with the right key). In

essence, the proposal turns fixed (long-term) ID numbers into secrets that can be

verified, but not reused across relying parties.

Threat model and notation. ID numbers are compromised in many different

ways, including data breaches (through e.g., compromised merchants’ databases or

data-centers, and lost/stolen disks and backup tapes), phishing attacks, dumpster

diving, corrupt insiders, workplace, theft of purses, wallets, or postal mails, social

engineering, and existing/past relationship with victims. If a user’s physical card is

stolen or lost, valid localized numbers may be generated and used unless the user

promptly reports the incident to card issuing parties (or the card is protected oth-

erwise, e.g., through a traditional PIN). We focus on preventing identity fraud from

large-scale data breaches, instead of attacks that are not much scalable (i.e., difficult

to carry out in a comprehensive fashion). We primarily consider breaches of personal

ID numbers that can be directly used to perpetrate identity fraud; breaches of other

sensitive information, e.g., records of a person’s health and education, business se-

crets (which are also commonly exposed), although important, are out of our scope.

We assume that ID number issuing parties can be relied on to protect their customer

credentials. User data is breached mostly from relying parties as ID numbers issued

by one entity is generally used (and thus replicated) by many relying parties. Such

replications increase the possibility of a breach. The following notation is used:

I, U,R Issuer, user, and relying party respectively.
UF User’s long-term fixed ID number (issued by I).
UR User’s localized ID number for R.
KIU Long-term secret key shared between I and U .
fKIU

(·) A cryptographically secure MAC function f , keyed by KIU .5

UA Lookup data (e.g., name and address) of U .

5To be more precise, f(·) should be a Pseudo-Random Function (PRF), as similarly used in
“independent OTP” [217] and PwdHash [214].
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Figure 7.1: ID number localization scheme

Detailed steps. The steps required for ID number localization are as follows (see

also Fig. 7.1).

1. The credential issuer (I) provides a smart card to U with an ID number UF

(unique in I’s domain), and a secret key KIU upon verifying U ’s identity

(e.g., through an in-person visit or equivalent). UF is directly used only with

I, and only I and U know UF and KIU . Additionally, I also keeps U ’s lookup

data (e.g., name and address) UA associated with UF and KIU .

2. In order for U to generate a localized ID number for the relying party R, R

sends information facilitating the localization (e.g., R’s business name) to U .

3. In response to R’s request, U generates a localized ID UR for R.

UR = fKIU
(UF , R) (7.1)

U sends UR and UA to R. The MAC output may require modifications to

conform with the target ID format. For an on-site (card-present) transaction,

UR is generated using U ’s chip-card at R’s chip-card reader (e.g., simply by

swiping the card). The reader provides the relying party’s name6 to the card

6Additional relevant information may be provided as well; see item 4 under “Assumptions”.
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for computing UR; U does not input anything explicitly. For card-not-present

(e.g., web) transactions, U may input the relying party’s name to her chip-

card reader. (See variant 2 in Section 7.3 for localized ID generation without a

chip-card or chip-card reader.)

4. To verify the validity of UR (i.e., whether UR has been generated from KIU and

UF ), R sends (UR, UA, R) to I.

5. Using UA, I locates UF and KIU , and checks the validity of UR; i.e., from UF ,

KIU andR, I generates UR as in equation (7.1) and compares it with the received

UR. I then sends the verification result (accept or reject) to R. Appropriate

integrity must of course be provided in this latter communication.

Assumptions. Operational assumptions in our main proposal and its variants (see

Section 7.3) are as follows.

1. We assume a user does not reveal the printed long-term key on the card to

any third party (e.g., through phishing attacks). If chip-cards are used and

users generate ID numbers only using an available chip-card reader, printing

the secret key on the card can be avoided.

2. For a variant of our proposal (variant 2 in Section 7.3), we use a user’s personal

device (cellphone or PC). Such a device may expose the long-term user key if it

contains malware. However, we focus on large scale data breaches, rather than

individual information leaks (through malware, phishing, or shoulder-surfing).

3. In our main proposal, users must keep their lookup data (e.g., name and address)

UA updated with an ID issuing party. For variants 1, 3, and 4 (Section 7.3),

this assumption may be relaxed. Arguably it is impractical to expect users to

notify all their ID issuing parties of address changes. However, secondary issuing

parties may update UA from primary parties that are generally expected to have

the most recent UA information, e.g., banks, credit bureaus.

4. We assume that a localized ID number as generated in equation (7.1) is tied to

a particular relying party, and can be reused at the same relying party but not
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anywhere else. This assumption allows traceability,7 and apparently increases

usability by requiring less user input (cf. [169]). However, our generalized pro-

posal can be extended to generate more restricted ID numbers (even transaction-

specific numbers), e.g., by including timestamp, validity period, transaction

amount, etc. along with the name of a relying party (R) in equation (7.1). Such

an extension may restrict insider abuse, and reuse of compromised IDs even at

the same relying party from where the breach occurred.

5. In our localized ID scheme, an issuing party is directly able to keep track of

the usage of a customer’s ID. However, information aggregation by a central-

ized entity (e.g., credit reporting agencies, personal background check for law

enforcement) from multiple sources is no longer straightforward under our pro-

posal (due to unlinkability among different custom ID numbers). To achieve

such aggregation, we assume that ID issuing parties will collaborate when re-

quired/appropriate, for example, if compelled by law enforcement authorities.

Note that for variants 1, 3, and 4 (Section 7.3), aggregation remains unaffected.

In contrast to many current uses of identity information, in our proposal, verifying

that identity information is valid involves the relying party carrying out a communi-

cation with the issuing party. This is part of the price we pay for the added security.

7.3 Variants

Here we discuss four variants of our main proposal. These variants are outlined to

initiate further discussion, and for now we defer an in-depth analysis of implemen-

tation details, deployment strategy and associated costs, though critically important

for rolling out any of these variants.

Variant 1: Localized authorization code. The localized ID scheme above uses

UR in place of UF . This requires certain formatting of the MAC output. For exam-

ple, in a regular credit card number, the first six digits identify the issuing bank and

the last digit is the Luhn check digit. If UR is used as a credit card number, it must

7Note however that, as per the current agreement between U.S. retailers and credit card compa-
nies (e.g., Visa and MasterCard), a merchant’s identity may not be revealed even when the merchant
is responsible for a data breach (see e.g., [172]).
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conform to these restrictions (which may complicate UR generation, depending on the

ID number space of UF ). However, as such a number is identical to a real credit card

number, it can be used in the existing infrastructure. An alternative approach is as

follows: require the use of UF along with UR for a transaction, i.e., now UR is used as

a dynamic authorization code (cf. Card Verification Value 2 (CVV2) codes for credit

cards [169]) accompanying the fixed ID number. By policy, UF must not be accepted

without a valid UR. Now UR need not conform to any strict formats. Existing imple-

mentations must still be changed to accommodate the extra authorization code check,

but changes to many existing implementations would likely be significantly reduced,

for example, databases which are indexed by UF ; this allows straightforward informa-

tion aggregation from multiple sources. Theft of an UF (or even an UF , UR pair) is

no longer a concern, as for generating a new UR attackers also require the key KIU .

Variant 2: Without chip-card or card-reader. Some credential issuers may

not adopt chip cards in the near future. Some ID cards do not even contain a mag-

netic stripe for storing extra or sensitive information. For example, Canadian Social

Insurance Number (SIN) cards and (older) health cards contain only a user’s name

and ID number in a printed form. Our approach can be used in such cases if users

are issued long-term secret keys (perhaps printed on the ID card itself). One-time

ID numbers can be generated from a user’s fixed ID number and the shared secret,

using a personal computing device (e.g., a PC or cellphone containing an appropriate

application). If such numbers are generated only infrequently, usability (e.g., having

access to a computing device, providing user input) may not be affected much.

For frequently used ID numbers such as credit card numbers, we assume the

availability of chip cards with on-site card readers. For card-not-present transactions

(e.g., e-commerce), it would be easier for a user if she has access to a chip-card reader

(e.g., the user can avoid typing in the secret key). However, users can still use a per-

sonal device (with appropriate software on it) for generating localized ID numbers.

Variant 3: Database poisoning. Organizations storing a large number of per-

sonal records can create legitimate looking fake records, and insert those into their

databases. An issuing party may share a unique secret key with each relying party,

and the relying party creates fake records using the shared secret such that the fake
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records are indistinguishable to an attacker (without knowing the secret key), but

the verification party can detect those as fabricated and linked to a particular relying

party. The proportion of fake records can be configured to the sensitivity of stored

information, storage/computation overhead, and/or company policy. For example, if

a compromised database contains 1% fake records, on average, the breach is detected

within 100 transaction attempts (i.e., the use of compromised records).

If this technique is implemented by all relying parties of a particular ID number,

it will enable the ID issuer to distinguish the compromised relying party from a

specific fake record during verification. However, the issuer must assign each fake ID

number such that the number is attached to a specific relying party, and cannot be

generated by a relying party without the assistance from the issuing party. Also, the

issuer must require (through e.g., policy) that all relying parties insert fake records

consistently. Satisfying these assumptions in practice could be difficult considering

current compliance failures (e.g., [60]). However, this technique is apparently easy for

ID issuing parties to implement (i.e., only requires self-compliance). Relying parties

may also benefit from database poisoning by reducing their long-term liabilities due

to breaches; according to one analysis [273], most organizations currently remain

unaware of a compromise for months (63% of cases) and even years (2% of cases).

Responses to a fake record detection may vary depending on cost-benefit trade-offs,

e.g., heightened scrutiny of incoming requests, activating additional verification pro-

cesses, or deactivating the legitimate ID number temporarily or permanently (blocking

new uses). To its advantage, this variant does not require any assistance from users

(i.e., usability cost is non-existent), at the cost of increased backend overheads.

Similar deceptive techniques have been in use for protecting postal mail addresses

for a long time [268]. Inserting honeytokens [249] (bogus digital records) has been dis-

cussed for monitoring unauthorized access/use of different types of digital resources

including databases with sensitive personal information. In the security literature,

Kursawe and Katzenbeisser [146] discussed similar deceptive techniques to detect com-

promised personal records (e.g., a credit card number) from a user PC. For example,

a user may store one valid credit card number along with 100 other legitimate-looking

(but fake) card numbers. When these numbers are compromised, such an incident
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may be promptly detected by monitoring for the use of fake numbers. To reduce the

value of the collected information by spyware in a PC, SpySaver [228] creates several

fake web users on the PC and generates web browsing actions emulating real users

with counterfeit information (e.g., email addresses, and credentials for web accounts).

HoneyIM [290] uses decoy Instant Messaging (IM) contacts for detecting IM worms in

an enterprise environment. When a worm attempts to spread by sending its copy to

every contact of a compromised account, the worm infected PC can be easily tracked

by monitoring the decoy account.

Variant 4: User-centric authorization. In this variant, we propose to actively

engage users in blocking critical misuses of breached data records, e.g., issuing of new

credentials, transfer/sharing of existing credentials from one party to another, and

high-value transactions. Assume that a user registers her personal device with each

ID issuing party. When a relying party attempts to verify the user’s ID with the cor-

responding issuer, the issuer notifies the user’s personal device (through, e.g., phone

call, SMS, email). The issuer may depend on the response from the user device to

respond to the relying party, or simply keep the user device informed (i.e., in terms

of log messages). To counter automatic approval from a malware-infected device,

physical presence mechanisms (e.g., a hardware switch, vertical/horizontal shaking)

of Trusted Platform Module (TPM)-enabled devices [265] may be used.

Several techniques involving personal devices have been proposed in the recent

past (possibly due to the increased proliferation of mobile phones, blackberries,

PDAs). In contrast to CROO [176], this variant requires only critical transactions

involving ID numbers to be verified through the personal device (not every transac-

tions). Unlike “owner-controlled information” [95], the user is not expected to store

and maintain all her privacy-sensitive information. The use of a personal device has

also been proposed [271] as a “heartbeat locator” (securely detecting the location of

the device) to counter identity fraud. A verification center continuously tracks the

location of a registered device, and compares the location information with that of

an attempted transaction before approving the transaction. A transaction may fail

if the locations are not matched. This technique merely requires a user to keep her

personal device with (or around) her, and the user does not need to interact with the
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device for approving a transaction. Issues related to device theft and cloning have

also been discussed [271].

Note that our main proposal and variant 2 prevent ID number reuse across relying

parties although a compromised ID may remain valid within the breached party’s do-

main. Variant 1 is a prevention mechanism while variant 3 is detection-only. Variant

4 can prevent misuse if explicit user authorization is always required; otherwise, it

becomes detection-only.

7.4 Related Work and Data Breach Incidents

Here we briefly discuss a few high-profile data breach incidents, and academic pro-

posals related to our work.

7.4.1 Examples and Costs of Data Breaches

Examples of breaches are easily cited. Personal records of all 25 million child benefit

recipients in the U.K., including their dates of birth, bank accounts, and national

insurance numbers had been lost from a government agency when the agency mailed

the records in discs [112]. Sensitive personal information on 26.5 million U.S. veterans

had been reportedly stolen [55]. While the TJX data breach [58] is still fresh (affecting

about 45 million users), millions of user records were stolen from the Monster.com

job site [26]. A database admin reportedly [49] stole and sold 8.4 million customer

records containing bank account and credit card information; another employee at

the same company previously compromised 2.3 million records [237]. The theft of a

computer with thousands of “top-secret” mobile phone numbers, information regard-

ing undercover terrorism and organized crime investigations was reported by a U.K.

company [120]. A list of prominent data breaches in the U.S. from Jan. 10, 2005 to

Apr. 17, 2009 reports [203] the exposure of more than 253 million records containing

sensitive personal information.8

Erickson and Howard [78] analyzed news accounts of data breaches from 1980

to 2006, and identified organizational mismanagement as one prime reason for these

8Attrition.org and Identity Theft Resource Center [125] also maintain similar but independent
lists of data breaches. Verizon [273] provides a comprehensive analysis (including breach sources,
attack types and paths, time span of breach events) of 500 such data breach cases from 2004 to
2007; see also [116].



121

breaches. Considering the incidents from 2005 and 2006, when most U.S. states leg-

islated mandatory reporting, they found that in 68% of news stories concerning data

theft, the theft could be attributed to organizational behaviour (e.g., administra-

tive error, insider abuse). Apparently, even if we could remove malicious outsiders

(e.g., organized crime) as an element in data breaches (e.g., through security tech-

nology), data records with sensitive personal information will still be breached in

large numbers.

A Ponemon Institute benchmark study [201] investigates the costs of a data breach

using data from 35 U.S. organizations for the year 2007. On average, it costs an

organization $197 per record compromised, an increase of 8% since 2006 (for financial

services firms, the cost is $239 per record). The cost of lost business due to a breach

(from the loss of existing customers, and diminished new customers) is estimated on

average $128 per record (a 30% increase from 2006). Acquisti et al. [3] provides a

comprehensive analysis (using data from 1999 to 2006) of the impacts of a privacy

breach incident on a company’s stock market value; these effects are generally negative

and statistically significant in the short term, but not so visible in the long run. Costs

to consumers affected by a data breach is even more difficult to estimate. According

to one estimation,9 in 2007, the average fraud amount per ID fraud victim in the U.S.

is $5720 (about 9% decrease from 2006). However, in most cases, it is difficult to

clearly establish a link between breached data and fraud [102]. This fact is also often

exploited by breaching parties to understate their legal responsibilities.

