
Leaky Kits: The Increased Risk of Data Exposure
from Phishing Kits

Bhaskar Tejaswi, Nayanamana Samarasinghe, Sajjad Pourali, Mohammad Mannan, Amr Youssef
Concordia University
Montreal, Canada

{b tejasw,n samara,s poural,mmannan,youssef}@ciise.concordia.ca

Abstract—Phishing kits allow adversaries with little or no
technical experience to launch phishing websites in a short time.
Past research has found such phishing kits that contain backdoors
(e.g., obfuscated email addresses), which are intentionally added
by the kit developers to obtain the phished data. In this work, we
augment on prior research by exploring several ways in which
security flaws in phishing kits make the victim data accessible
to a wider set of adversaries beyond the kit deployers and
kit developers. We implement an automated framework for kit
collection and analysis, which includes a custom command-line
PHP execution tool (for dynamic analysis) along with other open-
source tools. Our analysis focuses on finding backdoors (e.g.,
obfuscated email address, command injection), measuring the
extent of disclosure of sensitive information (e.g., via exposed
plaintext files, hardcoded Telegram bot tokens, hardcoded ad-
min console passwords) and detecting security vulnerabilities
in phishing kits. We analyze 4238 distinct phishing kits (from
a set of 26,281 compressed files collected from several sources
over a span of 15 months), each having unique SHA-1 hash
value. We found that 3.9% of the analyzed kits contained at
least one form of backdoor. We also found hardcoded admin
console passwords and API keys used to access third party
services, in 8.3% and 16% of the analyzed kits, respectively.
In addition, 15.8% of the analyzed kits wrote stolen information
(PII) of users in plaintext files; 5.6% kits did not restrict external
access to these plaintext files, leading to exposure of sensitive
phished data (e.g., 178,504 passwords, 133,248 email addresses,
1253 credit card numbers). Furthermore, 11.7% of the analyzed
kits contained hardcoded Telegram bots; we obtained invite links
to join Telegram chats in 0.5% kits, and found them to expose
chat messages containing sensitive PII information of victims
(e.g., 73,342 passwords, 141,095 email addresses, 3584 credit
card numbers). We also found that 64% of the kits are affected
by security vulnerabilities (e.g., insecure file operations, SQL
injection), which can be abused to further expose user data. We
have open-sourced our framework and other artifacts to benefit
future research.

Index Terms—Phishing websites, phishing kits

I. INTRODUCTION

Phishing is a common technique used by adversaries to
collect confidential information of users by mimicking legit-
imate websites. Phishing attacks are on the rise, and as per
APWG’s latest report [1], the second quarter of 2022 was
the worst quarter for phishing that APWG has ever observed,
with 27.6% attacks targeted at the financial sector (e.g., banks).
Since phishing websites can be blocked or added to blocklists
within a short time, cybercriminals have to generate these
websites quickly and at large scale. This is achieved by the use
of phishing kits that come with ready-made templates/scripts,

enabling even non-tech-savvy adversaries (i.e., kit deployers)
to launch phishing websites with minimal effort [2]. Such kits
are sold online, or freely available through various distribution
channels (e.g., darknet forums, Telegram channels).

Depending on how the kit is developed, the kit deployers ob-
tain the stolen data (including sensitive information) entered by
users (i.e., victims) of phishing websites via different means,
e.g., email, plaintext files stored on the server, Telegram chat
messages. Past work [3] has shown that the kit developers
hide their email addresses in the kits and obtain copies of the
phished data. Researchers have also found phishing kits that
contain command injection backdoors [4], intentionally added
by the kit developers to obtain shell access on web servers
running the kits. However, such backdoors can be abused by
any threat actor who is able to access the vulnerable URL
endpoints. Apart from such intentionally added backdoors, the
phishing kits may also contain several other security flaws.
For instance, security vulnerabilities such as insecure file
operations and SQL injection arise due to insecure coding
practices (such as lack of input validation) adopted by kit
developers. Any adversary can exploit these vulnerabilities to
access the phished data. Phishing kits may also contain several
hardcoded secrets (e.g., admin console passwords). If the kit
deployers do not change the admin console passwords while
setting up the kit, anyone with possession of the kit can log
into the kit’s admin panel and steal the victim data. Also,
for the kits storing sensitive information in plaintext files,
if the kit deployers do not restrict external access to those
files, any adversary with the knowledge of the URL paths of
such files can access the phished data. In effect, phishing kits
used by (inexperienced) phishing deployers could result in the
exposure of victim data to a much wider set of threat actors,
as a result of added backdoors and other security flaws.

Apart from emails and plaintext files, Telegram bots are
also used for data exfiltration in phishing kits. For example,
a commercial phishing kit (16Shop) targeted Apple users by
sending their sensitive information (including financial data)
through a Telegram channel [5]. The authentication token
of such a Telegram bot is typically hardcoded in the kit’s
source code. This enables anyone in possession of the kit
to misuse this token to access the chat messages containing
phished data. A large scale evaluation to measure the extent
of data exposure resulting from such an abuse has not been
done yet. Also, while past work [6]–[8] has demonstrated

specific types of vulnerabilities in phishing kits and hosting
infrastructure of corresponding phishing websites (e.g., [8]
focused on file upload vulnerability), a comprehensive study
of potential security vulnerabilities in phishing kits has so far
not been conducted. In all, there is a lack of an automated
evaluation framework, that presents an extensive analysis of
phishing kits, with an aim of finding security flaws that may
further dupe the victims of phishing attacks by exposing their
data to a much wider set of threat actors.

In this work, we implement an automated framework for
phishing kit collection and analysis, that achieves the following
key goals: (a) finding backdoors in phishing kits (e.g., com-
mand injection, obfuscated email addresses); (b) measuring
the extent of sensitive information exposure (via unrestricted
plaintext files, hardcoded Telegram bots, hardcoded admin
console passwords); and (c) analyzing security vulnerabilities
in phishing kits. For collecting phishing kits, we automated
the extraction of phishing website URLs from several sources
(PhishTank [9], OpenPhish [10] and ECX [11]), and look for
phishing kits hosted on these phishing sites, where the kit
deployers have not removed or restricted access to the phishing
kits. We also gather kits from other sources including GitHub
repositories (Phishing Kit Tracker [12], phishunt.io [13]) and
a public Telegram [14] channel. From these sources, we
collect a total of 26,281 compressed files over a period of
15 months. We disregard files that are corrupted and those
that do not contain any PHP/HTML source code files. This
results in a total of 19,445 phishing kits, and after removing
duplicates (files having the same SHA-1 hash value), our final
dataset contains 4238 distinct phishing kits. We perform both
static and dynamic analysis of the kits. To perform dynamic
analysis, we implement a novel technique (using a custom PHP
command line script) without having to host the respective kits
on a web server (unlike past work). We analyze each kit for
security flaws, and measure the data exposed as a result of
such flaws.

Contributions and notable findings
1) We develop an automated framework for kit collection

and evaluation, consisting of open-source tools along
with an efficient custom command line tool developed
to perform dynamic analysis of phishing kits. Using
our framework, we identify possible channels through
which confidential information can be exposed, e.g.,
obfuscated email addresses in source files of phishing
kits, hardcoded authentication tokens of Telegram bots
in phishing kits, unrestricted plaintext files on the server
where the kit is hosted. In addition, we identify the threat
actors (e.g., Telegram chat creators) behind the phishing
kits.

2) We use our framework to perform a large scale eval-
uation of 4238 kits with distinct SHA-1 hash values,
analyzing the ways in which victim data is exposed to
multiple adversaries, and measuring the extent of the
resultant data exposure.

3) 168/4238 (3.9%) phishing kits contained backdoors —
obfuscated email addresses in 98/4238 (2.3%) kits, hid-

den Telegram bots in 12/4238 (0.2%) kits, and command
injection in 62/4238 (1.5%) kits.

4) 670/4328 distinct kits deployed on 925 live phish-
ing websites could create plaintext files on the web
servers; on 297/925 (32.1%) live websites deployed
using 239/670 (30.6%) kits, these plaintext files were
found unrestricted on the web servers, thus exposing
victim data, including: credit card numbers (1253), so-
cial security numbers (576), phone numbers (170), email
address (133,248), and passwords (178,504).

