
Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 1/21

Analysis of Security APIs (ASA-2) – June 26, 2008

Minimizing Threats from Flawed Security APIs:
A Banking PIN Example

Mohammad Mannan

Carleton University



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 2/21

Observations

1. Designing ‘perfectly secure’ APIs seems difficult

2. With increased efforts we may improve API security

3. Formal proofs may help

� but do not guarantee real-world security

4. Flaws will be found – tomorrow if not today

� history suggests so

� PIN cracking attacks (FC 2007, CHES 2001)



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 3/21

What should we do with flawed APIs?

1. Can we design APIs to minimize damage resulting from a flaw?

� can damage estimation be included in API design?

2. What would be the criteria for such a design?



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 4/21

A specific case to consider

Weighing Down “The Unbearable Lightness of PIN Cracking”

(Financial Cryptography 2008)

Extended version available at:

http://www.scs.carleton.ca/%7Emmannan/publications/saltedpin-tr.pdf



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 5/21

PIN processing network

ATM Intermediate 
     switch

Verification 
    center

HSM

HSM = Hardware Security Module
EPB = Encrypted PIN Block

API

API



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 6/21

PIN cracking attacks

1. PIN processing APIs are decades old

� several flaws have been uncovered allowing PIN extraction

2. “The Unbearable Lightness of PIN Cracking” (FC 2007)

enumerates some very efficient attacks

� we focus on the attacks outlined in this paper



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 7/21

An example attack: using translate-only APIs (FC 2007)

1. ISO-1 PIN format is not bound to any account number

� other PIN formats can be translated to the ISO-1 format

2. Attack cost

� setup: 10,000 EPBs with known PINs + 10,000 API calls

� per-account: 2 API calls + search in a 10,000 items table

� a more efficient attack requires only 100 special EPBs with

known PINs



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 8/21

A recent attack

Result of a compromised third-party PIN processor?



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 9/21

Current (partial) ‘solutions’

1. Inter-banking agreements

2. Restricted APIs, i.e., unnecessary APIs in an HSM are disabled

3. Minor fixes for specific flaws

� new flaws emerge often

� applying fixes to intermediate nodes is difficult



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 10/21

Salted-PIN: motivation

1. Current Encapsulated PIN Block (EPB) contains customer PIN

� we proposed to use secret ‘salt’ with the PIN

� API flaws now may reveal the ‘salted’ (e.g. hashed) PIN,

but getting the final user PIN still should be difficult (or

‘computationally’ infeasible)



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 11/21

Threat model

1. Attackers have access to

� PIN processing APIs

� transaction data (EPBs, account number)

2. No access to keys inside an HSM

3. Card skimming attacks are not considered

We focus on large-scale attacks that can extract e.g.,
millions of PINs per hour



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 12/21

Salted-PIN: requirements

1. We require updating bank cards (data), ATMs and

issuer/verification HSMs

2. We do not require any changes to

� intermediate nodes

� user behaviour



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 13/21

Salted-PIN: setup



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 14/21

Salted-PIN: processing

ATM

Bank card

Salt 128-bit  long (plaintext)

PAN  Personal Account Number
         (14/16 digit)

PAN

Salt

PIN

User

PRF     (PAN, PIN)
Salt

1. Compute

2. Decimalize

3. Take left-most 12 digits as

EPB
(Encrypted         )

PIN t

PIN t

previous attacks now reveal only PINt



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 15/21

PINt length limitations

PAN

Guessing attack

PRF     (PAN, 
Salt

1. Compute

2. Decimalize

3. Take left-most 12 digits as PIN t

PIN )
(known value)

Salt
(f ix one value)

PIN
(try all possible PINs, 
  e.g., 0000 to 9999)

Does           matches 
revealed (valid)         ?

PIN t
PIN t

this search requires O(240) steps, but
setup cost is significant (1012 vs. 10,000 API calls)



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 16/21

A more efficient translate-only attack on salted-PIN

1. Trade-off between setup cost (EPB table size) and per-account

attack cost can be exploited

� for table size 10n (n ∈ {2, 3, . . . , 12}), the required num-

ber of per-account API calls is 1012−n



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 17/21

Variant: double EPBs

1. Using 24 digits from PRF output, create two PINt values

2. Now two EPBs are required for PIN verification

3. Intermediate switches do not need to be aware of this

4. The cost of finding an appropriate salt value is now O(280)



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 18/21

Variant: service-point specific

1. Use service-point specific information (spsi) for PIN processing

2. spsi may include (see ISO 8583 Data Elements fields)

� card acceptor identification code

� card acceptor name/location

generates a localized PINt for each PIN verification

restricts a fake card to be used only from a particular location



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 19/21

Lessons learned

1. Minimize disclosure of sensitive info (e.g. customer PIN)

� use long-term secrets to generate one-time passcodes

2. Make reuse of disclosed info “difficult”

� currently attackers can compromise once and exploit any

number of times from anywhere

� ‘localization’ of exploits may reduce incentives for an attack

Attacks are still possible but “unattractive”



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 20/21

Concluding remarks

1. Assume flaws will persist even if we try our best

2. Design for damage control



Minimizing Threats from Flawed Security APIs

Mohammad Mannan June 26, 2008 21/21

Thank you ,

Question/Comments?

mmannan@scs.carleton.ca

http://www.scs.carleton.ca/∼mmannan