General observations. Large-scale data breaches occur frequently, and current

legal and technical measures are failing to slow down this trend. Costs of these

breaches are significant for both consumers and corporations. Establishing a concrete

link between data breaches and identity fraud is often difficult because misuse may

occur long after a breach, and misused information cannot directly be attributed to

a particular breach incident. However, the growing underground (criminal) market

for stolen personal information strongly suggests that breached ID numbers can be

easily sold and exploited [256].

9Javelin Strategy and Research Survey (Feb. 2007); for excerpts see http://www.

privacyrights.org/ar/idtheftsurveys.htm.
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7.4.2 Related Work and Comparison

In NSPW 2007, Beaumont-Gay et al. [27] proposed a policy-based solution called

Data Tethers where enforced policies are dependent on the operating environment;

i.e., access control policies for stored data on a computing device differ depending on

whether the device is inside a secure environment or otherwise. Data Tethers may

encrypt or remove sensitive data when an insecure environment (e.g., stolen laptop)

is detected. This technique assumes the existence of an “actually secure” computing

environment, and that Data Tethers policies will always be flawlessly enforced. While

such techniques can substantially improve data security in certain environments, in

general, we believe the most prudent assumption is that data will be compromised,

irrespective of protection mechanisms deployed to prevent such leaks.10 Also, in many

cases it is only realistic to acknowledge that the prevention of compromise is beyond

the control of end-users, and of relying parties who hold such information.

Gates and Slonim [95] introduced the owner-controlled information paradigm to

address the issues of “privacy, consistency and mobility” in regard to personal infor-

mation. Users are expected to maintain all of their personal information, identifica-

tion information, as well as medical history and financial information using a personal

device. Organizations must contact a user directly to collect and use personal infor-

mation. Although this technique provides greater control over a user’s sensitive data,

it apparently comes with several unique challenges and high usability costs (some of

which have been discussed in the paper, e.g., lost/stolen device, unauthorized access,

backup and recovery). Ashley et al. [17] propose a framework to addresses “privacy

management” (e.g., publishing concrete privacy promises, user consent management,

privacy enforcement, auditing) for collected customer data in an enterprise environ-

ment. This framework may provide higher level of privacy assurance, although it may

incur significant costs (in addition to requiring an enterprise to develop a comprehen-

sive privacy policy, and to enforce that policy honestly and consistently).

To reduce customers’ fear of using credit cards online (i.e., for card-not-present

transactions), several banks enable users to generate limited-use (e.g., one-time) card

10For example, several breach incidents have been reported from the U.S Department of De-
fense [104], presumably one of the most security-aware organizations.
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numbers through their websites. These dynamically generated card numbers are tied

to a user’s fixed credit card, and can be used for online purchases instead of the fixed

card itself. Examples from real-world deployments of such schemes include American

Express’ Private Payments,11 Discover card’s Secure Online Account Numbers,12 and

SecureClick [241].

Rubin and Wright [218] proposed an offline scheme for generating limited-use

credit card numbers (i.e., without requiring direct interaction between a user and

card issuer for generating new numbers). A user (U) and a card issuer (I) share

a long-term secret key (K). U possesses a computing device, and stores K on it.

To generate a new credit card number number, U selects a monetary restriction

(e.g., $100 limit), expense category (e.g., food), limited validity period, merchant

name, timestamp etc. and encrypts these restrictions using K (in an arbitrary finite

domain encryption scheme [36]). U then transmits the newly generated limited-use

number and her identifying information (e.g., name and address) to the card issuer

via the merchant. From the identifying information, I selects K and verifies the

limited-use number (e.g., checks the restrictions).

Assuming the availability of chip-cards and chip-card readers, Li and Zhang [149]

(see also [150]) proposed a one-time credit card scheme with limited involvement of a

user (i.e., no transaction specific user inputs) for card-present (on-site) and card-not-

present (web, and phone/fax/email) payment scenarios. A user generates one-time

use numbers simply by inserting her credit card into a chip-card reader. In this

scheme, a credit card stores a secret value (S) and an initial one-time credit card

transaction number (CCT). Assuming Tcur is the current CCT number, the next

CCT Tnew is generated by hashing (Tcur, S). At the end of the current transaction,

Tnew replaces Tcur on the card.

Using a personal device such as a cellphone, Molloy et al. [169] proposed an offline

scheme for generating virtual credit card numbers similar to Rubin and Wright [218].

Instead of using finite domain encryption, Molloy et al. used a MAC to avoid several

limitations of such encryption, e.g., encoding merchant names in a compact format.

11Introduced in Oct. 2000, discontinued since Oct. 2004.
12http://www2.discovercard.com/deskshop. Orbiscom’s (orbiscom.com) Controlled Payment

Numbers technology enables Discover and several other one-time disposable credit card providers.
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Also, a user-memorable password may be used as the long-term shared key (P ) be-

tween a user and card issuer. The MAC key is generated from the hashed output of P

and the user’s real credit card number as assigned by the issuer. A transaction string

(including UA, expiration date, R, transaction amount) is MACed to generate the

virtual credit card number. The authors claim the forgery resistant property, i.e., an

attacker cannot (easily) forge credit card numbers even if he knows the user’s real

credit card number and some virtual credit card transactions. However, this property

relies on the assumption that the long-term shared key P is strong (i.e., has high

entropy), which in practice may not hold for most user-chosen passwords.

The main appeal of using disposable credit card numbers is apparently to alleviate

the inconvenience of customers contacting their bank (and replacing a compromised

card), as users are typically liable for at most $50 in case of fraudulent use of their

credit card. Generally, credit card numbers alone cannot be used for identity fraud.

On the other hand, efforts to reduce misuse of more sensitive information such as

SSN are apparently scarce (see e.g., limiting the use of SSNs as an identifier [75], and

the FTC workshop [85]; see also [103]).

Similar to our proposal, CROO [176] attempts to address the generic identity fraud

problem albeit by a different use of one-time passwords; for example, CROO is more

complex and seeks to secure individual transactions, whereas we focus on securing

ID numbers.

From a legal perspective, Solove [247] identifies several inadequacies in the tradi-

tional model for addressing privacy violations using ID theft as an example. ID theft

is a “consequence of an architecture” [247] exploited by ID thieves (e.g., the use of

SSNs for indexing a large array of sensitive personal information held by government

agencies and private businesses). A new architecture has been proposed based on the

Fair Information Practices (originating from a 1973 report by the U.S. Department of

Housing, Education, and Welfare). The Fair Information Practices focus on increas-

ing an individual’s involvement (e.g., participation in the collection, storage and use)

in personal information systems. As an example mechanism, Solove [247] proposes

that user-chosen passwords or account numbers be used for accessing credit reports

instead of using SSNs or other sensitive personal information.
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Partly driven by increasing public demand, most U.S. states (44 out of 50, as of

Sept. 2008) have legislated data breach notification laws, requiring organizations to

report breach incidents to a state agency. While the question of whether these laws

will reduce data theft in the long run is yet to be answered, it has been reported that

so far their effect appears to be statistically insignificant [212]. However, another

study [223] reported that notification laws are increasing “awareness of the impor-

tance of information security” among organizations surveyed. Payton [197] provides

a review of current U.S. state and federal laws regarding data breaches, and possible

legal remedies available to fraud victims. Costs and benefits of a national data breach

notification requirement have also been analyzed [102].

Some businesses attempt to prevent identity theft by providing a service which

places fraud alerts on a customer’s credit bureau profiles. However, in one inci-

dent [283], the identity of the CEO of such a company was exploited to obtain a $500

loan (using the CEO’s SSN which is displayed publicly on the company website and

TV commercials).

Advantages of ID localization. Advantages of our proposal relative to existing

ones include the following.

1. A localized ID number as generated in equation (7.1) is bound uniquely to the

relying party. While this does not offer the advanced restrictions of Rubin and

Wright [218], their additional restrictions require additional user input; thus we

expect that our simpler proposal may enjoy better usability.

2. While Li and Zhang [149] assume the availability of user-level chip-card readers,

our proposal (variant 2) can work when the user has access to a wide variety of

computing devices (e.g., cellphone, PC).

3. Localized ID numbers are computationally immune to offline dictionary attacks

as they do not rely on user-chosen passwords (in contrast to Molloy et al. [169]).

4. ID localization may also limit synthetic ID theft [123] where imposters use real

identifiers (e.g., SSN) along with other fake attributes, e.g., name, address.
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7.5 Concluding Remarks

Once personal ID numbers are collected by third parties, we believe that the most

prudent assumption in today’s Internet environment is that they will be breached at

some point in time, despite best efforts (if any) of the collecting parties. In addition

to lost personal privacy (e.g., medical history, purchase habits, online and real-world

activities under surveillance), these breaches enable large-scale identity fraud. Some

of these fraudulent activities remain undetected by their victims for years [84, 273].

While direct monetary losses for consumers from such fraud are recoverable to some

extent, nonmonetary damages (productivity/time lost to resolve identity theft [257],

denied credit or other financial services, harassment by debt collection agencies, crim-

inal investigation or arrest [24]) are not; see e.g., the FTC 2003 report [84]. One of

the main problems is that agencies/corporations responsible for these breaches of

customer records are not generally held accountable for the breaches, and presently

there is no significant financial penalty. We expect that if it was corporate data that

was being compromised, corporations would pursue legal remedies; but since it is

primarily the personal information of individuals, and the perceived dollar amount

likely to be gained through legal remedy is small compared to the cost of litigation,

individuals generally do not pursue legal remedies.

We outline an ID number localization approach and its variants to reduce iden-

tity fraud due to large-scale data breaches that expose reusable fixed ID numbers.

Barriers to deployment include existing databases indexed by ID numbers (such as

SSN), and legacy information aggregation applications. However, localized IDs may

reduce liability of businesses when a breach occurs. Our proposals may also ease the

burden of following security best practices or governmental regulations for protecting

consumers’ identity data. These techniques may also enable out-sourcing customer

data to countries with different rules and regulations, or enforcement reality.13 How-

ever, in the end, natural adoption of our proposals may not occur in the absence

of imposing increased liability on relying parties for breached data, strong consumer

lobbying, and perhaps government legislation/regulation.

13An undercover journalist was reportedly [261] able to buy U.K. customers’ bank accounts, credit
card details, passport and driving licence information from call center workers in India.
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Rather than focusing on analysis of a particular solution, our proposed variants

here are intended to initiate further discussion on how to better address the current

problem of identity fraud resulting from breached databases of personal information

on millions of customers. There are certainly deployment challenges with several of

our proposals; consequently, we raise the question, “Are there better proposals that

can address the same problem?” We believe that fundamentally new approaches are

required to address this problem, which clearly is not addressed by existing solutions.



Chapter 8

Salting/Localization of PINs for Addressing Flawed

Financial APIs

In this chapter, we expand our “design for damage control” viewpoint (see Chapter 7),

and apply it to restrict exploitations of compromised banking PINs. Several PIN

cracking attacks have been reported in the recent past which may reveal user PINs

by abusing design flaws in widely deployed financial APIs. Despite best efforts from

security API designers, flaws are often found, and even APIs with a formal proof

of security may not guarantee absolute security when used in a real-world device or

application. In parallel to spending research efforts to improve security of these APIs,

we argue that it may be worthwhile to explore design criteria that would reduce the

impact of an API exploit, assuming flaws cannot completely be removed from security

APIs. We explore different solutions based on salting (i.e., using additional secrets

with user PINs) and localization (i.e., service-point specific information) that may

reduce the value of revealed PINs at intermediate switches in a banking network.

8.1 Introduction

Attacks on financial PIN processing APIs revealing customers’ PINs have been known

to banks and security researchers for years, e.g., [54, 39, 41, 42, 40] (failure modes of

ATM PIN encryption were first discussed in Anderson [9]). Apparently the most effi-

cient of these PIN cracking attacks are due to Berkman and Ostrovsky [32].1 However,

proposals to counter such attacks are almost non-existent in the literature, other than

a few suggestions; for example, maintaining the secrecy (and integrity) of some data

elements related to PIN processing (that are considered security insensitive according

1We encourage readers unfamiliar with financial PIN processing APIs and PIN cracking attacks
to consult Section 8.2 for background, and Appendix C for a summary of attacks by Berkman and
Ostrovsky [32].

128
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to current banking standards) such as the “decimalization table” and “PIN Verifica-

tion Values (PVVs)/Offsets” has been emphasized [41, 32]. However, implementing

these suggestions requires modifications to all involved parties’ Hardware Security

Modules (HSMs). Commercial solutions such as the PrivateServer Switch-HSM [8]

rely mostly on tightly controlling the key uploading process to a switch and removing

unnecessary APIs or weak PIN block formats. Even if the flawed APIs are fixed, or

non-essential attack APIs are removed to prevent these attacks, it may be difficult in

practice to ensure that all intermediate (third-party controlled) switches are updated

accordingly. Thus banks rely mainly on protection mechanisms provided within bank-

ing standards, and policy-based solutions, e.g., mutual banking agreements to protect

customer PINs.

MP-Auth (see Chapter 3) is apparently capable of preventing these attacks in

addition to saving PINs from false ATM keypads and card reader attacks. However,

MP-Auth relies on public key operations, and thus cannot be deployed without sig-

nificant modifications to ATMs, switches and verification facilities. Another obvious

solution (as suggested in [41, 32]) is to update the PIN processing APIs, which also

requires modifications to all involved parties’ Hardware Security Modules (HSMs).2

Designing solutions to mitigate PIN cracking attacks pose some interesting chal-

lenges. PIN transfers in banking networks rely on symmetric key cryptography where

the third-party controlled intermediate switches also possess shared keys to decrypt

encrypted PINs (but have no access to issuer/verification keys). Although decrypted

PINs (and the decryption key itself) are not (ideally) accessible from outside of an

HSM, API flaws allow attackers to realistically extract enough information from the

HSM (through legitimate API calls) to enable PIN cracking attacks. Thus PIN crack-

ing solutions must protect user PINs that travel through third-party switches which

may be less security conscious or even actively malicious. Our solution attempts to

address threats from such an adversary as well as hostile parties at a verification

facility with limited access (e.g., one who can call API functions from an HSM, but

cannot access verification keys). However, we do not consider ATM frauds that are

not scalable such as false keypads and card reader attacks [71].

2For an overview of HSMs and related attacks, see Anderson et al. [10]
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One primary reason that PIN cracking attacks are possible is that actual user

PINs, although encrypted, travel from ATMs to a verification facility through several

(untrustworthy) intermediate switches. If, for example, hashed PINs were sent in an

encrypted form, attackers may not be able to reveal user PINs even in the presence

of API flaws. However, as PINs are generally short (4 digits), an offline dictionary

attack may still easily allow recovery of actual PINs. From reviewing the history

of API attacks, we also note that even a complete overhauling of PIN processing

APIs may be subject to presently-unknown API flaws that might be exploited to

reveal user PINs. Therefore we seek a solution that precludes real user PINs being

extracted at verification facilities, and especially at switches (which are beyond the

control of issuing banks), even in the presence of API flaws. One possible solution in

this direction is not to send the actual user PIN itself through untrusted intermediate

nodes. Our proposal follows such a direction.