5) We found 431 distinct hardcoded Telegram bots in
496/4328 (11.7%) phishing kits. 321/431 bots were
found to be active. 19/321 Telegram bots returned invite
links to chats containing sensitive information in chat
messages — credit card numbers (3584), social secu-
rity numbers (51), phone numbers (107), email address
(141,095), and passwords (73,342).

6) We found 5227 hardcoded (non-obfuscated) and 50 ob-
fuscated email addresses in 3441 and 98 distinct phish-
ing kits, respectively; 1328/5227 (25.4%) hardcoded
(non-obfuscated) email addresses and 18/50 (36%) ob-
fuscated email addresses were used in two or more
distinct phishing kits. The obfuscated email addresses
are more likely backdoors added by kit developers.

7) 401 and 694 phishing kits had hardcoded passwords
and API keys (used to access third party services),
respectively. From 401 distinct kits, we obtained 275
unique passwords, which include 210 admin console
passwords (used in 354 distinct kits).

8) 2698/4238 (64%) phishing kits have security vulner-
abilities that exacerbate the security posture of the
corresponding phishing websites, and expose stolen data.
Such vulnerabilities include: command injection (62),
insecure file operations (1590), and SQL injection (100).

To help future research, we have open-sourced
our framework, collected phishing kits, and threat
actor email addresses extracted from the kits. The
repository can be accessed via the following URL:
https://github.com/btcodes101/PhishingKitAnalysis. As a
part of responsible disclosure, we have shared the details of
all the Telegram bots and the corresponding chats found from
our analysis with Telegram.

II. RELATED WORK

In this section, we discuss past work related to the collection
of phishing kits, use of drop email addresses to expose
confidential information, and vulnerabilities in phishing kits
and its hosting infrastructure.

A. Identification and collection of phishing kits

Bijmans et al. [15] identified 70 distinct phishing kits by
fingerprinting the kits based on their unique properties. The
fingerprints created by them were used to identify 10 different
families of phishing kits (e.g., uAdmin, tikkie, bonken, ics,
livepanel). They used different properties to derive the fin-
gerprint of the corresponding phishing kits — e.g., file name,

full file path (from the root of the website), uncommon strings
found on the main page of the phishing website. Kondracki
et al. [16] implemented a fingerprinting tool to automate the
discovery and analysis of three MITM phishing toolkits on the
web. Using this tool, they discovered 1220 phishing websites
(mimicking popular brands such as Google, Yahoo, Twitter
and Facebook) that used MITM phishing toolkits. They also
found that 56.3% of phishing websites created from MITM
phishing toolkits are not detected by blocklists. Unlike ready to
deploy kits, some of these phishing toolkits use command line
tools to create phishing websites. Merlo et al. [17] obtained
20,871 phishing kits collected from forensic teams of private
security firms over a period of three years. They implemented
a tool for similarity analysis of source code of phishing kits,
that can identify kits that are of a near copy of an already
identified phishing kit. They found 90% of the analyzed
phishing kits share 90% or more of their source code with
other kits. However, their tool’s source code and kit dataset is
not released. In contrast, we build our dataset of phishing kits
from publicly available resources, and our analysis framework
would be open-sourced. Oest et al. [18] studied the .htaccess
filtering techniques from 1794 live phishing kits (on 933
unique domains).

We used Phishfinder [19] to extract phishing kits (mostly
built using PHP server side scripting language) hosted on
phishing URLs, using feeds from PhishTank [9], Open-
Phish [10] and APWG ecrime exchange (ECX) [11]. We also
collected phishing kits uploaded to GitHub repositories such
as Phishing Kit Tracker [12], phishunt.io [13].

B. Use of drop email address to send confidential information
from phishing kits to its authors

Past work studied the use of phishing kits that sent con-
fidential information to the developers of such kits. Cova et
al. [20] analyzed 503 phishing kits obtained from live phishing
websites and other channels (e.g., underground IRC channels,
web forums). These phishing kits use different techniques to
relay copies of phished data to the kit developers, by exploiting
backdoors that are inserted to the phishing kit’s source code
(with obfuscation). In order to find backdoors, the developers
run an automated analysis (e.g., hosting the kit locally and
automating the simulation of form filling with Selenium [21])
to gather email addresses from emails triggered by the kit.
Then, all email addresses that are hardcoded (in the kit) are
removed. The remaining email addresses in the kit are those
that are obfuscated. Thereafter, a manual analysis is performed
to find obfuscation techniques used by the phishing kit devel-
opers. Lazar [22] examined 1019 phishing kits, sourced from
TechHelpList (now inactive) and OpenPhish, and found 25%
of those kits contained hidden email addresses. In contrast, in
our study of 4238 kits obtained from various sources, we found
hidden email addresses in a comparatively smaller set (2.3%)
of kits. Zawoad et al. [23] proposed a clustering algorithm to
identify related phishing websites created by common phishing
kit developers (based on drop email addresses). They created
clusters of kit developers and kit users, and used those clusters

to determine most pervasive kit developers and kit deployers.
Also, they identified the most dominant phishing campaigns
(in terms of number of corresponding phishing websites, time
span that phishing websites are alive), and the most active kit
developers and kit users behind different clusters of phishing
websites. We identify hardcoded information (admin console
passwords, Telegram bot authentication tokens) in phishing
kits that can be abused to obtain sensitive information stolen
through the kits. We also measure the extent of sensitive
information exposure corresponding to kits collected from live
phishing sites, where the plaintext files having phished data are
left unrestricted on the web servers.

C. Vulnerabilities in phishing kits and in the underlying
deployment infrastructure

Han et al. [6] studied 643 distinct kits through a honeypot
server (on Amazon EC2). The authors configured 18 vulnera-
ble PHP files that allow attackers to upload files and execute
shell commands. In addition, 98 of the analyzed kits contained
code that communicates with remote machines under the
control of phishers — to fetch information (e.g., blocklists)
from the remote machines, and backdoors used to exfiltrate
stolen information. Cashdollar [8], [24] analyzed phishing
kits and observed file upload vulnerabilities using web shells
that are uploaded to web servers, exposing those servers to
further attacks. Wright [4] studied 3200 distinct phishing
kits obtained from PhishTank [9] and OpenPhish [10], and
identified PHP backdoor shells in 200 phishing kits; multiple
phishing kits were reused on 30 different hosts. The author also
analyzed common strings in phishing kit URLs, and found
the corresponding phishing websites (hosting the kits) that
are more likely to be exploited, are hosted on Wordpress
content development platforms. We found 396 (12.8%, out
of 3013) URLs hosting phishing kits were running from
domains pertaining to Wordpress installations. Oest et al. [7]
determined that phishing URLs deployed using phishing kits,
are more likely to be on compromised infrastructure (if the
phishing URLs are unintelligible, or contain random domains
with deceptive path contents). We study 4238 distinct phishing
kits and identify various vulnerabilities — e.g., SQL injection,
command injection vulnerabilities.

III. METHODOLOGY

There are three goals of our analysis – to find backdoors
in phishing kits, to measure the sensitive information exposed
through phishing kits, and to find security vulnerabilities in
phishing kits; see Figure 1 for an overview of our method-
ology. In this section, we discuss the technical details of our
methodology for automated kit collection and analysis.

