MECH 221

Name:

Student ID:

Question 1:

[6 marks]

- i) Briefly cite the main differences between ionic, covalent, and metallic bonding
- ii) State the expected type of bonding for each of the following compounds, for partially ionic bonds calculate the percent ionic character: (a) solid argon, (b) polyethylene, (c) CaCl₂, & (d) gallium phosphide.
- iii) Why covalently bonded materials are generally less dense than those who are ionically or metallically bonded?

Solution:

- The main differences between the various forms of primary bonding are: Ionic--there is electrostatic attraction between oppositely charged ions. Covalent--there is electron sharing between two adjacent atoms such that each atom assumes a stable electron configuration. Metallic--the positively charged ion cores are shielded from one another, and also "glued" together by the sea of valence electrons.
- ii) (a) Solid argon: the bonding is van der Waals since argon is an inert gas.

(b) Polyethylene: Covalent bonds hold the atoms in the polyethylene molecules together and

Secondary bonds (van der waals) then hold groups of polymer chains together to form the polyethylene

(c) $CaCl_2$: $X_{Ca} = 1.0$ and $X_{Cl} = 3.0$, and therefore,

 $\text{MIC} = [1 - \exp[-(0.25)(3.0 - 1.0)^2]] \times 100 = \%63.2$

(d) Gallium phosphide: the bonding is partially ionic with some covalent character

%IC= $[1-\exp[-(0.25)(1.6-2.1)^2]] \times 100 = \%6$

iii) Covalently bonded materials are less dense than metallic or ionically bonded ones because covalent bonds are directional in nature whereas metallic and ionic are not; when bonds are directional, the atoms cannot pack together in as dense a manner, yielding a lower mass density.

Question 2:

Calculate the force of attraction between a K+ and an O2- ion the centers of which are separated by a distance of 1.5 nm.

The constant A, in the equation of attractive energy between two atoms is determined using:

$$A = \frac{1}{4\pi\epsilon_0} \left(Z_1 e \right) \left(Z_2 e \right)$$

Where ϵ_0 is the permittivity of a vacuum (8.85 × 10⁻¹² F/m), Z₁ and Z₂ are the valences of the two ion types, and e is the electronic charge (1.602 × 10⁻¹⁹ C).

Solution:

$$\begin{split} A &= \frac{1}{4\pi\epsilon_0} \left(Z_1 e \right) \left(Z_2 e \right) = \frac{1 \times 2 \times (1.602 \times 10^{-19} C)^2}{4 \times \pi \times 8.85 \times 10^{-12} F/m} = 9.23 \times 10^{-28} \\ attraction \ force: F_A &= \frac{dE_A}{dr} = \frac{d\left(-\frac{A}{r}\right)}{dr} = \frac{A}{r^2} \\ r &= 1.5 \times 10^{-9} m \\ \Rightarrow \ F_A &= \frac{9.23 \times 10^{-28}}{(1.5 \times 10^{-9})^2} = 2.05 \times 10^{-10} N \end{split}$$