Question 1

Calculate the number of vacancies per cubic meter in iron at 850°C. The energy for vacancy formation is 1.08 eV/atom. Furthermore, the density and atomic weight for Fe are 7.65 g/cm³ and 55.85 g/mol, respectively.

Question 2:

- (a) Describe the substitutional and interstitial diffusion mechanisms in solid metals
- (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion
- (c) Describe the factors that affect diffusion and discuss their effects

Question 3

Determine the carburizing time necessary to achieve a carbon concentration of 0.45 wt% at a position 2 mm into an iron–carbon alloy that initially contains 0.20 wt% C. The surface concentration is to be maintained at 1.30 wt% C, and the treatment is to be conducted at 1000°C. Use the diffusion data for γ Fe in Table below.

Diffusing Species	Host Metal	$D_0(m^2/s)$	Activation Energy Q_d		Calculated Values	
			kJ/mol	eV/atom	$T(^{\circ}C)$	$D(m^2/s)$
Fe	α-Fe (BCC)	$2.8 imes 10^{-4}$	251	2.60	500 900	3.0×10^{-21} 1.8×10^{-15}
Fe	γ-Fe (FCC)	5.0×10^{-5}	284	2.94	900 1100	$\frac{1.1 \times 10^{-17}}{7.8 \times 10^{-16}}$
С	α-Fe	6.2×10^{-7}	80	0.83	500 900	2.4×10^{-12} 1.7×10^{-10}
С	γ-Fe	2.3×10^{-5}	148	1.53	900 1100	5.9×10^{-12} 5.3×10^{-11}
Cu	Cu	7.8×10^{-5}	211	2.19	500	4.2×10^{-19}
Zn	Cu	2.4×10^{-5}	189	1.96	500	4.0×10^{-18}
Al	Al	2.3×10^{-4}	144	1.49	500	4.2×10^{-14}
Cu	Al	6.5×10^{-5}	136	1.41	500	4.1×10^{-14}
Mg	Al	1.2×10^{-4}	131	1.35	500	1.9×10^{-13}
Cu	Ni	2.7×10^{-5}	256	2.65	500	1.3×10^{-22}

Question 4

The diffusion coefficients for iron in nickel are given at two temperatures:

T (K)	$D(m^2/s)$
1273	9.4×10^{-16}
1473	$2.4 imes10^{-14}$

- (a) Determine the values of D_0 and the activation energy Q_d .
- (b) What is the magnitude of D at $1100^{\circ}C (1373 \text{ K})$?

Question 5

Determine the 0.2% offset Yield Strength, the Percent Elongation and the Tensile Strength for the specimen with the dimensions given below in mm.

Question 6

Describe in detail the main features of the stress-strain curves shown in the following figures at the key points labelled a,b,c etc.

Using the information given suggest the material that each curve might belong to?