While PIN cracking attacks get more expensive as the PIN length increases, it

is unrealistic to consider larger (e.g., 12-digit) user PINs, for usability reasons.3 As

part of our proposal, we assume that a unique random salt value of sufficient length

(e.g., 128 bits) is stored on a user’s bank card, and used along with the user’s regular

four-digit PIN (Final PIN ) to generate4 a larger (e.g., 12 digit) Transport Final PIN

(TFP). This TFP is then encrypted and sent through the intermediate switches. Thus

we essentially expand the 4-digit PIN to 12 digits. We build our salted-PIN solution

on this simple idea. Our proposal requires updating bank cards (magnetic-stripe/chip

card), service-points (e.g., ATMs), and issuer/verification HSMs. However, our design

goal is to avoid changing any intermediate switches, or requiring intermediate switches

be trusted or compliant to anything beyond existing banking standards.

Salted-PIN provides the following benefits.

1. It does not depend on policy-based assumptions, and limits existing PIN crack-

ing attacks even where intermediate switches are malicious.

3A 12-digit PIN can be constructed by storing eight digits on the bank card while a user memorizes
the other four digits as usual. However, as the real PIN is sent encrypted in this solution, attackers
at a malicious switch can recover the PIN and create fake cards. (An anonymous FC 2008 referee
pointed us to this idea and its relative advantages and disadvantages.)

4For example, through a pseudo-random function (PRF).
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2. It significantly increases the cost of launching known PIN cracking attacks;

for example, the setup cost for the translate-only attack (see Appendix C) for

building a complete Encrypted PIN Block (EPB) table now requires more than

a trillion API calls in contrast to 10,000 calls as in Berkman and Ostrovsky [32].

3. Incorporating service-point specific information such as “card acceptor identifi-

cation code” and “card acceptor name/location” (as in ISO 8583) into variants

of salted-PIN, we further restrict attacks to be limited to a particular loca-

tion/ATM.

Organization. Background on financial PIN processing is provided in Section 8.2.

We outline the proposed salted-PIN solution in Section 8.3. Known attacks that ap-

ply to the basic version of salted-PIN are discussed in Section 3.3.3. In Section 8.5 we

introduce three variants of salted-PIN to counter these attacks. Implementation chal-

lenges are also briefly discussed in Section 8.5. Section 2.5 concludes. In Appendix C,

we review several (representative) attacks from Berkman and Ostrovsky [32].

8.2 Background

In this section, we provide a basic overview of PIN processing and PIN block formats.

More background on banking networks is discussed elsewhere (e.g., [54, 194]).

PIN processing architecture. When a user inputs her PIN at an ATM, the

PIN is encrypted to form an Encrypted PIN Block (EPB) using a transport key

shared between the ATM and the next switch connected to the ATM. A switch can

be a stand-alone facility for PIN transportation (and other related bank network

activities), or part of a bank’s verification facility. PIN blocks are processed inside

Hardware Security Modules (HSMs). Each switch shares a transport key with other

switches that it is connected to. At a verification center, a switch may also have

the issuer key (for PIN verification). A standardized set of PIN processing APIs is

used for PIN creation, transportation, and verification. The intent is that this allows

banks to protect user PINs from application programmers (or anyone having access

to PIN processing APIs) at verification facilities as well as in switches.

There are several standardized PIN block formats (see below). An EPB may travel

across several HSMs on its way to a verification site. When transmitted from one HSM



132

to another, re-formatting (i.e., translating from one PIN block format to another) may

be required. Thus all HSMs must implement translation APIs to allow reformatting of

an EPB. A switch decrypts an EPB, checks the PIN block format (e.g., validity of PIN

digits, PIN length), changes the format if required, and re-encrypts the PIN block

with the destination switch’s transport key. As all PIN operations are performed

by HSMs, an application programmer (ideally) cannot learn anything about PINs

transported as EPBs.

PIN Block formats. We outline four PIN block formats from ISO 9564-1 [127],

three of which are approved by VISA for online transactions (e.g., through ATMs).

Assume that a PIN is four decimal digits long. A PIN block is composed of 16 hex

digits, i.e., 64-bits. Let ‘P’ be a PIN digit (0 to 9), PAN the least significant 12 digits

of a customer’s Primary Account Number (excluding the check digit), and let ‘A’ be

a PAN digit (0 to 9). An ISO-0 PIN block is calculated as follows.

ISO-0 PIN Block = Original PIN Block⊕ Formatted PAN

Here, Original PIN Block = 04 PPPP FFFF FFFF FF,

with ‘F’ denoting the hex digit F

Formatted PAN Block = 00 00AA AAAA AAAA AA

The leftmost zero in the original PIN block stands for ISO-0, and the digit 4 is

the PIN length (which could be as high as 12). An ISO-0 PIN block is the result of

XORing an original PIN block with a formatted PAN. The ISO-1 PIN Block format

is 14 PPPP RRRR RRRR RR, where ‘R’ is a random hex digit (0 to F). The ISO-2 PIN

Block format is 24 PPPP FFFF FFFF FF, which is used only when creating a card. An

ISO-3 PIN block is calculated as follows.

ISO-3 PIN Block = Formatted PIN Block⊕ Formatted PAN

Here, Formatted PIN Block = 34 PPPP RRRR RRRR RR,

with ‘R’ a hex digit from A to F

Formatted PAN Block = 00 00AA AAAA AAAA AA
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In summary, ISO-2 is the weakest PIN format; it is not allowed for online pro-

cessing, and it has not been used in the PIN cracking attacks. ISO-0 and ISO-3 PIN

blocks depend on a user PIN and account number. ISO-1 format is not bound to a

user’s account number, and is recommended to be used in situations where the PAN

is unavailable. Attacks exploiting translate-only APIs (see Section C.1) depend on

the fact that any ISO-0 and ISO-3 PIN formats can be translated to the less secure

ISO-1 format (as the ISO-1 format does not depend on the user PAN). Translation

APIs are also generally implemented by all HSMs.

Encrypt PAN

PAN

PIN Key 

(issuer)

Decimalization 

     Table Decimalize the encrypted PAN

Natural PIN (4 leftmost digits)

EPB

PIN block 

  format Transport 

   Key

Decrypt EPB and extract

               Final PIN

Final PIN - Natural PIN

Offset

Figure 8.1: Offset calculation (adapted from [194])

IBM calculate-offset API. IBM’s calculate-offset API outputs an offset using a

PAN and EPB. If the calculated offset value corresponds to the stored value for that

PAN, then the PIN inside the EPB is verified. Offset values are assumed by the

banking standards to be security insensitive, and are generally stored in plaintext.

Fig. 8.1 illustrates how an offset value is calculated for PIN verification. Here, a
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Natural PIN is calculated from a customer’s PAN, and the Final PIN is a customer-

chosen PIN. Subtraction is digit by digit modulo 10. An issuer key (residing inside

an HSM) is used to encrypt a user’s PAN. The encrypted PAN may contain hex

digits (A to F), and it is decimalized using a decimalization table (mapping hex

digits to decimal digits). The four left-most digits of the decimalized encrypted PAN

constitute the user’s Natural PIN. The Final PIN is extracted from the user’s PAN,

EPB (containing the user’s encrypted Final PIN), the PIN block format, and the

transport key (residing inside the HSM). The offset is calculated by subtracting the

Natural PIN from the Final PIN.

VISA PIN Verification Value (PVV). Fig. 8.2 depicts how a VISA PIN Verifi-

cation Value (PVV) is calculated. PVVs are used in a similar fashion as IBM offset

values, and also (generally) stored in a plaintext database. A customer’s PVV may

be written on her bank card as well (for offline PIN verification).
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EPB

PVV

Decimalization 

     Table

PAN

PIN block 

  format

Transport 

   Key
Decrypt EPB and extract

      Final PIN (4 digits)

Transformed Security Parameter (TSP) = 

11 PAN digits || PIN Key Index || Final PIN

Encrypt TSP
PVV Key

  (issuer)

Extract 4 decimal digits

Figure 8.2: PVV calculation (adapted from [194], || denotes concatenation)
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8.3 Salted-PIN

Here we present the salted-PIN proposal in its simplest form.

Threat model and notation. Our threat model assumes attackers have access

to PIN processing APIs and transaction data (e.g., Encrypted PIN Blocks, account

number) at switches or verification centers, but do not have direct access to keys

inside an HSM, or modify HSMs in any way. Attackers can also create fake cards

from information extracted at switches or verification centers and use those cards

(perhaps through outsider accomplices). We primarily consider large scale attacks

such as those that can extract millions of PINs in an hour [32]. We do not address

attacks that are not scalable, such as card skimming, attacks on EMV5 PIN entry

devices [71], or cases where an accomplice steals a card and calls an insider at a switch

or verification center for an appropriate PIN. PIN cracking attacks that we consider

are successful only when online PIN verification is applied (i.e., encrypted PINs are

sent to a verification center for approval). In addition to magnetic-stripe cards, these

attacks are also valid for chip/EMV cards except when offline/on-chip PIN verification

is used (assuming card issuers allow EMV cards to fallback to magstripe processing

for backward compatibility or chip failure). We use notation from Table 8.1.

PAN User’s Primary Account Number (generally 14 or 16-digit).
PIN User’s Final PIN (e.g., 4-digit, issued by the bank or chosen

by the user).
PINt User’s Transport Final PIN (TFP).
Salt Long-term secret value shared between the user card and is-

suing bank.
fK(·) A cryptographically secure Pseudo-Random Function

(PRF).6 Here K is the PRF key.

Table 8.1: Notation used in Salted-PIN

Note that, if and when chip cards are deployed worldwide, and offline PIN verifi-

cation is the de facto mode of operation, most current PIN cracking attacks involving

5EMV is a growing standard for chip-based bank cards, initially developed by Europay, Master-
Card, and VISA; see http://www.emvco.com.

6For example, as used in PwdHash [214].
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intermediate switches become invalid, consequently eliminating the need for new solu-

tions. Although such cards are being gradually adopted, apparently magstripe cards

(and the magstripe mode of operation of chip cards) along with existing flawed APIs

will remain in operation for a long time to come. For example, we have seen that the

transition away from DES and triple-DES to more modern cryptographic algorithms

has taken far longer than many might have originally predicted.

Generating salted-PINs. A randomly generated salt value of adequate length

(e.g., 128 bits, to make dictionary attacks infeasible) is selected by a bank for each

customer. The salt is stored on a bank card (chip-card or magstripe) in plaintext,

and in an encrypted form at a verification facility under a bank-chosen salt key. API

programmers (i.e., those who use HSM APIs) have access to this encrypted salt (but

do not know the salt key or plaintext salt values). Encrypted salt values also cannot

be overwritten by API programmers. A user inputs her PIN at an ATM, and the ATM

reads the plaintext salt value from the user’s bank card and generates a Transport

Final PIN (TFP) as follows.

PINt = fSalt(PAN,PIN) (8.1)

The PRF output is interpreted as a number and divided by 1012; the 12-digit

remainder (i.e., PRF output modulo 1012) is chosen as PINt and treated as the Final

PIN from the user. Note that the maximum allowed PIN length by ISO standards

is 12. The ATM encrypts PINt with the transport key shared with the adjacent

switch, and forms an Encrypted PIN Block (EPB). An intermediate switch decrypts

an EPB, (optionally) reformats the PIN block, and re-encrypts using the next switch’s

transport key. Additional functionalities are not required from these switches.

To set the initial offset or PIN verification value (PVV), an issuer generates a

random PIN (e.g., 4 digits long) and salt for a user, and then uses equation (8.1) to

generate PINt. The transport key of the verification HSM is used to encrypt PINt

and form an EPB. This EPB is used to call a calculate offset/PVV function with the

user’s PAN and encrypted salt to generate the initial offset/PVV (note that each of

these values is now 12 digits long).
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Figure 8.3: Salted-PIN verification for the IBM offset method

Offset/PVV verification with salted-PIN. The salted-PIN verification for the

IBM offset method (recall Section 8.2) is shown in Fig. 8.3. The Natural PIN is calcu-

lated from a PAN using an issuer’s PIN key. The encrypted salt value corresponding

to the PAN is decrypted using a salt key (like the PIN key and transport key, the

salt key also resides inside an HSM). The Transport Natural PIN is generated from

the Natural PIN using equation (8.1). The Transport Final PIN is extracted from

an EPB, and the Transport Natural PIN is subtracted from it (digit by digit modulo

10 subtraction) to get the offset. This calculated offset value is compared with the

corresponding PAN’s stored (e.g., in a database) offset value. The salted-PIN veri-

fication for VISA PVV is shown in Fig. 8.4. The salt value is appended at the end

of the Transformed Security Parameter (TSP), which is encrypted and decimalized

to calculate the PVV. Note that we design the offset/PVV verification functions to

keep them similar to the existing functions although these can be further simplified;

for example, instead of storing offset/PVV values, EPBs directly may be stored and

compared with incoming EPBs.
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Figure 8.4: Salted-PIN verification for the VISA PVV method

Salted-PIN protection against PIN cracking attacks. We discuss attacks

(e.g., translate-only [32]) that reveal a user’s TFP in Section 8.4. An attacker with

write-access to the PVV database at a verification facility can choose any PIN for

a specific account (see Section C.3). With the salted-PIN solution, an attacker can

still choose any PIN to pack in an EPB and write the resulting PVV to a database.

However, without knowing the salt value, overwriting a user’s PVV does not help

in an attack for the following reason. The salted-PIN verification function for PVV

(Fig. 8.4) ensures use of the encrypted salt value as indexed by a user’s PAN; thus

for a successful PVV verification, a user’s salt must be known or the encrypted salt

value must be replaced.

8.4 Attacks on Salted-PIN

We now discuss attacks against the basic version of salted-PIN.

8.4.1 Enumerating EPBs through Translate-only Attacks

Here the goal of an attacker is to create a table of EPBs, and then crack all or a

subset of user accounts. The following attacks in part follows an efficient variant of

the translate attack as outlined by Berkman and Ostrovsky [32]. For these attacks,
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we assume an attacker Mi is an insider (e.g., application programmer) at a switch or

verification center, and an outsider accomplice Ma who helps Mi in carrying out user

input at an ATM. These attacks are possible for the following reason. Although a

TFP is calculated from a long (e.g., 128 bits, sufficient to deter dictionary attacks)

salt value, only 12 digits of the PRF output are used. Thus an attacker only requires

any pair of salt and PIN combination that can generate a targeted account’s TFP

instead of finding the actual salt/PIN values.