A. Phishing kit collection

We collect phishing URLs from PhishTank [9], Open-
Phish [10] and ECX [11]. Then, for each of the live phishing
URLs, we use the Phishfinder’s [19] phishing kit collection

Phishing
kits

Collect
phishing sites

Remove invalid
phishing kits

Filtered
phishing kits

Detect security
vulnerabilities

Security vulnerabilties
(e.g., SQL Injection,

insecure file
operations, command
injection) found in kits

via static code
analysis using

progpilot
(LU), (KD)

Identify hidden
backdoors

Find distinct
phishing kits

Unique
phishing kits

Measure sensitive
information exposure

Sensitive information
written to internal files by

kits (LU)

Exfiltrated information
from kits using third party

services
(LU), (KD)

Obfuscated Telegram
authentication tokens

in kits
(LU), (KD)

Command Injection
exploitation in kits

(LU), (KD)

Obfuscated email
addresses in kits

(LU), (KD)

Sensitive information sent
to Telegram chats by kits

(LU)

Hard-coded passwords
and API keys of services

in kits (KD)
Confirmation of

command injection
vulnerability via

dynamic analysis
using a custom PHP

script
(LU), (KD)

VirusTotal
scanning

Fig. 1. Overall methodology; includes collecting phishing kits, filtering valid phishing kits, security analysis of phishing kits, and scanning the phishing kits
with VirusTotal — legitimate users and kit deployers who are impacted by security issues in phishing kits are represented as (LU) and (KD), respectively.

tool to download kits from live phishing websites by ap-
pending the compressed file extension1 (i.e., zip, rar, 7z, tar)
to each path segment of the phishing URL. We also gather
kits from phishunt.io [13] Github repository, which stores
kits obtained from live phishing websites, and provides the
kits as well as the corresponding phishing URLs. We also
obtain a set of phishing kits from Phishing Kit Tracker [12]
Github repository. In contrast to phishunt.io, Phishing Kit
Tracker only provides the phishing URL’s domain instead of
the complete URL. In addition, we collect distinct phishing
kits from a public Telegram [14] channel. From all these
sources, we collect a total of 4238 distinct phishing kits —
see Table I.

B. Validation of collected kits

We first check if the phishing kits collected are packaged
in a valid compressed file, by verifying whether the content
of the compressed archive is extractable. If not, we record the
file as faulty, and proceed to the next compressed file. For
each phishing kit, we calculate the SHA-1 hash value, size (in
bytes) and a list of extensions for files contained inside the
compressed file. In the set of collected compressed files that

1The tool only supports .zip extension. We modified the code slightly to
support .rar, .7z and .tar extensions.

are likely phishing kits, we find some of them do not pertain to
phishing kits (e.g., zipped files containing only image and text
files). We find valid compressed files that include PHP/HTML
files are more likely phishing kits — a similar observation is
made in [20]. Therefore, we filter out those compressed files
that do not contain any PHP/HTML file.

C. Scanning phishing kits with VirusTotal

We scan each distinct kit with VirusTotal [25] and check
if the kit has been labeled as malicious. We also collect the
suggested threat label (phishing, trojan) for each distinct kit.
This classification is provided by VirusTotal on the basis of
the scan results of different anti-virus engines [26].

D. Identifying backdoors

In this section, we discuss our methodology to find different
types of backdoors in phishing kits.
Obfuscated email addresses in phishing kits. Phishing kit
developers use source code obfuscation to exfiltrate stolen
data to their email addresses. We dynamically analyze the
source code of phishing kits, to find obfuscated email ad-
dresses included in phishing kits source files, that are used to
siphon phished information to kit developers. Past studies [20]
hosted phishing kits on isolated web servers, and automated
the interaction with those kits to dynamically analyze them.

Source # Total kits # Duplicated kits # Distinct faulty kits # Distinct non-phishing kits # Distinct kits
Live phishing websites 21776 19527 83 31 2249
Phishing Kit Tracker 4497 1682 111 408 2815
Telegram Channel 7 - - - 7

TABLE I
PHISHING KITS OBTAINED FROM DIFFERENT SOURCES — DISTINCT KITS ARE DETERMINED USING THE SHA-1 HASH VALUE. LIVE PHISHING SITES ARE

FROM PHISHTANK [9], OPENPHISH [10], ECX [11] AND PHISHUNT [13]. A FAULTY KIT’S CONTENT IS NOT EXTRACTABLE FROM THE COMPRESSED
FILE. NON-PHISHING KITS ARE THOSE WHICH DO NOT HAVE ANY PHP/HTML FILE. DISTINCT = TOTAL - DUPLICATED.

In contrast, we develop a custom PHP script (executed via
command line) that converts all the PHP files within a phishing
kit to output PHP files that can be executed on command line
(so that we do not have to host the PHP files on a web server
to dynamically analyze them). Our custom script dynamically
analyzes phishing kits, and transforms server-side PHP code
in PHP files included in it, to a version that can be executed
via command line. The custom script converts the PHP code
to a data structure that is in the form of an Abstract Syntax
Tree (AST) [27] using PHP-Parser [28]. This technique allows
to better process minified and obfuscated code, than simply
applying regular expressions on such code (e.g., iterations
using for loops in minified code can be better processed
using AST data structures). The automated script performs the
following to transform each PHP file to a version that can be
run on command line (the transformed command line script
also outputs the usage along with corresponding inputs that
are passed as environment variables): (i) Recursively merge
the source code of the main PHP page with that of multiple
included PHP files (using include and require functions),
where the end outcome is a single PHP file; (ii) Change server
variables (e.g., client IP address) in the source code of the PHP
file to hardcoded values; (iii) Change the inputs provided by
$ POST, $ GET and $ REQUEST super global variables in
the PHP source code to environment variables (i.e., $ ENV);
(iv) Inject file put contents function to save emails and text
files created from PHP source code. In addition, PHPDeob-
fuscator [29] is used to detect the possible obfuscated super
global variables before the analysis/transformation.

Whenever our custom script finds the file put contents
PHP function (in the source code of the PHP files) for the
creation of a text file, the names of text files created are
saved into a separate file. To find obfuscated email addresses
in phishing kits, we configure the default mail function in
PHP, to store the output in a file (mail.out) by editing the
sendmail path attribute in the php.ini configuration file. We
extracted the obfuscated email addresses from phishing kits
using the following steps: (a) Our analysis script reads all the
PHP files in the kit, line by line, and gathers all the hardcoded
email addresses from the PHP code. Then, we use python-
email-validator [30] to filter out invalid email addresses; (b)
We use our custom PHP script to execute each PHP file.
The recipient email addresses are extracted from the triggered
emails; (c) The difference between the list of email addresses
obtained from the dynamic analysis (in step b), and the list of
email addresses obtained by parsing the source code of PHP

files (in step a), gives the list of obfuscated email addresses.
For both hardcoded and obfuscated email addresses, we check
if the email addresses have been disclosed via online paste
services [31] using the haveibeenpwned (HIBP) API [32], and
record the disclosed email addresses.

Identifying phishing kit clusters based on phishing kit
developers. We extract 1780 (out of 4328) distinct phishing
kits with email addresses (from dynamic analysis), to identify
different categories of phishing clusters that are carried out
using those phishing kits. These phishing kits include email
addresses that pertain to kit developers. For this purpose, we
collect data relating to the domain name of phishing site, name
of phishing kit hosted on the phishing site, file extensions of
source files (e.g., PHP, HTML) in the compressed phishing
kit and the email addresses of kit developers. Then, we
encode2 and normalize [33] the values of data fields, to re-scale
individual samples of the collected data. The normalized input
data is applied to an unsupervised machine learning algorithm
(hierarchical Agglomerative Clustering [34] technique), with
appropriate parameter values (i.e., euclidean as the affinity and
ward as the linkage), to cluster the phishing kit data based on
kit developers.

Command injection. Adversaries can use command injection
by running system commands on servers that host phishing
websites, deployed via phishing kits, by exploiting the vul-
nerabilities in corresponding phishing sites.3 The commands
supplied through the phishing web application are executed
with the privileges granted to the web application on the host
operating system. Given the scope of our work, which focuses
on the analysis of the kits and not the hosting servers, we only
consider backdoors in phishing kits that leverage seemingly
intentional command injection. We used progpilot [35] to
examine the phishing kit source code to identify possible
backdoors created using command injection. To confirm com-
mand injection vulnerability via dynamic analysis, we do the
following steps — (a) we record the output of id command on
our analysis VM; (b) we execute each PHP file in the phishing
kit by providing id in parameter values, and record the output;
(c) we check if the output of (b) contains the value recorded in
(a). With backdoors created by command injection, potential
sensitive information can be exposed to adversaries.

