Question 1

- (i) Explain the difference between crystal structure and atomic structure. Why is studying crystal structure important?
- (ii) Identify the closed-packed **directions** in FCC and BCC structures.
- (iii) Make a sketch for a cubic unit cell and show the $[\overline{1} \ 1 \ 0]$, $[0 \ \overline{1} \ 2]$, and $[\overline{1} \ \overline{2} \ 1]$ directions.
- (iv) Make a sketch for a cubic unit cell and show the $(0\overline{1}\overline{1})$ and $(10\overline{2})$ planes.

Question 2

- (i) Determine the relationship between the atomic radius, *r*, and lattice parameter, *a*, for the SC, BCC and FCC structures. If the lattice parameter of Molybdenum (Mo) is $a = 3.22 \times 10^{-10}$ m, calculate its atomic radius.
- (ii) Rhodium has an atomic radius of 0.1345 nm and a density of 12.41 g/cm³. Using this information, determine whether it has an FCC or BCC crystal structure.

Question 3

- (i) Calculate the **highest** linear density (atoms/m) encountered in Vanadium (V).
- (ii) For Vanadium, calculate the planar density value for the (100) plane.

Question 4

- (i) Calculate the interplanar spacing (d_{hkl}) of $\{1 \ 1 \ 0\}$ planes in Copper (Cu), where the lattice parameter is $a = 3.61 \times 10^{-10}$ m.
- (ii) Determine the expected diffraction angle (2q) for the first-order reflection from the (1 1 3) set of planes for FCC platinum when monochromatic radiation of wavelength
 0.1542 nm is used. The atomic radius of platinum is 0.1387 nm.