Targeting all accounts. Assume that Mi extracts the salt value (Salta) and PAN

from a card he possesses, and uses equation (8.1) to generate the 12-digit TFP PINat

(through software or a hardware device, using any PIN PINa). Let PINat consist of

p1p2p3 . . . p12 where each pi (i = 1 to 12) is a valid PIN digit. Then Ma inserts this

card to an ATM, and enters PINa. Assume that the generated PINat is encrypted by

the ATM to form an EPB, E1. Mi captures E1 at a switch. If E1 is not in the ISO-1

format, Mi translates it into ISO-1 (to disconnect E1 from the associated PAN). Let

the translated (if needed) E1 in the ISO-1 format be E ′

1. E
′

1 is then translated from

ISO-1 to ISO-0 using p3p4 . . . p1200 as the input PAN. This special PAN is chosen so

that the XOR of PIN positions 3 to 12 with PAN positions 1 to 10 removes p3 . . . p12

when the translation API is called; i.e.,

PIN block inside E′

1
= 0 C p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 F F

Input PAN = 0 0 0 0 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 0 0
Resulting ISO-0 PIN block = 0 C p1 p2 0 0 0 0 0 0 0 0 0 0 F F

Assume the resulting EPB is Ep1p2
which is the same as the one containing a TFP

p1p20000000000 with PAN 0. Now we can create all EPBs containing every 12 digit

TFPs starting with p1p2 from Ep1p2
. For example, an EPB with p1p2q3q4 . . . q12 as

the TFP can be generated through transforming Ep1p2
using PAN q3q4 . . . q1200 (in

ISO-0). Thus we can create all 1010 EPBs with TFPs from p1p20 . . . 0 to p1p29 . . . 9.

Starting from a different p1p2, all 1012 EPBs containing every 12 digit TFP can

be generated as follows. Ma uses the previous bank card (i.e., the same salt and

PAN) with different PINs (obviously, including wrong PINs) to calculate TFPs using

software or a special device. When a TFP is found with the first two digits different

than p1p2, the corresponding PIN is entered at an ATM. The attacker Mi at the

switch then generates another set of 1010 EPBs containing TFPs starting with this
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different p1p2. The attack continues with different PINs until all 100 possible values

of the initial two TFP digits are covered. Thus using these 100 EPBs containing

TFPs starting with the different first two digits (i.e., from 00 to 99), Mi can create a

table of EPBs for all possible TFPs (with corresponding PINs). The cost of building

this table is slightly over 1012 API calls (for each 100 Ep1p2
, at most two API calls are

required). The cost of selecting the initial EPBs (i.e., that contain TFPs with two

different starting digits) is insignificant as Ma can calculate TFPs offline, i.e., without

involving any API calls to HSMs.

To launch an attack, a valid EPB of a target customer is collected. The EPB is

translated to ISO-1 (to decouple it from the target account, if not already in ISO-1),

then to ISO-0 with PAN 0. The resulting EPB is then located on the EPB table

(as created in the setup phase). The corresponding PIN from the table can now be

used to exploit a card generated with the target’s PAN, and the attacker’s salt value

(i.e., Salta). The cost of this attack is at most two API calls and a search of O(1012),

i.e., O(240).

In summary, the setup cost of this attack is about 1012 API calls with a per account

cost of two API calls plus a search of O(1012). The same translate-only attack by

Berkman and Ostrovsky [32] on the current implementation of PIN processing requires

only about 10,000 API calls as setup cost, and a per account cost of two API calls

plus a search of O(103).

Trade-off between table size and per EPB attack cost. The per account cost

of the above attack is not high enough to deter an attack. However, the setup cost of

building the table with all one trillion EPBs is apparently significant (although this

is a one-time cost). By reducing the table size, the attack can be launched with fewer

API calls although the per EPB attack cost increases accordingly.

Assume that the attacker builds a table of 106 EPBs (i.e., one half of the original

table size) containing TFPs ending with six zeros (000000), i.e., storing only the first

six digits of a TFP. With this table, an attacker can calculate TFP of any target EPB

Ec in 106 steps (assuming the EPB arrives in ISO-1 format, or the attacker translates

it into ISO-1); each step then requires one API call. The attack is described in

Algorithm 1.
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Algorithm 1 Steps in the partial table attack

1: for i = 0 to 106 − 1 do
2: Ec0 = TranslateISO−0(Ec, i× 100)
3: if Ec0 is in the table then
4: TFP in Ec = 106 × (six digit TFP from the table) + i
5: Salt and PIN values corresponding to Ec is used to generate a fake card
6: exit
7: end if
8: end for

Now the cost of attacking N accounts is 106 + N × 106 API calls. The attacker

can also vary the table size and the number of steps for each target account. For any

table size 10n for n ∈ {2, 3, . . . , 12}, the required number of per account translate

steps is 1012−n. Thus in general the cost of attacking N account is 10n +N × 1012−n.

8.4.2 Replay Attack

In this attack, an adversary Mi at a switch or verification center collects a valid EPB

Ec for a target PAN Ac, and then creates a fake card with the account number Ac (and

any salt value). Note that Mi here does not know the actual salt value or PIN for the

target account. An accomplice Ma uses the fake card with any PIN at an ATM, and

the ATM generates a false EPB Ea. At the switch/verification center Mi locates Ea in

transfer, and replaces Ea with the previously collected correct EPB Ec. Thus the fake

card will be verified by the target bank, and Ma can access the victim’s account.

Note that this attack works against the basic variant of salted-PIN as well as cur-

rent PIN implementations without requiring any API calls. Although quite intuitive,

this attack has not been discussed elsewhere to our knowledge.

8.5 Variants, Implementation Challenges and Lessons Learned

As we discussed in Section 8.4, the basic version of salted-PIN is vulnerable to several

attacks. Other than the replay attack, the setup cost of launching these attacks is

not trivial as previous PIN cracking attacks (cf. [32]) although the per account attack

cost is apparently manageable. In this section, we outline three variants of salted-PIN

to practically restrict these attacks by increasing the per account attack cost.
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Variant 1: Localized / service-point specific salted-PIN. If a fake bank card

is created for a target account (e.g., through the attacks in Section 8.4), the card can

be used from anywhere as long as it remains valid (i.e., the issuing bank does not

cancel it). To restrict such attacks, we modify equation (8.1) as follows.

PINt = fSalt(PAN,PIN, spsi) (8.2)

Here spsi stands for service-point specific information such as a “card acceptor iden-

tification code” and “card acceptor name/location” as in ISO 8583 (Data Elements

fields). The verification center must receive spsi as used in equation (8.2). Al-

though any PIN cracking attack (Section 8.4.1) can be used to learn a TFP or build a

full/partial EPB table, the table is valid only for the particular values of spsi. Also,

the replay attack (Section 8.4.2) may succeed only when the accomplice exploits a

compromised card from a particular ATM. Thus this construct generates a localized

TFP for each PIN verification, and thereby restricts the fake card to be used only

from a particular location/ATM. Note that for this variant, the verification facility

cannot use PVV or Offset values, because they would be different for each ATM.

Another verification value would need to be designed.

Variant 2: Salted-PIN with double EPBs. ISO PIN block formats restrict PIN

length to 12 digits in an EPB. This length limit enables a search of O(240) in a pre-

built table (see in Section 8.4.1). As a variant, instead of choosing 12 digits from the

result of equation (8.1), we can take 24 digits (i.e., PRF output modulo 1024) and

create two PINt blocks, each 12 digits long. As a result, two EPBs must be sent

from an ATM, and a verification facility needs both EPBs to verify a user’s PIN.

However, intermediate switches may not need to be aware of this. An attack similar

to Section 8.4.1 can be launched on each EPB separately, and two tables can be built

for both parts of a 24-digit TFP; the cost of building the table simply doubles (two

TFP tables, each has 1012 entries). Using the tables, a 24-digit TFP can be extracted

from the two EPBs of any target account. However, determining a valid pair of salt

value and PIN is not straightforward as the attack in Section 8.4.1. To generate

a fake card (i.e., to find an appropriate salt value and PIN for the intended TFP)
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for this variant of salted-PIN, attackers must apparently carry out a computation

of 1024 (i.e., O(280)) steps. However, this variant is vulnerable to the replay attack

(Section 8.4.2) when equation (8.1) is used. Again, service-point specific information

as used in equation (8.2) for generating TFP can practically limit such attacks.

Variant 3: End-to-end PIN encryption/MAC. Using the stored salt as an en-

cryption key, end-to-end PIN encryption can be achieved between an ATM and verifi-

cation center. The salt value can also be used for calculating a message authentication

code (MAC) for a user’s Final PIN. This variant can secure PIN transportation to the

extent of the algorithm used for encryption or MAC. Thus it can effectively eliminate

PIN enumeration by an attacker at a switch or verification center. However, to re-

strict the replay attack (Section 8.4.2), one or more service-point specific items must

be used with a PIN for encryption or MAC. Also, this variant will require updating

intermediate switches.

Implementation challenges. One implementation challenge for salted-PIN could

be the storage requirement for the salt (39 decimal digits or 128 bits) that must

be stored on a bank card. There are four possible scenarios: (1) magnetic-stripe

(magstripe) cards; (2) chip-card with a magnetic stripe at a magstripe reader ter-

minal; (3) chip-card with online PIN verification; and (4) chip-card with offline PIN

verification. For the last case, as a PIN does not leave the card, PIN cracking attacks

are immaterial. For the first two cases, the amount of data that can be stored on

a magnetic stripe is limited by ISO standards; for example, according to ISO-7811,

track one in a magstripe bank card holds 79 six-bit characters (plus a parity check),

and track two holds 40 four-bit (plus a parity) characters. These two tracks are

generally present in most magstripe bank cards (there is also a third track on some

cards). A salt may be stored on a magstripe card by overloading non-essential data

fields in track one (e.g., discretionary data, name, expiration date), and redundant

fields in track two (e.g., PAN). Chip-cards offer significantly more storage capability,

and thus for the third case, accommodating the salt may not be an issue.

Salted-PIN requires that service points (e.g., ATMs, point-of-sale terminals) are

capable of computing PRF as in equation (8.1). Thus another implementation chal-

lenge is posed by the limited computing ability of old magstripe reader terminals
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with limited CPU capabilities and cryptographic support of only a DES chip; re-

cent terminals (e.g., Motorola’s PD4750) generally operate on a 32-bit processor, and

computing a PRF is not a computational issue.

Lessons learned and discussion. Now we briefly discuss the lessons learned from

designing different variants of salted-PIN. These lessons, we believe, may help others

in building robust security protocols.

1. Minimizing disclosure of reusable information. In the banking network,

encrypted user PINs are sent through multiple switches to the verification center

for user authentication. Such a scheme always bears the risk of exposing the

long-term, reusable secret PIN. We argue that if long-term secrets are converted

to one-time use passcodes, then the discovery of a flaw may not necessarily lead

to the compromise of a reusable secret. Some techniques such as Lamport’s hash

chain [147] have been publicly known for decades. Unfortunately, applications

of these schemes appear to be low.

2. Reducing the value of disclosed information. In general, currently attack-

ers enjoy the benefit of compromising sensitive secrets once, and then reusing

those multiple times. Localization of secrets or sensitive information as applied

in the service-point specific salted-PIN variant, may also be useful in other set-

tings, e.g., restricting identity fraud as a result of data breaches (see Chapter 7).

Making attacks unattractive (i.e., the reward is less than the required efforts) is

an easier goal than making attacks impossible, and is often effective and suffi-

cient. As defenders (such as API designers) and attackers are both humans, it

makes little sense, at least on a philosophical ground, to believe that defenders

can design protocols or techniques that cannot be defeated one way or another.

However, we can design for damage control, i.e., design protocols in such a way

that when they break, they still do not expose long-term user secrets. Incor-

porating such damage control techniques into the design itself may make our

protocols more resilient to attacks.
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8.6 Concluding Remarks

In the 30-year history of financial PIN processing APIs, several flaws have been un-

covered. Here we summarize some API attacks from Berkman and Ostrovsky [32]

for context, and introduce a salted-PIN proposal and three of its variants to counter

these attacks. Our preliminary analysis indicates that salted-PIN can provide a higher

barrier to these attacks in practice by making them considerably more expensive

(computationally). We have discussed some deployment issues, but acknowledge that

this discussion is not exhaustive; deployment barriers may arise from unseen aspects.

Salted-PIN is motivated primarily by the realistic scenario in which an adversary may

control switches, and use any standard API functions to reveal a user’s PIN; i.e., an

attacker has the ability to perform malicious API calls to HSMs, but cannot otherwise

modify an HSM.

Our proposal of salted-PIN is intended to stimulate further research and solicit

feedback from the banking community regarding: (1) whether salted-PIN may im-

prove PIN security in real terms; (2) practical barriers of deploying salted-PIN; and

(3) any significant weaknesses of salted-PIN. We focus on providing a technical so-

lution to update PIN processing APIs, some of which are well-known to be flawed.

Instead of relying, perhaps unrealistically, on honest intermediate parties (who dili-

gently comply with mutual banking agreements), we strongly encourage the banking

community to invest effort in designing protocols that do not rely on such assump-

tions which end-users (among others) have no way of verifying. It has been spec-

ulated [32] that PIN cracking attacks may explain numerous unexplained phantom

withdrawals [38] as reported by many ATM fraud victims. As reported [281] recently

(June 20, 2008), the compromise of a third-party PIN processor may have been the

reason for a large number of Citibank card fraud.



Chapter 9

Comparative Summary and Concluding Remarks

In this chapter, we provide a comparative summary of our proposals, discuss the

relationship among our different threat models, and revisit the thesis objectives. We

also list a number of lessons learned in the course of this work which may help others

to design better tools for addressing real-world security issues. Several open problems

related to this thesis are also discussed.

9.1 Threat Models and their Justification

Our proposed techniques for addressing several different real-world problems have

different but related threat models. Below we provide an overview of these models.

The threat model for MP-Auth includes compromised user PCs and attacks on

users’ mental models of the web. However, we assume the user device (cellphone

or a stand-alone mobile/personal device) as used in MP-Auth is malware-free. If

commonly used cellphones cannot be made secure (in the sense of free of malware),

we argue that a separate device with minimum configuration must be designed; this

device may be integrated with other devices that users generally carry. Recently,

others also have envisioned such a device; see e.g., [148]. We also assume that users

will not share their passwords for MP-Auth-enabled services with any other appli-

cations or sites, and input these passwords only through a device. Additionally, we

expect users to be vigilant while confirming a transaction through their device. MP-

Auth does not address the privacy threat of malware on the PC having read-only

availability of user transactions. The loss of transaction privacy is no less impor-

tant, but we believe that protecting users’ long-term credentials is more critical, at

least in the current environment.

It is quite plausible that users’ MP-Auth passwords may be compromised, or

users may be duped to confirm unwanted transactions. Our proposals for integrity
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verification (Section 4.2) address such threats. Also, to help users choose strong

passwords, we introduce the Object-based Password (ObPwd) scheme which provide

presumably much better entropy than most user-chosen passwords. We believe that

these passwords can significantly reduce threats from online dictionary attacks on MP-

Auth. ObPwd addresses the fact that at least some users will choose weak passwords,

and that imposing password rules has been a failure in changing user choices so far.