2https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.LabelEncoder.html

3https://owasp.org/www-community/attacks/Command Injection

E. Sensitive information exposure via phishing kits

In this section, we discuss several means of sensitive infor-
mation exposure through phishing kits.
Telegram Bots. Telegram [14] is a popular messaging ap-
plication. Apart from the typical features such as sending
and receiving text and multimedia messages, Telegram also
provides several additional features — e.g., the ability to
create third-party applications within Telegram, also known
as bots. Past work [36], [37] reported the use of Telegram
bots in phishing kits. We extend past work by obtaining more
information on how Telegram bots are used in phishing kits
(e.g., leveraging information available relating to Telegram
chats/chat admins), and measuring the sensitive information
exposed through these bots. Telegram offers APIs4 for in-
teracting with these bots. Each Telegram bot is given an
authentication token at the time it is created. All queries to
the Telegram APIs must be accompanied by the authentication
token passed into the URL. Firstly, a bot needs to be created
and added as a member to a Telegram chat (private5, group6,
supergroup7 or channel8). Subsequently, the phished data is
submitted to the Telegram chat using the sendMessage bot API
— i.e., https://api.Telegram.org/⟨token⟩/sendMessage?chat
id=⟨chat id⟩&text=⟨phished data⟩. The phished data can be
viewed by the members of the chat. We analyze the phishing
kits in our dataset and obtain information about these bots. The
authentication tokens of Telegram bots are typically hardcoded
in the phishing kit source code. Our analysis script reads the
phishing kit source code and extracts all the lines containing
https://api.telegram.org. We extract the Telegram bot tokens
and chat identifiers from these lines via regular expression9.
Thereafter, we gather further information (e.g., invite links
to join Telegram channels/groups, messages exchanged in
chats) about the extracted Telegram bots using the following
Telegram APIs [38].

• getMe: Confirms if a given bot token is valid, in which
case, it returns basic information about the bot — e.g.,
name, ID, privileges assigned to the bot (such as ability
to join groups and read messages).

• getMyCommands: Returns the commands10 supported
by the bot.

• getWebhookInfo: Obtains webhooks configured in Tele-
gram bots to relay the phished data. We check if these
webhook URLs have been flagged as malicious using
VirusTotal.

• getUpdates: Returns the information sent to the bot from
the deployed phishing kit, during the past 24 hours, for

4https://core.Telegram.org/bots/api
5Private chat refers to a direct chat between two users or between a user

and a bot.
6Groups refers to a shared chat that can have up to 200 members.
7Supergroup refers to a shared chat that can have up to 200,000 members.
8Channels can have an unlimited amount of subscribers, and only admins

have the right to post messages.
9Regular expression used for bot token — bot\d+:AA[a-zA-Z0-9-

]{20,60}, for chat identifier — chat id=\s*[-@a-zA-Z0-9]*
10https://core.Telegram.org/api/bots/commands

the bots that do not have their webhooks configured.
• getChat: Confirms if a given chat ID is valid, in which

case, this API returns information about the chat — e.g.,
chat name, ID, type (private, group, supergroup, channel),
pinned messages and invite link.

• getChatMemberCount: Returns the number of members
of a given chat.

• getChatAdministrators: Returns information about the
admin users of a given chat (e.g., username, user ID).

• createChatInviteLink: Creates an invite link for the
chat where the bot has the required permission. We
create a test account on Telegram, join the chats through
the invite links, and retrieve historical chat messages
(possible in the case of channels) by using the export chat
history functionality in Telegram’s desktop application.
We measure the extent of information exposure from the
messages retrieved from the channels and responses from
the getUpdates API using PDSCAN [39]. PDSCAN is a
command line tool to scan files for unencrypted personal
data (PII) — e.g., email addresses, phone numbers11,
credit card numbers. However, it does not detect pass-
words. We manually analyzed a few kits on a local setup
to understand the possible formats in which passwords
are sent from the kits (e.g., pass: 1234, Password: abcde,
passe : 12345). Thereafter, we formed regular expressions
to count the number of passwords. Thereafter, corre-
sponding files are securely deleted using the shred [40]
utility.

Other hardcoded secrets in phishing kits. We use the
Whispers [41] tool to analyze phishing kit source code, to
detect hardcoded sensitive information (if any). Apart from
Telegram bot tokens, the kits contain several other hard-
coded secrets such as API keys (for third party services),
and passwords. Among the hardcoded passwords, we focus
on the passwords used for admin consoles of phishing kits.
Anyone having the admin console password could log into
the admin console on a live phishing kit deployment and
access the stolen data. In order to obtain admin panel pass-
words, we first identify passwords used for internal services
on the basis of their corresponding variable names such
as SMTP passwords (variable names such as smtp pass,
SMTPPass, SMTP PASSWD, smtp password) and database
passwords (variable names such as db pass, DB PASSWORD,
dbpass, dbPassword, config dbpasswd). After removing the
passwords used for internal services, we are left with the
set of admin console passwords. We analyze the strength of
these admin console passwords using zxcvbn [42], and also if
these passwords have been exposed in a prior breach using
haveibeenpwned (HIBP) [32] API.
Sensitive information written to files from phishing kits.
Several phishing kits use plaintext files to store information
stolen from victims. The default server configuration renders
these files accessible to anyone without any restriction. There
are two situations in which such files can be obtained: (i) If

11The tool supports detection of US phone numbers.

the phishing kit exists and access to it is not restricted, the
exact location of the text files (typically at the same web app
path or in a sub path) on the web server can be found and
the corresponding plaintext files can be downloaded; (ii) If
the phishing kit is removed from the server, but the directory
containing sensitive plaintext files suffers from open directory
listing, unrestricted files containing stolen data could still be
downloaded. Our work focuses on analyzing the extent of
exposure of stolen information from these plaintext files. For
this purpose, we gather the corresponding files hosted on
the live phishing websites, where the kit deployers have not
restricted access to those files. Then we use PDSCAN [39]
utility on the files extracted from the phishing websites to
detect sensitive information (such as email addresses, phone
numbers, credit card numbers). and use regular expressions to
detect passwords. For ethical considerations, we measure the
data exposure and delete the files using the shred [40] utility.
Exfiltration of information from phishing kits using third
party services. Third party services (e.g., Discord [43], form
submission services, SMS providers) are also used for data
exfiltration from phishing kits. The kits that include these third
party services are identified by applying the Indicator Of Kit
(IOK) [44] rules to the kit source code, along with manual
verification. Use of third party services increases the extent of
exposure of stolen data.

F. Vulnerabilities in phishing kits

Phishing kits may contain vulnerabilities in their source
code, which may be exploited to obtain victim data. For
example, command injection allows an adversary to execute
arbitrary commands on the web server’s operating system.
This would allow an attacker to access the web server and
extract the content of the application source files, along
with any information stolen through the phishing kit. With
progpilot [35], we inspect the phishing kit’s source code to
identify security vulnerabilities (e.g., SQL injection, insecure
file operations).

IV. RESULTS

In this section, we summarize the main findings of our
analysis of the collected phishing kits. The results presented
here are based on experiments performed from April 8, 2021
up to July 15, 2022.

A. Exposure of sensitive information

In this section, we mention our findings on the exposure of
sensitive information from phishing kits.
Telegram bots. We extracted 431 unique authentication tokens
and 439 chat identifiers from Telegram bots in 496 distinct
phishing kits. We extracted additional information about these
bots using the Telegram APIs. We were able to get valid
responses for 321 (74.5%, out of 431) of the Telegram bot
tokens using the getMe Telegram API. The remaining 110
bot tokens resulted in an error message, which indicates that
the authentication tokens had been changed for those bots.
We found 3 Telegram bots provided commands for tasks

relating to adding users. We were also able to get a valid
response for 302 distinct chat IDs using the getChat Telegram
API. The error responses for 34 chat IDs indicated that the
corresponding chats had been deleted. One of the bots had
been removed from the chat. These chat IDs belonged to 13
channels, 74 groups, 206 private chats and 8 supergroups.
The GetChatAdministrators12 API returned valid responses for
71 unique chat IDs, which revealed the identity of 57 chat
creators and 3 chat administrators. In addition, one particular
user was found to be the creator of a particular chat and also
an administrator of another chat. We found a Telegram user
who was a creator of 5 chats, along with 8 other Telegram
users, who were creators of 2 chats each.

