Question 1

On the basis of ionic charge and ionic radii, predict crystal structures for the following materials:

- a) CsI
- b) NiO
- c) KI
- d) NiS

Question 2:

The unit cell for Al_2O_3 has hexagonal symmetry with lattice parameters a = 0.4759 nm and c = 1.2989 nm. If the density of this material is 3.99 g/cm³, calculate its atomic packing factor. Ionic radius for Al^{+3} is 0.053 nm and for O^{-2} is 0.140 nm.

Question 3:

A ceramic material, in the form of a circular bar with radius 5mm, is tested in 3-point bending. The length between the support points is 50 mm. If the load required to cause fracture is 2380 N, determine the flexure strength of this ceramic.

- a) If this material has a fracture toughness of 4.5 MPa.m^{1/2} what is the size of the longest internal crack? Assume the geometric parameter Y is equal to 1.
- b) Knowing that the modulus of elasticity for the nonporous material is 400 GPa, what is the elastic modulus of the porous ceramic if it has 10 vol% porosity?

Question 4:

The tensile strength and number-average molecular weight for two polyethylene materials are as follows:

Tensile Strength (MPa)	Number-Average Molecular Weight (g/mol)
85	12,700
150	28,500

Estimate the number-average molecular weight that is required to give a tensile strength of 195 MPa.

Question 5:

Briefly explain how each of the following influences the tensile or yield strength of a semicrystalline polymer and why:

- (a) Molecular weight
- (b) Degree of crystallinity
- (c) Deformation by drawing
- (d) Annealing of an undeformed material