However, ObPwd assumes that the generated passwords will be used in a malware-

free environment (i.e., no rootkit or equivalent), and that users will not choose obvious

online objects as their password objects. Our hope is that as users own or have access

to more and more (often portable) digital content, they have better chance of choosing

a better password with ObPwd than current practices. Ideally, we also expect these

passwords to be used from a trustworthy device with an MP-Auth-enabled service.

In IMPECS, we assume the threat to users’ personal web content arises from

the easy and universal availability of such content. Compromised hosts also pose a

large threat to privacy, but we focus on current sharing mechanisms which are the

primary cause of privacy breaches now. Also in a variant of IMPECS, we address

the compromise of web servers hosting personal content. Our implementation of

IMPECS relies on the security of underlying IM services or any other mechanisms

used for distributing authentication tokens.

The threat model for ID number localization variants primarily focus on breached

databases of sensitive identity numbers. Once compromised, these numbers can be

exploited many times, in many different places. Instead of compromised user PCs,

our focus here is compromised or lost user databases from relying parties (i.e., those

who make use of ID numbers). We assume ID issuers can secure their data, or at

least the probability of these parties being compromised is much less than relying

parties mainly because the number of issuers is significantly less than that of relying

parties. For PIN localization, the focus is to address threats from potentially ma-

licious intermediate parties while we assume end-hosts such as ATM machines and

verification sites are largely trustworthy. Unlike the SSL-protected Internet commu-

nication, banking networks allow intermediate nodes to decrypt and re-encrypt PIN
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blocks (due to the reliance on symmetric-key cryptography). We ignore threats from

lost or stolen bank cards as attacks exploiting such cards are not scalable.

Summary and comparison. In summary, our threat models include compromised

user PCs to content hosting servers to corporate and government databases. This wide

range of attack targets is an indication of the variety of attacks faced by different real-

world applications. In order for security techniques to have any real impact, we believe

that more effort must be spent on identifying the varying landscapes of threats, and

that these must be addressed in a pragmatic fashion.

We provide a comparative overview of our proposals in Table 9.1. On the left-most

column, we list our proposals and on the horizontal heading, we list different protec-

tions and security features. Here we briefly describe the items under the top row.

“Compromised host” covers user machines infected with any sort of malware – perma-

nently installed (e.g., rootkit), or ephemeral (e.g., JavaScript keyloggers). Semantic

attacks on regular users are considered under “Phishing.” “Data breaches (misuse)”

accounts for the exploitation of leaked personal credentials. “Commit unauth. trans.”

stands for the threat of committing unauthorized transactions and “Detect unauth.

trans.” is for detecting unauthorized transactions. The column labelled “Privacy”

indicates whether privacy of user actions (performed with long-term credentials) is

protected under a certain proposal. “Long-term credential protected” covers whether

a user’s long-term (reusable) account credentials are protected by a specific technique.

A (X) means a security protection/feature is provided, and an (7) means the lack

of that protection/feature. NA denotes non-applicability. (All Xand no 7 would be

optimal.) For example, MP-Auth provides protection against compromised hosts,

phishing and committing unauthorized transactions, and safeguards long-term cre-

dentials; but MP-Auth cannot detect unauthorized transactions committed beyond

an MP-Auth-protected session, restrict misuse of breached credentials, or provide

transaction privacy. We acknowledge that although this table may provide useful

high-level overview, this is not comprehensive (e.g., not all protections/features are

included in the table). Details of these protections and security features are provided

in relevant chapters. Also note that, even though we listed IMPECS and localized
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PIN schemes as not providing protection against compromised hosts, they can eas-

ily be incorporated with an MP-Auth-like mechanism for credential input, and thus

largely be made immune to threats from compromised hosts.

Threats addressed Features enabled
Compromised

host
Phishing Data

breaches
(misuse)

Commit
unauth.
trans.

Detect
unauth.
trans.

Privacy Long-term
credential
protected

MP-Auth X X 7 X 7 7 X

Integrity X X X 7 X 7 7

IMPECS 7 7 X NA NA X NA
Localized ID X 7 X X X X X

Localized PIN 7 7 X X 7 NA X

Table 9.1: Summary of our proposals with respect to threats addressed. These pro-
posals have been discussed in previous chapters/sections: MP-Auth in Chapter 3,
integrity verification techniques in Section 4.2, IMPECS in Chapter 5, localized ID
in Chapter 7, and localized PIN in Chapter 8.

9.2 Recapping Thesis Objectives

Problem areas that we address include: (i) compromised hosts; (ii) semantic attacks;

and (iii) repeated misuse of breached credentials. That each by itself is a large

problem area is one reason why real-world security is so difficult. However, our focus

is to explore example instances of real-world security issues, and show that protocols

and techniques can be designed with more realistic assumptions than most academic

proposals. We do not claim to have completely solved security and privacy problems

in our proposals. Ideally, we would like to use these proposals to help reduce the

disconnect between academic proposals and threats faced by millions of everyday

computer users.

Even though the current untrusted environment is a challenge to work with, but

we argue that our example proposals indicate an affirmative answer to Question 1 in

this thesis (“Can we design instances of technologies that can improve security and

privacy in real-world applications, given the current state of compromised computing

environment?”). We do not provide any proof for such a claim, but rely on the

specific solutions that we consider. For example, MP-Auth can enable non-expert

users to safely perform sensitive online tasks such as banking, considering several
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wide-spread threats including keylogging and phishing. IMPECS improves privacy of

personal content on the web. Localized ID proposals address large-scale exploitation

of compromised credentials. See Section 9.1 for more related discussion.

As for Question 2 (“What would be the design criteria of such solutions? Can we

suggest any general guidelines?”), even our limited number of proposals suggest that

generalizing design principles is not straightforward. Solutions to some threats may

be generalized, e.g., threats from keyloggers may be reduced if user input is provided

through a separate device. However, compiling a comprehensive a list of common

criteria for better protocol design seems elusive. We provide our design suggestions

in Section 9.3.

We also set usability as one of our foci in this thesis. We begin with a

questionnaire-based survey of online banking users. There have been numerous user

studies on different security and privacy tools (e.g., PGP [278]), and specific online

tasks (e.g., money transfer [121]). However, instead of considering any particular

security tool or task, we focus on overall system security as deemed required by cur-

rent (banking) practices for doing sensitive online tasks. Our user study apparently

provides a better understanding of current requirements as expected from regular

non-expert users. Among our proposals, ObPwd is informally tested by real users,

and usability seems acceptable as reported in various online forums and the feed-

back received from users (many of whom may be technically-inclined). However, for

other proposals we did not conduct any formal user study within the scope of this

thesis. Such studies may be carried out in the future, and they may uncover us-

ability drawbacks as currently unknown to us. To support usability, we rely on the

simplicity [139] of our mechanisms, familiarity of additional steps or devices used,

and by keeping the number of steps as low as possible. Note that some variants of

our ID number localization and salting/localization of banking PINs proposals are

transparent to end-users, and thus mandate no user testing.

As for restricting threats from the repeated use of compromised credentials, we

explore two widely exploited and practical problems: breached personal records from

service providers’ databases and banking PINs from intermediate switches. While

we cannot claim that our proposals are optimal, they clearly show that indeed using
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existing crypto tools we can design solutions to reduce the burden of defenders of

such information.

9.3 Lessons Learned

Below we summarize important lessons from this thesis which we believe can help

protocol designers achieve more effective and realistic security and privacy goals in

the current untrusted environment.

Minimize requirements for additional security software. Our online banking

user study shows that simply imposing (software) security requirements on non-

expert users and expecting them to follow such best practices has no hope of

success in any practical sense, other than perhaps some (unknown) advan-

tage in shifting liability. Some of these requirements/steps (e.g., up-to-date

patching) may be automated to a certain extent in a corporate/government

environment which is often managed by experienced professionals. For home

users, who make up the largest portion of online users, it is better not to make

their security dependent on running any additional pieces of software programs;

i.e., users should not be expected to install and maintain anything that does

not accomplish any direct user tasks. Software, especially security software,

cannot be easily maintained which is apparent from the fact that most corpo-

rate/government/educational networks are maintained by expert administra-

tors, not by users themselves. As an example incident [258], many users have

been deceived to install malware when the malicious program claimed to be free

anti-virus software. When so many users do not even understand the difference

between malware and anti-virus, it is a fallacy to require them to maintain/run

security software.

Minimize the number of security-sensitive cognitive tasks. Users’ mental

models will remain vulnerable to innovative attacks, i.e., phishing is not

going to go away anytime soon. Even if people become more familiar with

technologies and deception techniques used by cybercriminals, we expect that

threats from such attacks will always be significant. One wide-spread belief
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among security designers is that users can be educated over time. In the HCI

community, which has a longer period of experience to draw on, it is now

commonly accepted that user education is over-stated and often misused as

the solution to many problems. Users may become more aware with time,

but attackers are also evolving their techniques to take advantage of the

new environment. Eliminating current security problems through unrealistic

reliance on user education appears to be chasing a mirage. We believe that our

best bets are: (i) to reduce the number of security related tasks as much as

possible, so that the number of mistakes is reduced; and (ii) to deploy different

layers of security, so that users can recover from their mistakes.

Use existing crypto tools appropriately. Crypto techniques have advanced sig-

nificantly in the past thirty years. However, similar progress is less apparent

in security tools. Some may argue that security is difficult to achieve as there

always remains the possibility of implementation bugs or (unknown) inherent

design flaws. We believe that available crypto tools are generally under-utilized

to advance real-world security. For example, despite their mathematical ele-

gance and seemingly obvious benefits, techniques based on public key cryp-

tography have rarely been utilized to deliver meaningful security for common

applications. However, existing crypto protocols and techniques are inadequate

for achieving practical security as many threats faced by real-world applications

are considered out-of-scope in many traditional crypto threat models. Our pro-

posed protocols heavily rely on existing crypto techniques, but we tweaked those

techniques for the current untrusted environment. These protocols are designed

with weaker assumptions which take practical threats into consideration. We

argue that crypto tools remain valuable for improving real-world security prob-

lems, but must be used differently than traditionally used by crypto experts.

Use non-crypto tools and techniques. Security researchers can evolve their

techniques according to widely available tools and infrastructure. In addition

to traditional crypto tools such as public key encryption, hashing, and mes-

sage authentication code, we also involve personal devices and digital media
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files, cross-checking, IM networks, and existing mag-stripe/chip cards in our

proposed protocols. This makes our designs somewhat hybrid, i.e., a mix of ap-

plied crypto and existing mechanisms. We believe that in the future, e.g., ten

years from now if we re-design our proposals, we should make use of whatever

technologies/infrastructure are available at that time. The lesson here is that

security techniques must evolve and take advantage of other tools of the time.

Design for damage control. We believe that security designers must realize and

accept that attackers are also smart and intelligent human beings, with a wide

variation of resources. We argue that technologies should be designed with a

gracious failure mode, i.e., one that limits harms done to users even when at-

tackers win in the arms-race. It is interesting to note that making the defenders’

failure less catastrophic may adversely affect the attackers. Bullet-proof or fool-

proof technologies are difficult to achieve, and even more difficult to maintain

for a long time. Technologies that restrict attackers and limit (rather than elim-

inate) damages are easier to design and far more cost-effective and realistic to

achieve. As humans, it hurts our egos to accept that our mathematically-proven

design will fail at some point in time. We argue that accepting such failures

and designing our systems accordingly to reduce the damage will help improve

overall real-world security.

Simplicity for easy deployment. In applications involving software, especially

software that evolves and is re-implemented by many parties, simple techniques

have much more chance in getting acceptance in practice than complex tools,

even if the later ones provide better security guarantees. Most academic pro-

posals aim for ideal security, resulting in designs too complex to be deployed in

reality. In contrast, we focus on simple techniques based on existing tools and

infrastructure, which apparently improve real-world security, and thus breaking

the current status quo. Achieving incremental practical security should be prior-

itized over theoretical finesse, if the goal is to impact security in the real world.
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9.4 Open Problems

In this thesis, we consider several real-world threats and provide solutions to spe-

cific problem instances. Below we briefly discuss certain open problems related to

our proposals.

We design MP-Auth for addressing threats from malware in user PC and phish-

ing. MP-Auth protects a user’s sensitive login credentials being captured by malware,

and prevents unsolicited transactions. However, malicious programs can still read all

transactions displayed on a user PC. We prioritize preventing the compromise of

long-term credentials over privacy concerns, but acknowledge that privacy of user

transactions, as well as other account related information is very important. MP-

Auth is designed primarily for financially-sensitive user authentication, and phishing

attacks are also considered in that perspective. However, phishing attacks can tar-

get online services (e.g., social networking sites) which are not directly critical to a

user’s financial activities; information extracted from such attacks can be exploited

for launching other attacks. Also, our proposed localized ID techniques only limit

exploitation of long-term identity numbers. Designing techniques that may help im-

prove privacy of other (breached) personal information remains as a larger and more

elusive open problem.

In terms of protocol analysis, we analyze MP-Auth using a combination of BAN-

like logic, an automated formal verification (software) tool called AVISPA, and a for-

mal proof technique called PCL. Each of these techniques has its own advantages and

limitations, and the security/crypto research community appears to be divided (see

e.g., [143]) on how much confidence one may gain from each individual technique. We

do not have any proof whether combining these three approaches offers any improved

security guarantee, neither do we suggest any particular technique or a combination

of techniques that may provide better security. Thus selecting proof techniques or

confidence building steps for protocol analysis still remain an open problem.

We promote usability as a design goal throughout our proposals in this thesis.

However, we do not conduct any formal user testing of our proposals. Carrying out

such studies properly (e.g., through a combination of lab and field studies with a

realistic user-base) appears to be non-trivial. We possibly cannot expect meaningful
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and consistent usability results from simple (e.g., lab-based) user studies; apparently

many user studies in computer science test learnability instead of usability. (See

Greenberg and Buxton [106] for a critique of the varying landscape of usability evalu-

ation methods.) After learning something new, people’s performance with respect to

usability may change; for example, many people find the text-based editor vi usable,

and many more cannot imagine editing documents without GUI-based Microsoft

Word. On the positive side, current lab-based user studies may reveal obvious flaws in

early prototypes. How to conduct user studies of new technologies that may provide

better and more consistent results? We leave this as an open question. Perhaps, we

need to ask ourselves whether user-testing is something better left for other experts

(e.g., people from psychology).

Another important aspect related to our proposals that has not been discussed

in detail is the economic cost of deployment. Even optimal or nearly optimal (from

a security viewpoint) solutions may appear undesirable to vendors’ financially-driven

viewpoint. Security proponents often present increased customer confidence and trust

in addition to reduced losses for adoption of security solutions by businesses. How-

ever, it is difficult to estimate any economic advantage from such increased consumer

trust. Thus it remains an open question how to make an adequate business case

for solutions that promise better security and privacy for consumers at the (initial)

expense of vendors.
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Appendix A

Online Banking User Survey

In this chapter, we provide the survey questionnaire (as noted in Section 2.4), results

of our user survey, and a discussion on the survey data.

A.1 Survey Questionnaire

Below we list the questions used for the survey reported in Section 2.4.