Using the getChatMemberCount API, we found that a
majority of chat IDs (234 out of 302, 76.8%) of chats had two
or less members; if only 2 members are in a chat, they are
most likely the Telegram bot and the phisher — see Figure 2.
We were able to obtain the invite links to join 11 channels, 5
groups and 4 supergroups. While the groups appeared to be
dormant, the channels were actively used. We performed an
automated analysis of all the chat messages obtained through
the channels using PDSCAN [39] and regular expressions
(for passwords), and found that these chats exposed sensi-
tive information — e.g., credit card numbers (3584), social
security numbers (51), phone numbers (107), email addresses
(141,095) and passwords (73,342). The chats also contained
several IP addresses (269,142). These are the IP addresses of
the visitors of the phishing websites, that are recorded possibly
to form blocklists for automated crawlers.

4

230

25 19 7 2
28

0 1 1
0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
ch

at
s

Number of members per chat

Fig. 2. Distribution of member statistics in Telegram chats used in phishing
kits.

We also extracted the recent messages exchanged in chats
used for phishing activities using the getUpdates API. Towards
the end of our analysis, we called the getUpdates API for each
of the collected bot token, which returned non-empty results
for 46 different bots. From this analysis, we found different
types of sensitive information — e.g., credit card numbers
(75), email addresses (19), IP addresses (101). Furthermore,
we obtained 3 webhook URLs configured for 38 bots. Two
of the webhook URLs were flagged as malicious by at least
one security vendor in VirusTotal. For those kits where the

12Note that this API does not return any user details for private chats.
However, the API returns creator/admin user details for channels, groups and
supergroups.

regular expressions returned invalid values for tokens/chat
identifiers, we manually inspected the corresponding kits’
source code. While doing so, we found 7 Telegram bots that
were obfuscated and most likely to be added as backdoors
in 12 phishing kits. The following techniques were used to
hide these backdoors: (a) Telegram bot token was hidden in
a GIF file, and the GIF file was included in the PHP source
code; (b) Telegram bot link was included as an image source;
(c) Telegram bot token was hidden using a combination of
base64 decode and strrev functions along with PHP arrays.
PII disclosures from unrestricted plaintext files. Our custom
PHP execution script, that was used to dynamically analyze
phishing kits, identified the creation of plaintext files by 1344
distinct phishing kits; 670 of these kits pertained to live
phishing websites. For 239 (35.7%, out of 670) distinct kits
hosted on 297 live phishing sites, we could download the
plaintext files. This indicated that the access to the plaintext
files was not explicitly restricted on the web servers, providing
unrestricted access to the phished data. Any adversary with the
knowledge of the storage paths could access the information
stored in the exposed plaintext files. We determined the count
of the exposed sensitive information from these plaintext files
using the PDSCAN [39] utility and regular expressions (for
passwords) — credit card numbers (1253), email addresses
(133,248), passwords (178,504), social security numbers (576)
and phone numbers (170). Also, we found 17,595,190 IP
addresses of victims/crawlers visiting the phishing websites.
Improper access controls on the server side expose these files,
rendering the corresponding stolen data accessible to multiple
adversaries.
Common file names. From the dynamic analysis, we observed
the creation of files in 1344 distinct phishing kits; 49.8%
(670/1344) of these phishing kits were used in live phishing
sites. We observed common names being used across these
phishing kits for the plaintext files containing sensitive infor-
mation — e.g., login.txt, logs.txt, banks.txt contained harvested
information (e.g., login credentials, credit card numbers, phone
numbers); antibots.txt, whitelist.dat, blacklist.dat, visitors.txt
contained the IP addresses of visiting users. An adversary
could utilize a list of such common file names and attempt
to directly access unrestricted plaintext files on the phishing
websites. However, unless the attackers have the kits used to
deploy the phishing websites, they would also have to guess
the URL paths where the plaintext files are located.
Third party services to exfiltrate information. Apart from
known exfiltration methods e.g., email, storage in plaintext
files and Telegram bots, we also found other exfiltration
methods that involve the usage of third party services in a
few phishing kits. We observed 3 kits in our dataset used
Discord webhooks [45] for submitting stolen information to
Discord channels. In one particular kit, we observed that
formsubmit.co13 is used as the sole method of data exfiltration.
Using such forms of submission services, kit developers can

13Formsubmit.co is a form endpoint that is used to connect forms in web
pages (without requiring to setup a backend service).

create and deploy phishing kits, without setting up a backend
server. Other exfiltration methods include SMS services, e.g.,
textlocal (8 kits), Vonage (19 kits) and Twilio (47 kits).
Open directory listings on phishing websites. While collect-
ing phishing kits, we found open directory listings on 9575
corresponding phishing websites. From 356 (3.7%, out of
9575) phishing websites, we were able to retrieve plaintext
files. Anyone who can locate the web app paths to open
directory listings, will have access to the information stored in
the plaintext files. In 262 (73.5%, out of 356) of these phishing
websites, corresponding phishing kits had been removed. From
our analysis, we found that most number of open directories
exposing phishing kits hosted on phishing websites were from
United States (6586 out of 9575, 68.8%).

B. Hardcoded secrets in phishing kit source code

In this section, we describe our findings on admin console
passwords and API keys.
Admin console passwords. A phishing kit may provide the
functionality for an admin user to view/manage the consoli-
dated harvested information of a phishing site created using
the kit (i.e., via the admin panel). The default password to
log into these admin panels is often hardcoded in the phishing
kits. With Whispers [41], after removing false positives, we
obtained 275 unique passwords in 401 distinct phishing kits.
After filtering the passwords for internal services, we obtained
210 unique admin console passwords that are hardcoded in
354 distinct kits. If a kit deployer uses the default hardcoded
password for the admin console, an adversary can log into
the admin console and steal victim data in following ways:
(a) an attacker who is in the possession of the corresponding
kit can obtain the hardcoded default password from the kit’s
source code; (b) an attacker who does not have the kit can
launch a password brute force attack on the login page, which
would likely succeed if the password is easily guessable.
To find if the password brute force attacks like (b) could
succeed, we calculated the password complexity score for each
hardcoded admin console password using zxcvbn [42]. The
passwords were easily guessable as the complexity score for
128 (out of 210, 60.9%) passwords were between 0 and 2.
As reported from past breaches [32], 108 of these passwords
(out of 210, 51.4%) were found to be reported in at least
one password breach. Therefore, it is possible for potential
adversaries to launch password guessing attacks on admin
panels leveraging easily guessable and previously exposed
passwords. Table II summarizes our analysis of admin console
passwords’ complexity and breach status.
API keys. We detected 622 API keys in 694 distinct phishing
kits. These include API keys pertaining to various third
party services — e.g., geolocation services (e.g., ipinfo.io14,
ipstack.com15), messaging services (e.g., Telegram, Twilio).
These phishing kits also contained license keys of commercial
phishing kits. Since API keys of these services are hardcoded

14https://ipinfo.io/
15https://ipstack.com/

Password
complexity

Distinct
phishing kits

Unique
passwords

Breached
unique passwords

0 133 40 39
1 168 67 52
2 45 21 5
3 44 26 7
4 68 56 6

TABLE II
ANALYSIS OF ADMIN CONSOLE PASSWORDS FOR COMPLEXITY AND PAST

BREACHES

in the kit’s source code, anyone with access to these kits
can extract these API keys. Third party services (e.g., ipinfo,
ipstack) are used in phishing kits to identify visitor IP ad-
dresses to avoid detection (e.g., if the visitor is a security
crawler). These third party services often allocate a usage
quota depending on the subscription level (e.g., 50,000 API
requests for a month are allocated for the free plan of ipinfo16).
Overuse of API requests that use a specific hardcoded API key,
by anyone who has access to these phishing kits, can disable
the target kit’s evasion mechanism. This will expose the
corresponding phishing website to security crawlers/analysts.17

