Name:

Student ID:

Question 1

From the figures given below, determine the indices of the two planes and any two directions of your choice.

Solution

Planes: $A:\left(\begin{array}{lll}4 & 0\end{array}\right) \quad B:(\overline{1} \overline{1} 2)$
Directions: A: $\left.\begin{array}{lll}\overline{4} & 3 & 0\end{array}\right]$
B: $\left[\begin{array}{lll}2 & \overline{3} & 2\end{array}\right] \quad \mathrm{C}:\left[\begin{array}{lll}1 & \overline{3} & \overline{3}\end{array}\right]$
D: $\left[\begin{array}{ll}13 & \overline{6}\end{array}\right]$

Question 2

a) Calculate the planar atomic density in atoms per square millimeter for (110) crystal plane in FCC gold, which has the atomic radius of 0.1442 nm .
b) Calculate the atomic packing factor for a metal that has a cubic unit cell with a lattice parameter of 0.288 nm , density of $7.20 \mathrm{~g} / \mathrm{cm}^{3}$, and an atomic weight of $52.0 \mathrm{~g} / \mathrm{mole}$. Justify your answer.

Solution

a)

Equation (3.10), planar density: $\rho_{p}=\frac{\text { number of atoms centered on a plane }}{\text { area of plane }}$
For FCC unit cell, $\mathrm{a}_{0}=4 \mathrm{r} / \sqrt{2}$

$$
4 \times 0.1442=\sqrt{2} a \rightarrow \mathrm{a}=0.4078 \mathrm{~nm}
$$

No of atoms in the plane: 4 corners $\times 1 / 4$ atom per corner $+1 / 2$ atoms $\times 2($ in mid position $)=2$ atoms

The area of the plane is $(\sqrt{2} a)(a)=\sqrt{2} a^{2}$

$$
\rho_{p}=\frac{2}{\sqrt{2}\left(0.40788 \times 10^{-9}\right)^{2}}=8.5 \times 10^{12} \mathrm{atom} / \mathrm{mm}^{2}
$$

b)

We know: $\rho=\frac{n A}{V_{C} N_{A}}$ which $\mathrm{n}, \mathrm{A}, \mathrm{V}_{\mathrm{C}}$ and N_{A} are number of atoms in each unit cell, atomic weight, volume of unite cell and Avogadro's number, respectively. So:

$$
\text { Number of atoms }=\frac{7.2 \times\left(0.288 \times 10^{-9}\right) \times\left(6.02 \times 10^{23}\right)}{52}=1.99 \cong 2
$$

[1 point]
So, it is BCC structure [1 point] and atomic packing factor is 0.68 [1 point].