1. Do you use online banking?
� Yes � No Comments
(If No, you don’t need to answer the following questions.)

2. Which bank do you use for online banking?
� Prefer not to say � RBC � CIBC � TD Canada Trust � Scotiabank
� BMO � PC Financial � Other

3. What browser do you use for online banking?
� Internet Explorer 6 (IE6) � IE7 � Firefox � Mozilla � Netscape �

Opera
� Safari � Konqueror � Other

4. What operating system (OS) do you use for online banking?
� Windows � Mac � Linux � Linux LiveCD � Don’t know
� Other

5. Do you keep your operating system (OS) up-to-date with security patches?
� Yes, by � No � Don’t know Comments

� automatic update
� manual update
� don’t know

6. Do you keep your web browser up-to-date with security patches?
� Yes, by � No � Don’t know Comments

� automatic update
� manual update
� don’t know

7. Do you have the following anti-malware tools in some or all computers you use for online
banking?

(a) Anti-virus: � Yes on all � Yes on some � No � Don’t know
(b) Firewall (software/hardware): � Yes on all � Yes on some � No � Don’t know
(c) Anti-spyware: � Yes on all � Yes on some � No � Don’t know
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8. Do you keep your anti-malware tools up-to-date with updates and security patches?
� Yes, by � No � Don’t know Comments

� automatic update
� manual update
� don’t know

9. On the same computers that you use for online banking:

(a) Do you run file-sharing or P2P software, e.g., bittorrent, eMule, KaZaA?
� Yes � No � Don’t know Comments

(b) Do you use Windows file sharing (e.g., sharing files on LAN, default is ON) on them?
� Yes � No � Don’t know Comments

10. When you are finished with an online banking session which of the following do you do
promptly:

(a) Sign-out from your bank: � Yes � No � Don’t know Comments
(b) Clear the browser cache: � Yes � No � Don’t know Comments
(c) Close the browser: � Yes � No � Don’t know Comments

11. How frequently do you change your online banking password?
� Monthly � Yearly � Don’t change � Don’t know � Other

12. How often do you check your bank statements?
� Weekly � Monthly � Don’t check � Don’t know � Other

13. Did you read your banking agreement, privacy and security policies of your bank?
� Yes � No � Don’t know � Other

14. Do you use a unique password (i.e., not related to your other passwords) for online banking?
� Yes � No � Don’t know � Other

15. Do you use unique personal verification questions and answers for online banking?
� Yes � No � Don’t know � Not applicable � Other

16. All major Canadian banks provide 100% reimbursement guarantee in case of online frauds,
if you comply with their policy. If you know them, state up to three major conditions that
your bank requires you to fulfill to be eligible for such reimbursements.

(a) (b) (c)
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A.2 Survey Data and Discussion

The following tables provide our survey results. We also discuss these findings below

(see Section 2.4 for a summary).

RBC CIBC TD Scotiabank BMO PC Financial Other
No. of users 24 12 28 32 13 17 12

Table A.1: Users per bank

Browser Operating System
IE6/IE7 Firefox/Mozilla Safari Other Windows Mac Linux Linux LiveCD

Users 33 102 7 5 95 13 34 2
% 23 69 5 3 66 9 24 1

Table A.2: Browser and OS usage

Anti-virus Firewall Anti-spyware
Yes No Some Yes No Some Yes No Some

Users 61 27 14 77 14 10 45 35 15
% 60 26 14 76 14 10 47 37 16

Table A.3: Anti-malware usage

OS Browser Anti-malware
Yes No Yes No Yes No

Users 114 12 118 6 85 18
% 90 10 95 5 83 17

Table A.4: Maintaining an up-to-date system

P2P file sharing Windows file sharing
Yes No Yes No

# 62 42 45 56
% 60 40 45 55

Table A.5: File sharing from the banking
PC

Sign-out Clear cache Close browser
Yes No Yes No Yes No

# 99 7 32 66 55 48
% 93 7 33 67 53 47

Table A.6: Actions at the end of a banking
session

Unique passwd Unique PVQs
Yes No Yes No

# 71 32 56 37
% 69 31 60 40

Table A.7: Unique passwords and
PVQs

Read agreement State 3 conditions
Yes No Other None One Two Three

# 31 68 6 93 5 6 6
% 29 65 6 85 5 5 5

Table A.8: Agreement and requirement
awareness

Password change Bank statement check
Within a year Don’t change Within a month Don’t check

No. of users 32 70 100 2
% of users 31 69 98 2

Table A.9: Password change and bank statement check frequency
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Discussion on the survey results. About 93% of participants (115 of 123) reported

using online banking (but note that several users refused to participate in the survey,

potentially biasing this statistics). One participant who does not use online banking,

commented that he/she “read the agreement and thought it [online banking] too

risky; it is impossible to comply with the conditions.” Another wrote “too many

requirements to ensure. I don’t trust the bank to pay up if something goes wrong.”

Other comments for not using online banking were “do not trust it,” “too insecure”

etc. We conducted this survey between Jan. and Apr. 2007.

Table A.1 lists the number of users per bank. Many users reported to have ac-

counts with multiple banks, which implies these users must maintain several unique

passwords, PINs, and (optionally) PVQs. Most participants use Firefox/Mozilla on

Windows (Table A.2) – indicating a technically-biased survey group. Many par-

ticipants use multiple web browsers and/or operating systems for online banking.

Although Firefox/Mozilla is very popular, Scotiabank and PC Financial do not list

it as a recommended browser. All banks support Netscape, but none in our survey

reported using it. Two-thirds of IE users use IE6 even after months of the release of

IE7, i.e., many users do not use the latest secure browser version as recommended for

online banking. (Note that IE7 is a “critical update” according to Microsoft.) Linux

is used by almost a quarter of the participants; two of them use Linux LiveCD. Banks

do not explicitly mention support of Linux (except RBC) or LiveCD, although these

are apparently better choices for secure OS.1 Using LiveCD may seem paranoid, and

shows users’ lack of trust of commodity operating systems (which may be justified as

regular OS installations are commonly infested with several forms of malware). Linux

and Mac users may find it difficult to comply with banks’ anti-malware requirements

as there are only few anti-virus and anti-spyware products for those platforms.

Table A.3 summarizes anti-malware use. Most users (76%) have a firewall on all

machines that they use for online banking, while 10% do not use any firewall and

14% use firewall on some machines. Less than half of the users always use anti-

spyware on machines used for banking. More than a quarter of the participants do

1Although banks recommend Windows and Mac as preferred OS, one analysis [272] reported
that before patched, (out-of-box version), both Windows XP and Mac OS X offer attackers more
remotely exploitable vulnerabilities than Linux variants.
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not use anti-virus at all. Most users also keep their OS, browser and anti-malware up-

dated (Table A.4). We also collected statistics on update mechanisms (auto/manual).

Many users use both automatic and manual updates (we added them together), and

some use automatic notification but manual update. Auto updates are used by 70%

(OS), 77% (browser), and 74% (anti-malware) of the users who keep their systems

updated. One user does not update the OS or browser but relies on a firewall for

protection against network attacks. Another updates “only if forced.” Some users

do not update their firewall as it requires a firmware upgrade of a home router. One

user commented that updating anti-malware is “a pain.” Around half of the users use

P2P software and/or Windows file sharing (Table A.5) against some banks’ recom-

mendations. However, a few users mentioned that they do not run P2P clients while

performing online banking. One user reported to use an admin account for online

banking, and a regular user account for running P2P.

Only few users do not sign-out from online banking when they are done (Ta-

ble A.6). One user even reported to reboot the PC after a banking session. However,

compliance with clearing the browser cache (one-third) or closing the browser (just

over one half) is pretty low. Two users mentioned using the auto clear cache feature

of Firefox. Closing the browser after a banking session is being “rather too paranoid”

according to one user.

A significant portion of the users do not use unique passwords or PVQs (31%

and 40% respectively), and 69% of users do not change their password (Tables A.7

and A.9). Only four users reported changing their banking password every month.

Apparently most users, and more specifically PC Financial users, do not follow the

frequent password change recommendation. One user’s comment about PVQs was

“I hate those questions.” Another commented that “I hope I will remember them”

(cf. [232]).

65% of the participants did not read any banking agreements (Table A.8), although

all banks assume their customers have “have read and agreed” to all related banking

policies when users sign on to online banking. Several users commented that they

only skimmed through these agreements. One mentioned reading the agreements,

“but did not understand [those] at all.” Another reported these agreements and
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policies as “too complicated to understand.” One participant stopped using online

banking as a result of carefully reading the online banking agreement.

85% of the participants (Table A.8) were unable to state any major conditions for

being eligible for the 100% reimbursement guarantee.2 Only six users (5%) could state

three conditions although some of those were not accurate; two of them mentioned to

be aware of these conditions as they were present in our previous class talk. Several

participants answered as “not a clue,” “no idea,” “impossible conditions to achieve”

etc. One mentioned “use their credit card” as a requirement (we did not count such

answers as valid). We believe that participants could easily state three conditions

directly from the questionnaire if they had read online banking agreements; note that

29% of the participants claimed to have read the banking agreements, and thus we

believe participants over-reported this item.

Most users apparently check their bank statements within a month. Several check

their statements weekly or even daily, although we did not ask “how diligently.” Two

participants mentioned not checking their statements. Note that all banks require

users to check statements carefully and to report any errors promptly. If a fraudulent

transaction is not reported within a certain period (generally 30 days), banks may

refuse any reimbursement.

2Some participants may have simply been too lazy to answer; we cannot tell as we held no
follow-up interviews.



Appendix B

Security Analysis of MP-Auth

In addition to the preliminary security analysis in Section 3.3, in this chapter we

analyze MP-Auth using the AVISPA [14] protocol analysis tool, and the Protocol

Composition Logic (PCL) [64, 117, 216] proof technique.

B.1 AVISPA Test Code

We include here results of our AVISPA [14] analysis of an idealized version (see below)

of the MP-Auth protocol from Section 3.2.

Protocol Purpose

MP-Auth attempts to achieve authentication and key exchange between a mobile

device M and a remote server S. More specifically, the protocol goals are (see Sec-

tion 3.2, Table 3.1 for notation):

• M and S achieve mutual authentication (using P and ES)

• M and S establish a secret (symmetric) session key for later use

How We Tested Using AVISPA

We used AVISPA Web interface available at http://www.avispa-project.org/

web-interface/. We copied the HLPSL code (below) to the Web interface, and

ran the relevant tests. Applicable tests to MP-Auth are: On the Fly Model Checker

(OFMC), Constraint Logic-based Attack Searcher (CL-AtSe), and SAT-based Model

Checker (SATMC). The Tree Automata based on Automatic Approximations for

Analysis of Security Protocols (TA4SP) results are omitted from the AVISPA output

below as the TA4SP back-end was not supported for our setup.
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Idealization of MP-Auth

In MP-Auth, the browser B acts like a relaying party between M and S during the

authentication and key exchange phase. Therefore B was removed from our ideal-

ized HLPSL model (and thus also, the SSL encryption between B and S). Also,

the human user U was merged with M , as U only provides the password P to M .

Hence the idealized MP-Auth is a two-party protocol, which is much simpler to an-

alyze for AVISPA back-end protocol analyzers. As we have omitted party B, session

ID verification is not required. The transaction integrity confirmation messages use

KMS established in the authentication phase. The confirmation messages have not

been included in our model; we assume the secrecy of KMS implicitly protects those

messages. The idealized version of MP-Auth is given below.

M <- S: Rs

M -> S: {Rm}_Es.{f(Rs).M.P}_Kms, where Kms = f(Rs.Rm)

M <- S: {f(Rm)}_Kms

Results of the AVISPA Tests

No attacks have been reported by AVISPA on the idealized protocol. Results from

the AVISPA back-end protocol analyzers are given below.

OFMC.

% OFMC

% Version of 2006/02/13

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

/home/avispa/web-interface-computation/./tempdir/workfileP2NEkh.if

GOAL

as_specified

BACKEND
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OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 2.58s

visitedNodes: 798 nodes

depth: 10 plies

CL-AtSe.

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

TYPED_MODEL

PROTOCOL

/home/avispa/web-interface-computation/./tempdir/workfileP2NEkh.if

GOAL

As Specified

BACKEND

CL-AtSe

STATISTICS

Analysed : 5548 states

Reachable : 3529 states

Translation: 0.01 seconds

Computation: 0.14 seconds

SATMC.

SUMMARY

SAFE

DETAILS

STRONGLY_TYPED_MODEL

BOUNDED_NUMBER_OF_SESSIONS

BOUNDED_SEARCH_DEPTH
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BOUNDED_MESSAGE_DEPTH

PROTOCOL

workfileP2NEkh.if

GOAL

%% see the HLPSL specification..

BACKEND

SATMC

COMMENTS

STATISTICS

attackFound false boolean

upperBoundReached true boolean

graphLeveledOff 4 steps

satSolver zchaff solver

maxStepsNumber 11 steps

stepsNumber 5 steps

atomsNumber 1196 atoms

clausesNumber 5705 clauses

encodingTime 1.12 seconds

solvingTime 0.1 seconds

if2sateCompilationTime 0.21 seconds

ATTACK TRACE

%% no attacks have been found..

HLPSL Specification

role mobile (M, S: agent,

Es: public_key,

F, KeyGen: hash_func,

P: text,

SND, RCV: channel (dy)) played_by M def=

local State : nat,

Rm, Rs: text,

Kms: message
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init State := 1

transition

2. State = 1 /\ RCV(Rs’) =|>

State’:= 3 /\ Rm’ := new()

/\ Kms’:= KeyGen(Rs’.Rm’)

/\ SND({Rm’}_Es.{F(Rs’).M.P}_Kms’)

/\ witness(M,S,rm,Rm’)

/\ secret(Kms’, sec_kms1, {M,S})

3. State = 3 /\ RCV({F(Rm)}_Kms) =|>

State’:= 5 /\ request(M,S,rs,Rs)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

role server(S: agent,

Es: public_key,

F, KeyGen: hash_func,

Agents: (agent.text) set,

SND, RCV: channel (dy)) played_by S def=

local State : nat,

Rm, Rs, P: text,

Kms: message,

M: agent

init State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’:= 2 /\ Rs’ := new()
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/\ SND(Rs’)

2. State = 2 /\ RCV({Rm’}_Es.{F(Rs).M’.P’}_KeyGen(Rs.Rm’))

/\ in(M’.P’, Agents) =|>

State’:= 4 /\ Kms’ := KeyGen(Rs.Rm’)

/\ SND({F(Rm’)}_Kms’)

/\ secret(Kms’, sec_kms2, {M’,S})

/\ request(S,M’,rm,Rm’)

/\ witness(S,M’,rs,Rs)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

role session(M, S: agent,

Es: public_key,

F, KeyGen: hash_func,

P: text,

Agents: (agent.text) set) def=

local SS, RS, SM, RM: channel (dy)

composition

mobile (M,S,Es,F,KeyGen,P,SM,RM)

/\ server (S,Es,F,KeyGen,Agents,SS,RS)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

role environment() def=

local Agents: (agent.text) set

const m, s: agent,

es: public_key,
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f, keygen: hash_func,

rm, rs, sec_kms1, sec_kms2 : protocol_id,

pm, pi: text

init Agents := {m.pm, i.pi}

intruder_knowledge = {m,s,f,keygen,pi,es,rs}

composition

session(m,s,es,f,keygen,pm,Agents)

/\ session(m,s,es,f,keygen,pm,Agents)

/\ session(i,s,es,f,keygen,pi,Agents)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

goal

secrecy_of sec_kms1, sec_kms2

authentication_on rm

authentication_on rs

end goal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

environment()
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B.2 A PCL Proof Sketch for MP-Auth

In this section we discuss a proof sketch of MP-Auth using the Protocol Composition

Logic (PCL) [64, 117, 216]. We assume that readers are familiar with the PCL proof

system. See Appendix B.2.5 for a quick reference to frequently-used PCL axioms,

rules, and definitions. We first outline the PCL setup for MP-Auth, and then provide

the PCL analysis of mutual authentication and key secrecy.