C. Security vulnerabilities in phishing kits

We analyzed phishing kits using progploit to find security
vulnerabilities — see Table III for a summary of number of
affected phishing kits/corresponding vulnerabilities, and Fig-
ure 3 for an overview of the number of vulnerabilities/number
of affected phishing kits. 63.6% (2698/4238) phishing kits
have at least one security vulnerability — kits with highest
number of vulnerabilities include wp-admin.zip (10), BOARDI-
RAN v10.5.zip(9), allenc.zip (8), upandruning.zip (8), alldo.zip
(8). From the context of corresponding phishing websites
deployed by phishing kits, some of these vulnerabilities (e.g.,
SQL injection, insecure file operations, command injection)
can be exploited by malicious actors to steal phished data.
Among these, command injection vulnerability is often added
as a backdoor, while others are unintentionally introduced in
phishing kits due to insecure coding practices that are followed
by kit developers. In this section, we present the results from
our static source code analysis and dynamic analysis script.
Command injection. We found command injection vulner-
ability in 62 (1.5%, out of 4238) phishing kits. Command
injection vulnerability can allow an attacker to supply system
commands via web requests, which are then executed on
the corresponding hosting server, with the system privilege
granted to the corresponding phishing web application (de-
ployed using the vulnerable kit) on the web server. From our
analysis of the code, this vulnerability seems to be typically
added intentionally by the phishing kit developers to maintain
persistent access to the server hosting the phishing site and
the phished data. We use dynamic analysis to determine
the exploitability of the command injection vulnerability in
phishing kits. We confirmed that command injection can be

16https://ipinfo.io/developers#rate-limits
17Such an attack would not have an impact if the kit is using other evasion

techniques in conjunction to using the third party APIs.

successfully exploited in 44 phishing kits, and after a manual
review of the corresponding code segments in kits, we found
that all of these were intentionally added as backdoors, and
did not serve any other purpose in these kits. These 44 (70.9%,
out of 62) kits that have the command injection backdoor
contained useragent variable used to execute commands on
the web server, that hosts these kits.

1576

758
887

643

284

90 30 7 3 1 1
0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
p

h
is

h
in

g
ki

ts

Number of vulnerabilities detected

Fig. 3. Security vulnerabilities in phishing kits.

Security vulnerability name # Phishing kits
Insecure File Operations 1590
Cross-Site Scripting 1417
File Disclosure 1060
Security Misconfiguration 744
Header Injection 682
Code Injection 517
SQL Injection 100
Command Injection 62
Session Fixation 46

TABLE III
SECURITY FLAWS/VULNERABILITIES IN PHISHING KITS

Insecure file operations. We found insecure file operations18

in 1590 (37.5%, out of 4238) of the analyzed phishing kits.
With insecure file operations, a phishing kit could let an
attacker upload a PHP shell via the corresponding phishing
website. Thereafter, the attacker would be able to execute
system commands on the server hosting the phishing website;
see [8] on a potential server take over, using a PHP shell and
improperly secured scripts. An attacker could also abuse the
file removal scripts in the phishing kits to remove arbitrary
files on the hosting server via directory traversal.
SQL injection. We also observed SQL injection in 100 (2.3%,
out of 4238) of the analyzed phishing kits. SQL injection
is only relevant for those phishing kits that use a database
for storage. The affected kit allows any visitor of the cor-
responding phishing website to submit database queries via
form fields, that are executed on the database. Therefore, the
specific database can be abused for malicious purposes — i.e.,
stealing and deleting (partially or entirely) phished data from
the database.

18Insecure file operations is categorized as idor in progpilot scan results.

D. Characteristics of email addresses in phishing kits

We obtained two types of email addresses in phishing
kits: obfuscated email addresses (dynamically extracted) and
hardcoded (statically extracted).
Obfuscated email addresses. Phishing kit developers hide
email addresses using various obfuscation techniques within
the phishing kit’s source code. These obfuscated email ad-
dresses are a backdoor to siphon phished data to the kit
developers. We found 49 hidden email addresses (in 97
distinct phishing kits); see Table V. We manually examined
the affected kits and observed the following techniques used
to obfuscate email addresses: (a) phishing kit developers hide
email addresses within the source code using PHP arrays. In
this case, the mail() PHP function is written twice, to send the
harvested phished information to the attacker deploying the kit,
and to the kit developer (using the hidden email addresses);
(b) email addresses are obfuscated by embedding them in
GIF files and including the GIF file in the PHP source code;
(c) obfuscated email addresses are included in a JavaScript
file using base64 encoding and arrays. We observed that
these backdoors are hidden in PHP files (e.g., antibots.php,
bt.php, blocker.php) contained in phishing kits that are meant
to provide protection against crawling bots. Such a backdoor
provides the kit developer a copy of phished data from all the
live deployments of the phishing kit.
Phishing kit clustering based on kit developers. Using the
hierarchical Agglomerative Clustering unsupervised machine
learning algorithm, we clustered the data samples that con-
tained the email addresses of kit developers, phishing domain,
kit name and file extension names of kit content, into 8 clusters
of phishing campaigns. We normalized the individual data
samples to have unit norm [33]. Figure 4 shows the scatter
plot of these 8 clusters. We observed clusters where the same
phishing kit file, with different email addresses in each of
the kits, are hosted on various phishing domains; e.g., In
cluster 1, separate copies of DHL.zip phishing kit file, that
contain gang19goalz@gmail.com and info@yourcoolsite.com
email addresses, in each of the kits, are hosted on lupusin-
spirations.com and support-security.paypal.com.komamen.com
phishing domains, respectively. We also observed, the same
email address appeared in multiple phishing kits; e.g., in
cluster 5, wirez@googledocs.org email address was included
in docu.zip and linkedin.com.zip phishing kits.
Common Email Addresses. We obtained 5967 hardcoded
email addresses from 3549 distinct kits, out of which 5227
email addresses (from 3441 distinct kits) were labeled as valid
by python-email-validator. We found 50 obfuscated email
addresses from 98 distinct kits, all of which were labeled as
valid. For each type of email address, We found 1328 (25.4%,
out of 5227) hardcoded and 18 (36%, out of 50) obfuscated
email addresses were used in two or more phishing kits. In
addition, 1011 (18.2%, out of 5227) hardcoded and 5 (10%,
out of 50) obfuscated email addresses were found in online
pastes (as confirmed from HIBP) — see Table IV. The 50
obfuscated email addresses were in 98 distinct phishing kits,

Fig. 4. Phishing kit clusters based on kit developers.

and 45 of those email addresses were not reported in the past;
see Table V for the top frequently observed obfuscated email
addresses.
Email Providers. We obtained 5273 valid distinct email
addresses, extracted from 3555 phishing kits, out of which
3445 of them belonged to 6 popular email providers (i.e.,
Gmail, Yandex, Yahoo, Protonmail, Hotmail and Outlook)
along with 123 email addresses with other providers (Aol
(49), Mail.com (36), Icloud (16), Zoho (22)) — see Fig 5
for a comparison among these email providers. However, we
also found 1705 email addresses were hosted on non-public,
custom email domains.

2115

553

300
229

135 113 123

0

500

1000

1500

2000

2500

Gmail Yandex Yahoo ProtonMail Hotmail Outlook Others

N
u

m
b

er
 o

f
em

ai
l a

d
d

re
ss

es

Fig. 5. Distribution of phishing email addresses across service providers.

EA type # Total
EA

EA in
more than
1 kit

EA in
online
pastes

Hardcoded 5227 1328 1011
Obfuscated 50 18 5

TABLE IV
TYPE OF COMMON EMAIL ADDRESSES IN PHISHING KITS — EMAIL

ADDRESSES = EA.

E. Other observations on phishing kits

VirusTotal scanning of phishing kits. 814/4238 phishing kits
were not flagged as malicious by any scanning engine on

Email address # Phishing
kits

Past
breaches

cntr.ii2t@gmail.com 26 3
solustn@gmail.com 6 0
vairus.oh@gmail.com 5 13
hector.dexter1@gmail.com 5 3
dioscalco4@gmail.com 5 0
updates@ourtimewhorers.com 4 2

TABLE V
FREQUENTLY OBSERVED OBFUSCATED EMAIL ADDRESSES IN PHISHING

KITS.

