Name:

Student ID:

Question 1

From the figures given below, determine the indices of the two planes and any two directions of your choice.

Solution

 Planes:
 A: (4 0 3)
 B: ($\overline{1} \ \overline{1} \ 2$)

 Directions:
 A: [$\overline{4} \ 3 \ 0$]
 B: [$2 \ \overline{3} \ 2$]
 C: [$1 \ \overline{3} \ \overline{3}$]
 D: [$1 \ 3 \ \overline{6}$]

Question 2

- a) Calculate the planar atomic density in atoms per square millimeter for (110) crystal plane in FCC gold, which has the atomic radius of 0.1442 nm.
- b) Calculate the atomic packing factor for a metal that has a cubic unit cell with a lattice parameter of 0.288 nm, density of 7.20 g/cm³, and an atomic weight of 52.0g/mole. Justify your answer.

Solution

a)

Equation (3.10), planar density: $\rho_p = \frac{number \ of \ atoms \ centered \ on \ a \ plane}{area \ of \ plane}$

For FCC unit cell, $a_0=4r/\sqrt{2}$

 $4 \times 0.1442 = \sqrt{2}a \rightarrow a = 0.4078 \text{ nm}$

No of atoms in the plane: 4 corners $\times 1/4$ atom per corner + $\frac{1}{2}$ atoms $\times 2$ (in mid position) = 2 atoms

The area of the plane is $(\sqrt{2} a)(a) = \sqrt{2} a^2$

$$\rho_p = \frac{2}{\sqrt{2} \ (0.40788 \times 10^{-9})^2} = 8.5 \times 10^{12} \ atom/mm^2$$

ı		١
ι))

We know: $r = \frac{nA}{V_C N_A}$ which n,A,V_C and N_A are number of atoms in each unit cell, atomic

weight, volume of unite cell and Avogadro's number, respectively. So:

Number of atoms =
$$\frac{7.2 (0.288 10^{-9}) (6.02 10^{23})}{52} = 1.99$$
 @2

[1 point]

So, it is BCC structure [1 point] and atomic packing factor is 0.68 [1 point].