B.2.1 PCL Setup

For the proof here, we use the following simplified version of MP-Auth. As the

browser in MP-Auth only forwards messages between the web server and personal

device, we remove the browser’s role here. For simplification of the proof, we also

replace {f(RM)}KMS
with [1]KMS

(i.e., now the proof of ownership of the session

key KMS is provided through a MAC instead of an encryption). Also, to reduce

confusion between PCL roles (generally upper case) and variables (generally lower

case), we make necessary case transformation here.

M ← S : IDS.rs

M → S : {rm}ES
.{f(rs).IDU .P}kms

, where kms = f(rs.rm)

M ← S : [1]kms

This simplified protocol is defined by ‘roles’ {Init, Resp} in Fig. B.1, written using

the protocol programming language as used in PCL. Each role specifies a sequence of

actions to be executed by an honest principal in MP-Auth. An honest principal can

execute one or more copies of its own role concurrently. Note that, roles are asym-

metric in MP-Auth; for example, the server and client authenticate each other using

a public key and a password, respectively, and an honest server does not impersonate

a client. Here, a thread X refers to a principal X̂ executing a particular instance of a

role. Actions inside a thread include nonce generation, encryption, hash calculation,

network communication and pattern matching (e.g., decryption). Each thread con-

tains one or more ‘basic sequences.’ A basic sequence is a series of actions excluding

any blocking actions (e.g., receive) except as the first action. Each role in MP-Auth
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consists of two basic sequences. PCL proofs use modal formulas of the form ψ[P ]Xϕ

which informally means that if X starts from a state where ψ holds, and executes the

program P , then the resulting state is guaranteed to hold the security property ϕ,

irrespective of the actions of a Dolev-Yao attacker and other honest principals. Let

idp := 〈M̂.ID, M̂.P 〉 (i.e., the userid-password pair of the user operating the mobile

device M̂), and ids := Ŝ.ID (the server’s ID).

Init =(M̂, S, idp, ids) [

new rs;

send Ŝ.M̂ .ids.rs;

receive M̂.Ŝ.t;

match t/〈encrm, encidp〉;

rm := pkdec encrm, Ŝ;

kms := hash rs.rm;

decval := symdec encidp, kms;

match decval/〈hrs′, idp〉;

match idp/〈M̂.ID, M̂.P 〉;

hrs := hash rs;

match hrs′/hrs;

mac1 := hash 1, kms;

send Ŝ.M̂ .mac1;

]S

Resp =(M, idp) [

receive Ŝ.M̂ .ids.rs;

new rm;

encrm := pkcnc rm, Ŝ;

hrs := hash rs;

kms := hash rs.rm;

symterm := hrs.idp;

encidp := symenc symterm, kms;

send M̂.Ŝ.encrm.encidp;

receive Ŝ.M̂ .mac1;

verifyhash mac1, 1, kms;

]M

Figure B.1: MP-Auth server (Init) and client (Resp) programs

Let K = {k̄Ŝ}, the private key of server Ŝ. The public and private key pair for Ŝ

is (kŜ, k̄Ŝ). We use the following abbreviations for MP-Auth messages (see Fig. B.1

for terms definitions):

msg1 := Ŝ.M̂ .ids.rs

msg2 := M̂.Ŝ.encrm.encidp

msg3 := Ŝ.M̂ .mac1
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Invariants. The ‘honesty’ rule in PCL is “an invariance rule for proving properties

about the actions of principals that executes roles of a protocol” [64]. An honest

principal in PCL is the one who follows one or more roles of the protocol. The

honesty rule is used to reason in a deductible manner about the actions of the other

party in the protocol. Formulas derived by the application of this rule are called

‘invariants’. We use the following invariants of MP-Auth for our authentication and

secrecy proofs.1

Γmp1 Honest(Ŝ) ∧ Send(S,msg) ⊃ ¬Contains(msg, idp)

Γmp2 Honest(M̂) ⊃ PkEnc(M, rm, k
Ŝ
) ⊃

(Receive(M,msg1) < New(M, rm) < PkEnc(M, rm, k
Ŝ
) <

Send(M,msg2))

Γmp3 Honest(M̂) ∧ Receive(M,msg1) ∧ Send(M,msg2) ⊃
FirstSend(M, rm,msg2)

Γmp4 Honest(M̂) ∧ Send(M,msg) ⊃ ¬Contains(msg,HASH[kms](1))

Γmp5 Honest(Ŝ) ∧ New(S, rs) ∧ Send(S,msg1) ⊃ FirstSend(S, rs,msg1)

Γmp1 states that the server Ŝ does not send any message containing idp. This

essentially prohibits a server to execute the role of a client (mobile device). Otherwise,

Ŝ could impersonate M̂ which is false given that Ŝ is honest. Γmp4 implies that an

honest M̂ does not send any message containing HASH [kms](1), although M̂ also

knows kms. Only the server Ŝ sends such a term to prove the knowledge of kms.

Secrecy of password. As assumed in MP-Auth, the userid-password pair idp is

unique for each user, and P is a shared secret between M and S. This assumption is

formalized as follows.

φsecp ::= Honest(M̂) ∧ Honest(Ŝ) ∧ Has(Ẑ, idp) ⊃ (Ẑ = M̂ ∨ Ẑ = Ŝ)

Additionally, we now show that idp is not sent in the clear by any role (Init, Resp)

of MP-Auth. The proof is straightforward: Ŝ does not send any message with idp,

and M̂ sends out idp only encrypted under kms. Assume that K′ = {kms}, and kms

1For the application of the honesty rule, the invariants must be preserved by all the basic sequences
in MP-Auth. These proofs are straightforward, and thus we omit them here.
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is the secret session key shared between M̂ and Ŝ (see Section B.2.3).

SAF2 SafeMsg(Esym[kms](hrs.idp), idp,K
′) (B.1)

B.1,P1, S1, NET3 SafeNet(idp,K′)[Resp]M SendsSafeMsg(M, idp,K′) (B.2)

Γmp1,SAF0 SafeNet(idp,K′)[Init]S SendsSafeMsg(S, idp,K′) (B.3)

From B.2, B.3, and the application of the NET rule and the POS axiom, we conclude

that SafeNet(idp,K′) is always true, and Honest(M̂) ∧ Honest(Ŝ) ∧ Has(Ẑ, idp) ⊃

(Ẑ = M̂ ∨ Ẑ = Ŝ).

Security properties of MP-Auth. MP-Auth requires the following authentication

and secrecy properties to be satisfied by any successful protocol run.

1. Server-side authentication. At the end of a protocol run, both parties must agree

on each other’s identity, protocol completion status, and the secret session key

generated from exchanged nonces. The authentication property of MP-Auth is

formulated in terms of matching conversations [29]. The basic idea is that on

execution of the server role (Init), we prove the existence of the intended client

role (Resp) with a corresponding view of the messages exchanged. Matching

conversations for server Ŝ and corresponding client M̂ is formulated as follows:

φauth,Ŝ ::= Honest(M̂) ∧ Honest(Ŝ) ⊃ ∃M.Has(M, kms)∧

((Send(S,msg1) < Receive(M,msg1))∧

(Receive(M,msg1) < Send(M,msg2))∧

(Send(M,msg2) < Receive(S,msg2))∧

(Receive(S,msg2) < Send(S,msg3)))

Note that the server receives no acknowledgement for the last message sent;

i.e., the corresponding receive action is not a part of the authentication guar-

antee.

2. Secrecy of kms. The secret session key Kms must not be known to any prin-

cipal other than the server and client. This secrecy property of MP-Auth is
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formulated as follows:

φseckms ::= Honest(M̂) ∧ Honest(Ŝ) ∧ Has(Ẑ, kms) ⊃ (Ẑ = M̂ ∨ Ẑ = Ŝ)

3. Client-side authentication. In MP-Auth, the client and server roles are not sym-

metric; i.e., the server is authenticated by showing the proof of ownership of the

decryption key corresponding to the public key as used by the client role. On

the other hand, the client prove its identity to the server by showing the knowl-

edge of the shared secret P . Thus the client’s view of mutual authentication is

different than that of the server. For client M̂ , communicating with server Ŝ,

matching conversations is defined as follows.

φauth,M̂ ::= Honest(M̂) ∧ Honest(Ŝ) ⊃ ∃S.Has(S, kms)∧

((Send(S,msg1) < Receive(M,msg1))∧

(Receive(M,msg1) < Send(M,msg2))∧

(Send(M,msg2) < Receive(S,msg2))∧

(Receive(S,msg2) < Send(S,msg3))∧

(Send(S,msg3) < Receive(M,msg3)))

B.2.2 Server-side Authentication

We use the secrecy of password (φsecp, Section B.2.1), protocol invariants Γmp1,Γmp2

and Γmp3, to argue that there must be a thread of client M̂ which must have performed

certain actions corresponding to the client role Resp (see Fig. B.1). Properties of

nonces and encryption are also used. The proof sketch is summarized by the following

steps below. Each step consists of three components: (i) the axioms, invariants

and/or previous steps used, (ii) actions performed, and (iii) the resulting predicate.

For example, the first step of the proof below uses axioms AA1, P1, AA4 (see

Section B.2.5) to establish that the server performed certain actions in sequence.
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AA1, P1, AA4 [Init]S Send(S,msg1) < Receive(S,msg2) < Send(S,msg3) (B.4)

AA1 [receive M̂.Ŝ.t]S Receive(S, M̂ .Ŝ.t) (B.5)

AR1 Receive(S, M̂ .Ŝ.t)[match t/〈encrm, encidp〉]S

Receive(S, M̂ .Ŝ.encrm.encidp) (B.6)

REC Receive(S, M̂ .Ŝ.encrm.encidp) ⊃ Has(S, M̂ .Ŝ.encrm.encidp) (B.7)

PROJ Has(S, M̂ .Ŝ.encrm.encidp) ⊃ Has(S, encrm) ∧ Has(S, encidp) (B.8)

AR3 Has(S, encrm) [rm := pkdec encrm, Ŝ; ]S Has(S,E[k
Ŝ
](rm)) (B.9)

DEC Has(S,E[k
Ŝ
](rm)) ⊃ Has(S, rm) (B.10)

B.5, B.6, B.7, B.8,

B.9, B.10,S1, P1 [Init]S Has(S, rm) (B.11)

AA1 [new rs]S New(S, rs) (B.12)

ORIG New(S, rs) ⊃ Has(S, rs) (B.13)

B.12, B.13,S1, P1 [Init]S Has(S, rs) (B.14)

HASH0’ [kms := hash rs.rm]S Has(S, kms) (B.15)

AR3 Has(S, encidp) [decval := symdec encidp, kms; ]S

Has(S,Esym[kms](decval)) (B.16)

AR1 Has(S,Esym[kms](decval)) [match decval/〈hrs′, idp〉; ]S

Has(S,Esym[kms](hrs′.idp)) (B.17)

ENC4 SymDec(S,Esym[kms](hrs′.idp), kms) ⊃ ∃Y.SymEnc(Y, hrs′.idp, kms)

(B.18)

ENC3 SymEnc(Y, hrs′.idp, kms) ⊃ Has(Y, hrs′.idp) ∧ Has(Y, kms) (B.19)

PROJ Has(Y, hrs′.idp) ⊃ Has(Y, hrs′) ∧ Has(Y, idp) (B.20)

B.20, φsecp Has(Y, idp) ⊃ Ŷ = M̂ ∨ Ŷ = Ŝ (B.21)
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Γmp1, B.16, B.17, B.18,

B.19, B.20, B.21,S1, P1 [Init]S ∃Y.Has(Y, idp) ⊃ Ŷ = M̂ (B.22)

Γmp2, B.22 [Init]S ∃M.(Receive(M,msg1) < Send(M,msg2)) (B.23)

AN3, FS1, S1, P1 [Init]S FirstSend(S, rs,msg1) (B.24)

B.22, B.24,FS2 [Init]S Receive(M,msg1) ∧ M̂ 6= Ŝ

⊃ Send(S,msg1) < Receive(M,msg1) (B.25)

AA1, S1, P1 [Init]S Receive(S,msg2) (B.26)

Γmp3, B.26,FS2 [Init]S Honest(M̂ ) ∧ M̂ 6= Ŝ ∧ Receive(M,msg1)

∧ Send(M,msg2) ⊃ Send(M,msg2) < Receive(S,msg2)

(B.27)

B.4, B.23, B.25, B.27 [Init]S Honest(M̂ ) ∧ M̂ 6= Ŝ ⊃ φ
auth,Ŝ

(B.28)

B.2.3 Secrecy of Session Key

We show that honest principals do not perform any actions that compromise the

secrecy of session key kms through induction on the basic protocol sequences (see below

for definitions of Resp1, Resp2, Init1, and Init2). Each induction step informally

states that if kms has not already been compromised at the beginning of a basic

sequence (i.e., SafeNet(kms,K) is true), then the actions performed in that basic

sequence by a thread X do not compromise kms (i.e., SendsSafeMsg(X, kms,K) is

true). For the basic sequence Resp2, the proof is straightforward: there is no send

action. For Init2, the terms sent out by Ŝ do not contain kms in the clear (kms is

used as a MAC key).

Let [Resp2]M ′ : [receive Ŝ′.M̂ ′.mac1′;

verifyhash mac1′, 1, k′

ms; ]M ′

S1, NET1 SafeNet(kms,K)[Resp2]M ′ SafeMsg(Ŝ′.M̂ ′.mac1′, kms,K) (B.29)

B.29,NET2 SafeNet(kms,K)[Resp2]M ′ SendsSafeMsg(M ′, kms,K) (B.30)
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Let [Init2]S′ : [receive M̂ ′.Ŝ′.t′;

match t′/〈encrm′, encidp′〉;

r′m := pkdec encrm′, Ŝ′;

k′

ms := hash r′s.r
′

m;

decval′ := symdec encidp′, k′

ms;

match decval′/〈hrs′′, idp′〉;

match idp′/〈M̂ ′.ID, M̂ ′.P 〉;

hrs′ := hash r′s;

match hrs′′/hrs′;

mac1′ := hash 1, k′

ms;

send Ŝ′.M̂ ′.mac1′; ]S′

SAF5 SafeMsg(HASH[k′

ms](1), kms,K) (B.31)

B.31,S1, NET3 SafeNet(kms,K)[Init2]S′ SendsSafeMsg(S′, kms,K) (B.32)

The session key kms is computed from two nonces, rs and rm, where rs is sent in

the clear. Thus the secrecy of kms lies on the secrecy of rm. For the basic sequences

that send out nonces, we need to show that the nonces are not equal to rm, or

that rm is encrypted under the public key of Ŝ. These arguments are formulated as

Φ := Φ1
rm
∧ Φ2

rm
.