VirusTotal, also see [46]. The phishing kits we analyzed, were
labeled into different categories by VirusTotal — 2325/4238
as phishing, 830/4238 as trojan, 32/4238 phishing kits were
assigned to other labeled categories (e.g., scam, hacktool,
spam), and 1051/4238 phishing kits were not labeled.
Malicious files in phishing kits. We examined extensions
types (e.g., PHP, HTML) of files within each compressed
phishing kit. Common file extensions in phishing kits included
PHP, HTML, PNG, CSS, TXT, JS, ICO, GIF and SVG. Apart
from these, we also found EXE files in 24 kits (0.6%). We
obtained 7 unique EXE files from these kits — i.e., adb-setup-
1.3.exe (1 kit), Bomboflix1.1 [Private Edition].exe (1 kit),
Setup.exe (1 kit), Firefox Installer (1).exe (4 kits), rundll32.exe
(12 kits), hiddeninput.exe (4 kits) and NuGet.exe (1 kit). We
scanned these EXE files with VirusTotal. The first 3 of them
were marked as malicious by at least 4 security vendors (in
VirusTotal). rundll32.exe19 is a process that serves as a back-
door, allowing access to user’s machine from remote locations,
in order to steal sensitive information (e.g., passwords). Firefox
Installer (1).exe appeared to be a repackaged Firefox installer
with malicious dynamic link libraries (DLL).
Organizations targeted by websites created using phishing
kits. Feeds of phishing websites from ECX, include the brands
of the mimicked phishing websites. 206 (4.8%, out of 4328)
phishing kits were collected using ECX. Using the brand
information in ECX phishing feeds, we extracted the top 10
organizations pertaining to these phishing kits. Most of these
kits deployed phishing websites related to software (36), law
enforcement (30), financial services (23) and shopping (19) —
see Table VI.
Reuse of phishing kits. We consider a phishing kit is reused,
if a kit with the same SHA-1 hash value is hosted on more
than one website. We used this approach to measure kits
downloaded from live phishing websites. We observed 444
phishing kits were hosted on at least two websites. The
maximum number of phishing sites deployed using a particular
phishing kit is 20. However, 74.1% (1667 out of 2249) of the
phishing kits obtained from live phishing websites were hosted
only on one website. The reuse of phishing kits increase return
on investment for adversaries who don’t have to spend time
to recreate phishing sites by mimicking popular websites.

19https://www.processlibrary.com/en/directory/files/rundll32/25747/

Organization Service # Phishing kits
Microsoft Software 36
National Police Agency
(Japan)

Law enforcement 30

Made-in-China.com Shopping 19
Banco do Brasil Financial 10
Linkedin Social network 8
Societe Generale Financial 7
BECU Financial 6
DHL Logistics 6
Chronopost Logistics 4
Comcast Cable Telecommunication 4

TABLE VI
TOP 10 ORGANIZATIONS TARGETED BY PHISHING KITS.

V. ETHICAL CONSIDERATIONS AND LIMITATIONS

In our experiments, we capture leaked sensitive information
that are of different types (e.g., email addresses, credit card
numbers, phone numbers). As per the guidelines from our
university’s research ethics unit, we appropriately dispose the
captured sensitive information of victims, by using the shred
utility. We also responsibly disclosed details of Telegram bots
used in the analyzed phishing kits to Telegram, for them to
take appropriate action.

Although we use known sources of phishing URLs and kits
to prepare our dataset, some of the compressed files remaining
after our initial filtering may not correspond to real phishing
kits. For example, one of the collected files, MadelineProto-
master.zip, contained the source code for Telegram’s MTProto
client. Another one, login.html.zip, was an incomplete kit as
several dependencies were missing from the compressed kit.
In this regard, we tried using a tool [47] for phishing kit
detection, which indicated that 160/4238 phishing kits in our
dataset were not real phishing kits. However, upon manual
review of the tool results, we found several instances of both
false positives and false negatives. The results pertaining to
extracted obfuscated email addresses and generated plaintext
files (during our dynamic analysis) are a lower bound, as our
framework may not traverse all execution paths in the PHP
source code. Our findings on sensitive information exposed as
a result of security flaws in phishing kits is also a lower bound.
Furthermore, we do not have access to phishing kits hosted
on websites on restricted paths. As such, we cannot measure
the sensitive information exposed on the corresponding live
phishing sites (unless the website has open directory listing).
If the authentication tokens of Telegram bots are changed or
the Telegram bot is removed from the chat, it will impact
our analysis of the exposure of sensitive information through
Telegram bots. We use a source code scanning tool (progpilot)
for detecting security vulnerabilities, which could report false
positives in its detection results. Furthermore, some of the
vulnerabilities detected by this tool may not be exploitable.
However, the analysis from progpilot provides an overview of
insecure coding practices adopted by kit developers.

VI. DISCUSSION

Security issues in phishing sites that lead into privacy
issues. Security issues (e.g., insecure file operations, SQL
injection) in phishing sites deployed using phishing kits, will
increase the exposure of victim data to multiple threat actors.
We found 37.5% of analyzed phishing kits were vulnerable
to insecure file operations, that allow an attacker to upload
PHP shells to corresponding phishing sites; 2.3% of analyzed
phishing kits were prone to SQL injection attacks, that allow
stealing phished data stored in databases of corresponding
phishing sites. Phishing kits are accessible to everyone, if the
path on phishing websites is unrestricted (i.e. open directory
listing). These unrestricted paths of phishing websites may
contain files with sensitive information, even when the corre-
sponding phishing kit is not accessible from the same paths.
Novel types of backdoors. In the past, traditional forms of
backdoors used by phishing kit owners include drop email
addresses [48] that are used to expose sensitive information
collected through user interactions. Attackers are now increas-
ingly using social networking services, to expand the available
backdoor channels (e.g., using Telegram bots) in order to
expose sensitive user information to adversaries. We found
7 Telegram bots that served as backdoors were obfuscated (in
12 phishing kits) using various techniques (e.g., hidden in GIF
files included in PHP source code).
Exposure of threat actor information. Phishing kits can
be used to collect information about the threat actors behind
them. Apart from email addresses, our work also reveals
the potential of hardcoded Telegram bots in phishing kits
in revealing information about other participants involved
in phishing (e.g., creators/administrators of chats where the
phished information is posted). We found 61 Telegram users
were creators/administrators of 71 chats that were used for
phishing. Necessary measures, such as legal actions, addition
to blacklists and termination of services, can be taken by law
enforcement and service providers by leveraging the exposed
threat actor information.
Anti-evasion in phishing kits. Phishing kits use various
evasion techniques [49], [50], including the use of third parties
(e.g., ipinfo.io) to hide its presence for non-human users (e.g.,
security crawlers). We observed ipinfo.io third party service
used in 388 phishing kits to avoid detection by security
crawlers. The API key used for ipinfo.io is hardcoded in the
kit. Anyone with access to the kit can obtain this key and
use it multiple times such that it exceeds the allowed usage
rate limit, effectively disabling this evasion mechanism in all
phishing websites deployed using the kit.
Enabling notification to phishing victims. We do not retain
the obtained victim data (including credit card numbers, login
credentials, social security numbers, phone numbers) for eth-
ical and legal reasons. However, using our framework, such
data can be used by law enforcement and service providers to
notify the victims whose data have been stolen and exposed
on the internet, to limit its misuse by adversaries.

VII. CONCLUSION

We design and implement a framework for automated
collection and security analysis of phishing kits to understand
additional user-data exposure risks due to the use of these
kits. We used our framework to collect and evaluate a large
dataset of phishing kits. We found backdoors, measured the
sensitive data exposure, and detected security vulnerabilities
in the collected kits. Due to the security flaws in phishing kits
and the mistakes made by kit deployers while setting up these
kits, the victim data indeed becomes accessible to a wider set
of adversaries, beyond the kit deployers and kit developers. We
hope our framework would be useful for security professionals
and researchers to efficiently detect security flaws in phishing
kits and their deployments—to quickly restrict data exposure
caused by these kits.

ACKNOWLEDGMENT

This work is partially supported by the Canadian Internet
Registration Authority (CIRA). We are also grateful to the
anonymous reviewers of APWG eCrime 2022 for their in-
sightful comments and suggestions. We are also thankful to
APWG for granting us access to the eCX phishing dataset.

REFERENCES

[1] APWG, “Phishing activity trends report,” 2022, https://docs.apwg.org/
reports/apwg trends report q2 2022.pdf.

[2] Kaspersky, “Quick, cheap and dangerous: how scammers are
creating thousands of fake pages using phishing kits,” 2022,
https://www.kaspersky.com/about/press-releases/2022 quick-cheap-
and-dangerous-how-scammers-are-creating-thousands-of-fake-pages-
using-phishing-kits.

[3] T. Moore and R. Clayton, “Discovering phishing dropboxes using email
metadata,” in APWG eCrime Researchers Summit 2012), Las Croaba,
Finland, Oct. 2012.

[4] J. Wright, “Phish in a barrel: Hunting and analyzing phishing
kits at scale,” 2017, https://duo.com/blog/phish-in-a-barrel-hunting-and-
analyzing-phishing-kits-at-scale.

[5] Akamai, “16Shop: Commercial Phishing Kit Has A Hidden Backdoor,”
2019, https://www.akamai.com/blog/security/16shop-commercial-
phishing-kit-has-a-hidden-backdoor.

[6] X. Han, N. Kheir, and D. Balzarotti, “Phisheye: Live monitoring
of sandboxed phishing kits,” in ACM Conference on Computer and
Communications Security (CCS’16), Vienna, Austria, Oct. 2016.

[7] T. Moore and R. Clayton, “Examining the impact of website take-
down on phishing,” in APWG Symposium on Electronic Crime Research
(eCrime’07), Pennsylvania , CA, USA, Oct. 2007.

[8] L. Cashdollar, “Identifying vulnerabilities in phishing kits,” 2019,
https://www.akamai.com/blog/security/identifying-vulnerabilities-in-
phishing-kits.

[9] PhishTank, “Phishtank,” 2022, https://phishtank.org/.
[10] OpenPhish, “Openphish,” 2022, https://openphish.com/.
[11] APWG, “The APWG ecrime exchange (ECX),” 2022, https://apwg.org/

ecx/.
[12] Pavlovic, Alen, “Introducing phishing kit tracker,” 2020, https://

marcoramilli.com/2020/07/16/introducing-phishingkittracker/.
[13] phishunt.io, “phishunt.io,” 2021, https://phishunt.io/.
[14] Telegram, “Telegram Messenger,” 2021, https://telegram.org/.
[15] H. Bijmans, T. Booij, A. Schwedersky, A. Nedgabat, and R. van

Wegberg, “Catching phishers by their bait: Investigating the dutch
phishing landscape through phishing kit detection,” in USENIX Security
Symposium (USENIX Security’21), Online, Aug. 2021.

[16] B. Kondracki, B. A. Azad, O. Starov, and N. Nikiforakis, “Catching
transparent phish: Analyzing and detecting MITM phishing toolk-
its,” in ACM Conference on Computer and Communications Security
(CCS’2021), Online, Nov. 2021.

[17] E. Merlo, M. Margier, G.-V. Jourdan, and I.-V. Onut, “Phishing kits
source code similarity distribution: A case study,” in Software Analysis,
Evolution and Reengineering (SANER’2022), Honolulu, HI, USA, Mar.
2022.

[18] A. Oest, Y. Safei, A. Doupé, G.-J. Ahn, B. Wardman, and G. Warner,
“Inside a phisher’s mind: Understanding the anti-phishing ecosystem
through phishing kit analysis,” in APWG Symposium on Electronic
Crime Research (eCrime’18), San Diego, CA, USA, May 2018.

[19] phishfinder, “phishfinder,” 2019, https://github.com/cybercdh/
phishfinder.

[20] M. Cova, C. Kruegel, and G. Vigna, “There is no free phish: An analysis
of” free” and live phishing kits.” in USENIX Workshop on Offensive
Technologies (WOOT’08), San Jose, CA, USA, Jul. 2008.

[21] Selenium.dev, “Selenium,” 2022, https://www.selenium.dev/.
[22] L. Lazar, “Our analysis of 1,019 phishing kits,” 2018, https://

www.imperva.com/blog/our-analysis-of-1019-phishing-kits/.
[23] S. Zawoad, A. K. Dutta, A. Sprague, R. Hasan, J. Britt, and G. Warner,

“Phish-net: investigating phish clusters using drop email addresses,” in
APWG eCrime Researchers Summit 2013, San Francisco , CA, USA,
Sep. 2013.

[24] S. Gatlan, “Phishing kits add more vulnerabilities to hacked servers,”
2019, https://www.bleepingcomputer.com/news/security/phishing-kits-
add-more-vulnerabilities-to-hacked-servers/.

[25] VirusTotal, “Virustotal,” 2022, https://www.virustotal.com/gui/home/
upload.

[26] VirusTotal, “Threat classification,” https://developers.virustotal.com/
reference/popular threat classification.

[27] Wikipedia, “Abstract syntax tree,” 2022, https://en.wikipedia.org/wiki/
Abstract syntax tree.

[28] PHP-Parser, “PHP Parser,” 2022, https://github.com/nikic/PHP-Parser.
[29] Github.com, “Phpdeobfuscator,” 2022, https://github.com/simon816/

PHPDeobfuscator.
[30] python-email validator, “email-validator: Validate Email Addresses,”

2022, https://github.com/JoshData/python-email-validator.
[31] T. Hunt, “Introducing paste searches and monitoring for “have i been

pwned?”,” 2014, https://www.troyhunt.com/introducing-paste-searches-
and/.

[32] Haveibeenpwned.com, “Have I been pwned,” 2021, https:
//haveibeenpwned.com/API/v3.

[33] Scikit-learn, “sklearn.preprocessing.normalize,”
2022, https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.normalize.html.

[34] scikit-learn, “sklearn.cluster.AgglomerativeClustering,”
2022, https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.AgglomerativeClustering.html.

[35] Progpilot, “Progpilot,” 2020, https://github.com/designsecurity/
progpilot.

[36] Forcepoint, “Forcepoint,” 2019, https://www.forcepoint.com/blog/x-
labs/tapping-telegram-bots.

[37] Group-ib, “Send to saved messages: Cybercriminals use telegram bots
and Google forms to automate phishing,” 2021, https://www.group-
ib.com/media/phishing-automation/.

[38] Telegram, “Telegram Bot APIs,” 2021, https://core.telegram.org/bots/
api.

[39] PDSCAN, “Pdscan,” 2019, https://github.com/ankane/pdscan.
[40] Linux.die.net, “Shred,” 2010, https://linux.die.net/man/1/shred.
[41] Whispers, “Whispers,” 2021, https://github.com/Skyscanner/whispers.
[42] D. L. Wheeler, “zxcvbn: Low-Budget password strength

estimation,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, Aug. 2016,
pp. 157–173. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/wheeler

[43] Discord, “Discord,” 2022, https://discord.com/.
[44] P. Report, “Iok rules,” 2022, https://phish.report/IOK/indicators.
[45] Discord, “Intro to Webhooks,” 2022, https://support.discord.com/hc/en-

us/articles/228383668-Intro-to-Webhooks.
[46] P. Peng, L. Yang, L. Song, and G. Wang, “Opening the blackbox

of Virustotal: Analyzing online phishing scan engines,” in IMC’19,
Amsterdam, Netherlands, Oct. 2019.

[47] K. Hunter, “Github.com,” https://github.com/SteveD3/kit hunter.
[48] H. McCalley, B. Wardman, and G. Warner, “Analysis of back-

doored phishing kits,” in International Conference on Digital Forensics
(IFIP’2011), Orlando, FL, USA, Jan. 2011.

[49] A. Oest, Y. Safaei, A. Doupé, G.-J. Ahn, B. Wardman, and K. Tyers,
“Phishfarm: A scalable framework for measuring the effectiveness
of evasion techniques against browser phishing blacklists,” in IEEE
Symposium on Security and Privacy (SP’2019), San Francisco , CA,
USA, May 2019.

[50] BleepingComputer, “Phishing kits constantly evolve to evade secu-
rity software,” 2022, https://www.bleepingcomputer.com/news/security/
phishing-kits-constantly-evolve-to-evade-security-software/.