Φ1
rm

: ∀M, Ẑ.New(M, rm) ∧ PkEnc(M, rm, kẐ) ⊃ Ẑ = Ŝ

Φ2
rm

: ∀M, New(M, rm) ∧ Send(M,msg) ⊃ ¬ContainsOpen(msg, rm)

The predicate ContainsOpen(m, a) asserts that a can be obtained from m (directly or

a series of unpairings only) without any decryption. Φ1
rm

and Φ2
rm

can be established

from invariant Γmp2: from thread M ’s point of view, it knows that it has freshly

generated the nonce rm, and has only sent rm out encrypted with only principal Ŝ’s

public key.
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Let [Resp1]M ′ : [receive Ŝ ′.M̂ ′.ids′.r′s; new r′m;

encrm′ := pkcnc r′m, Ŝ
′;

hrs′ := hash r′s; k
′

ms := hash r′s.r
′

m;

symterm′ := hrs′.idp′;

encidp′ := symenc symterm′, k′ms;

send M̂ ′.Ŝ ′.encrm′.encidp′; ]M ′

Case : r′m 6= rm (B.33)

S1, SAF3 [Resp1]M ′ SafeMsg(Epk[Ŝ ′](r′m), rm,K) (B.34)

B.34,NET3 SafeNet(rm,K)[Resp1]M ′ SendsSafeMsg(M ′, rm,K) (B.35)

Case : r′m = rm (B.36)

S1, P1 [Resp1]M ′ PkEnc(M ′, rm, kŜ′) (B.37)

B.37,Φ1
rm

[Resp1]M ′ Ŝ ′ = Ŝ (B.38)

B.37, B.38,SAF3 [Resp1]M ′ SafeMsg(Epk[Ŝ](rm), rm,K) (B.39)

B.39,NET3 SafeNet(rm,K)[Resp1]M ′ SendsSafeMsg(M ′, rm,K) (B.40)

Let [Init1]S′ : [new r′s;

send Ŝ ′.M̂ ′.ids′.r′s; ]S′

Φ2
rm

[Init1]S′ r′s 6= rm (B.41)

B.41,SAF0 [Init1]S′ SafeMsg(Ŝ ′.M̂ ′.r′s, rm,K) (B.42)

B.42,NET3 SafeNet(rm,K)[Init1]S′ SendsSafeMsg(S ′, rm,K) (B.43)

As kms is computed from rm and rs, we can say SafeNet(rm,K) ⊃ SafeNet(kms,K).

Thus, from B.30, B.32, B.35, B.40, B.43 and the application of the NET rule and the

POS axiom, we conclude that SafeNet(kms,K) is always true, and Φ∧Honest(M̂)∧

Honest(Ŝ) ∧ Has(Ẑ, kms) ⊃ (Ẑ = M̂ ∨ Ẑ = Ŝ).
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B.2.4 Client-side Authentication

We use protocol invariants Γmp4 and Γmp5, secrecy of the server’s private key, and

properties of nonces to argue that there must be a thread of server Ŝ which must

have performed certain actions corresponding to the server role Init (see Fig. B.1).

The proof sketch is summarized by the following steps below.

AA1, P1, AA4 [Resp]M Receive(M, msg1) < Send(M, msg2)

< Receive(M, msg3) (B.44)

AA1 [receive Ŝ.M̂ .mac1]M Receive(M, Ŝ.M̂ .mac1) (B.45)

B.45,S1, P1 [Resp]M Receive(M, Ŝ.M̂ .mac1) (B.46)

B.46,HASH3’ [Resp]M ∧ Honest(M̂) ⊃ ∃X.Computes(X, HASH [kms](1))

∧ Send(X, msg) ∧ Contains(msg, HASH [kms](1)) (B.47)

B.46, B.47 [Resp]M ∧ Honest(M̂) ⊃ ∃X.(Receive(M, msg3) < Send(X, msg3))

(B.48)

HASH2 [verifyhash mac1, 1, kms]M mac1 = HASH [kms](1) (B.49)

B.49,S1, P1 [Resp]M mac1 = HASH [kms](1) (B.50)

B.50, Γmp4,SEC, DEC [Resp]M ∧ Honest(Ŝ) ⊃ ∃X.((Send(X, msg3) < Receive(X, msg2))

∧ PkDec(X, E[k
Ŝ
](rm), k̄

Ŝ
)) ⊃ (X̂ = Ŝ ∧ Has(S, rm)) (B.51)

S1, P1, AN3, FS1 [Resp]M FirstSend(M, rm, msg2) (B.52)

B.52,FS2 [Resp]M Receive(S, msg2) ∧ M̂ 6= Ŝ

⊃ Send(M, msg2) < Receive(S, msg2) (B.53)

Γmp5,AA1, FS2 [Resp]M Receive(M, msg1) ∧ M̂ 6= Ŝ

⊃ Send(S, msg1) < Receive(M, msg1) (B.54)

B.44, B.48, B.51,

B.53, B.54 [Resp]M ∧ Honest(S) ∧ M̂ 6= Ŝ ⊃ φauth,M (B.55)

B.2.5 Frequently-used PCL Axioms, Rules, and Definitions in MP-Auth

The PCL axioms and rules that we use here have been proposed previously [64,

117, 216, 144]. Some of these axioms are natural logical assumptions (also known as

first order logical axioms, e.g., creation of a nonce implies possession of that nonce).

Others are idealized cryptographic axioms which provide formal logic equivalent of
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standard cryptography. (Note that, in reality, most cryptographic primitives do not

achieve idealized cryptographic functionality.) In the axioms here, a denotes an

action (e.g., send, receive, new, pkenc), and a denotes the corresponding predicate

in PCL. Axiom AA4 states that after thread X executes actions a, ..., b in a sequence,

the action predicates a, ..., b are temporarily ordered in the corresponding sequence.

Axiom SEC states that if a principal X̂ is honest, and a thread Y of another principal

Ŷ can decrypt a term encrypted with the public key of X̂ then principals X̂ and

Ŷ must be the same (∧ is logical conjunction and ⊃ can be read as implies). We

introduce a new axiom HASH0’ which refers to the fact that if principal X computes

the hash of a value then X also possesses the computed hash. Table B.1 lists the

commonly used axioms, rules, and definitions in our analysis.
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AA1 φ[a]X a

AA4 φ[a; ...; b]X a < ... < b

AN3 φ[new x]X Fresh(X, x)

REC Receive(X, x) ⊃ Has(X, x)
ENC Has(X, x) ∧ Has(X, K) ⊃ Has(X, E[K](x)
PROJ Has(X, x.y) ⊃ Has(X, x) ∧ Has(X, y)
DEC Has(X, E[K](x)) ∧ Has(X, K) ⊃ Has(X, x)

AR1 a(x)[match q(x)/q(t)]X a(t)
AR3 a(x)[y := dec x, K]X a(E[K](y))

SEC Honext(X̂) ∧ Decrypt(Y, E[k
X̂

](x)) ⊃ (Ŷ = X̂)

G4 φ
θ[P ]Xφ

S1
φ1[P ]Xφ2 φ2[P ′]Xφ3

φ1[PP ′]Xφ3

P1 Persist(X, t)[a]X Persist(X, t) for Persist ∈ {Has, Send, Receive}

FS1 Fresh(X, t)[send t′]X FirstSend(X, t, t′), where t ⊆ t′

FS2 FirstSend(X, t, t′) ∧ a(Y, t′′) ⊃ Send(X, t) < a(Y, t′′), where X 6= Y and t ⊆ t′′

ENC3 Enc(X, m, k) ⊃ Has(X, k) ∧ Has(X, m), where Enc ∈ {SymEnc, PkEnc}
PENC4 PkDec(X, E[k](m), k̄) ⊃ ∃Y.PkEnc(Y, m, k)
ENC4 SymDec(X, Esym[k](m), k) ⊃ ∃Y.SymEnc(Y, m, k)

HASH3’ Receive(X, HASH [k](x)) ⊃
∃Y.Computes(Y, HASH [k](x)) ∧ Send(Y, m) ∧ Contains(m, HASH [k](x))

HASH2 φ[verifyhash m′, m, k]X m′ = HASH [k](m)
HASH0’ Computes(X, HASH(m)) ⊃ Has(X, HASH(m))

SAF0 ¬SafeMsg(s, s,K) ∧ SafeMsg(x, s,K), where x is an atomic term, and x 6= s
SAF2 SafeMsg(Esym[k](m), s,K) ≡ SafeMsg(m, s,K) ∨ k ∈ K
SAF3 SafeMsg(Epk[k](m), s,K) ≡ SafeMsg(m, s,K) ∨ k̄ ∈ K
SAF5 SafeMsg(HASH [k](m), s,K)

SendsSafeMsg(X, s,K) ≡ ∀m.(Send(X, m) ⊃ SafeMsg(m, s,K))
SafeNet(s,K) ≡ ∀X.SendsSafeMsg(X, s,K)

NET1 SafeNet(s,K)[receive m]X SafeMsg(m, s,K)
NET2 SendsSafeMsg(X, s,K)[a]X SendsSafeMsg(X, s,K), where a is not a send

NET3 SendsSafeMsg(X, s,K)[send m]X SafeMsg(m, s,K) ⊃ SendsSafeMsg(X, s,K)

POS SafeNet(s,K)∧Has(X, m)∧¬SafeMsg(m, s,K) ⊃ ∃k ∈ K.Has(X, k)∨New(X, s)

Table B.1: Frequently-used PCL axioms, rules, and definitions



Appendix C

Review of Earlier PIN Cracking Attacks

For convenience to the reader and for reference within, here we summarize several

representative attacks from Berkman and Ostrovsky [32]. For reasons of brevity, we

omit how some specific assumptions required by these attacks are met, as well as any

efficiency analysis of these attacks (e.g., how many API calls are required for a given

attack to succeed).

C.1 Translate PIN Block Attacks

We review the translate-only API attack which requires an attacker to gener-

ate/collect Encrypted PIN Blocks (EPBs) of all possible PINs, and access to the

translate API function. This attack reveals plaintext PINs, and can be applied at a

switch or verification facility. The steps in the attack are as follows.

1. Let Ax be any attacker chosen PAN.

2. Attackers collect/generate 10, 000 EPBs which pack all possible PINs in any

ISO format (i.e., the format and PAN of those EPBs are immaterial). Suppose

i is any 4-digit PIN, and E ′

i packs i in any ISO format.

3. Translate all 10, 000 EPBs to ISO-0 EPBs using Ax as the PAN. Assume Ei is

the resulting EPB from the translation API.

Ei = TranslateISO−0(E
′

i, Ax),where i ∈ {0000 . . . 9999}.

Now Ei packs PIN i in the ISO-0 format (with respect to Ax). Make a table

with the resulting EPBs and PINs, i.e., (Ei, i).

4. For any customer EPB, Ec, calculate

Et = TranslateISO−0(TranslateISO−1(Ec), Ax).

204
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Here, an attacker first converts the customer EPB to ISO-1 (which unlinks a

PIN with the corresponding customer PAN), and then uses this result with the

attacker’s chosen PAN to generate an EPB in ISO-0 format.

5. Locate Et in the table generated at step 3. The corresponding PIN is the PIN

packed inside Ec.

C.2 Attacks Exploiting the IBM Calculate-Offset API

The steps in the IBM Calculate-Offset attack at a verification facility and intermediate

switch are now outlined.

Calculate-offset attacks at a verification facility. Here the attacker is someone

at a verification facility, e.g., an application developer. The steps in the attack are as

follows.

1. Generate an EPB Ea that packs a known Final PIN PFa.

2. For any customer account, Ac, calculate:

offset = CalculateOffset(Ea, Ac).

If the customer’s Natural PIN is PNc, then offset = PFa − PNc. Here ‘−’ is

digit by digit modulo 10 subtraction; offset and PFa are known to the attacker.

Thus the attacker learns the customer’s Natural PIN. If the attacker can read

the plaintext offset value of the customer, then the customer’s Final PIN is

revealed.

Calculate-offset attack at a switch. The steps of a calculate-offset attack at a

switch are as follows.

1. Generate an EPB Ea that packs a known Final PIN PFa.

2. Select any (random) PAN Ax.

3. Assume that attackers do not have access to the real issuer key at a switch. How-

ever, they can calculate a dummy offset using a dummy issuer key (i.e., whatever

issuer key is available in the switch’s HSM):
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offsetd1 = CalculateOffset(Ea, Ax)

i.e., offsetd1 = PFa−PNxd. Here PNxd is the dummy Natural PIN with respect

to the account Ax. So now PNxd can be calculated as both PFa and offsetd1

are known.

4. For any customer EPB Ec which packs the customer’s Final PIN PFc, calculate:

offsetd2 = CalculateOffset(Ec, Ax)

i.e., offsetd2 = PFc − PNxd. The value of PNxd is known from the previous

step, thus revealing the customer’s Final PIN.

C.3 Attacks Exploiting the VISA PIN Verification Value (PVV)

The steps in the VISA PVV attack at a verification facility and intermediate switch

are outlined below.

PVV attacks at a verification facility. Attackers need an EPB with a known

PIN, and may need write access to the issuer’s PVV database. Again, like offset

values, PVVs are considered security insensitive. The attack is as follows.

1. Generate an EPB Ea which packs a known Final PIN PFa.

2. For any customer PAN Ac,

pvv = CalculatePVV(Ea, Ac).

3. Use the calculated PVV with known PIN to create new bank cards (this may

also require updating the PVV database at the verification facility).

PVV attacks at a switch. Using 10,000 EPBs which pack all possible PINs,

attackers can reveal candidate PINs (less than two, on average) for any customer as

follows. Note that the attack HSM here does not have access to the real issuer PVV

key; the attack succeeds if any PVV key is available.
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1. Choose any PAN Ax.

2. Generate EPBs for all possible PINs; assume Ei packs PIN i, where i ∈

{0000 . . .9999}.

3. For all EPBs generated in step 2, calculate PVVs with respect to Ax:

pvvi = CalculatePVV(Ei, Ax).

Now sort the values of pvvi and build a table of entries (pvvi, i). More than one

(on average less than two) PINs may be indexed by a given PVV.

4. For any customer EPB Ec, compute

pvv = CalculatePVV(Ec, Ax).

Use the resulting PVV as an index to the table built in step 3. The correspond-

ing PIN is the customer’s Final PIN PFc; in case of multiple PIN values indexed

by pvv, PFc is one of those values; building the table using a different Ax may

resolve collisions.


