MECH 221

Name:

Student ID:

Question 1 {5 marks}

An Aluminum-Copper alloy initially containing 0.4 wt% Cu is placed and held in an atmosphere that gives a constant surface Aluminum concentration of 1.0 wt%. If after 43 h the concentration of copper is 0.55 wt% at a position 4.0 mm below the surface, determine the diffusion coefficient of copper in aluminum for the treatment conditions.

Non-Steady State Diffusion **à** $\frac{C(x,t)-C_0}{C_s-C_0} = 1 - erf\left(\frac{x}{2\sqrt{Dt}}\right)$

Solution

Data from the question: $C_0 = 0.4 \text{ wt\%}$ $C_s = 1.0 \text{ wt\%}$ $C_x = 0.55 \text{ wt\%}$ t = 43 h $x = 4.0 \text{ mm} = 4x10^{-3} \text{ m}$

$$\frac{C(x,t) - C_0}{C_s - C_0} = 1 - erf\left(\frac{x}{2\sqrt{Dt}}\right) \to \frac{0.55 - 0.4}{1 - 0.4} = 1 - erf(z)$$
$$\therefore erf(z) = 0.75$$

Now we must now determine from Table 5.1 the value of z for which the errors function is 0.75. An interpolation is necessary as follows:

Z	erf(z)	
0.80	0.7421	
0.85	0.7707	

z - 0.8	0.75 - 0.7421	7 - 0.81
$\overline{0.85 - 0.8}^{-}$	0.7707 - 0.7421	z = 0.01

Now solve for finding D:

$$\therefore D = \left(\frac{x^2}{4z^2t}\right) = \left(\frac{(4x10^{-3}m)^2}{4(0.81)^2(43h)}\right) \cdot \frac{1h}{3600s} = 3.94x10^{-11} m^2/s$$

Question 2 {5 marks}

The following data were collected from a 12.8 mm diameter test specimen of an Aluminum alloy (the gauge length, $l_0 = 50.800$ mm). At fracture, the minimum diameter at the neck was 9.40 mm and fracture load was 36400 N. Using the given plot calculate:

a) The modulus of elasticity;

b) The 0.2% offset yield strength;

c) The tensile strength;

d) Ductility in terms of the % elongation;

e) The true stress at fracture; and

Briefly explain how each value is obtained.

<u>Solution</u>

a) The elastic modulus is the slope in the linear elastic region (Equation 6.10) as

 $E = \frac{Ds}{De} = \frac{200 \text{ MPa} - 0 \text{ MPa}}{0.0032 - 0} = 62.5 \text{ '} 10^3 \text{ MPa} = 62.5 \text{ GPa}$

b) For the yield strength, the 0.002 strain offset line is drawn dashed. It intersects the stress-strain curve at approximately 285 MPa.

c) The tensile strength is approximately 370 MPa, corresponding to the maximum stress on the complete stress-strain plot.

d) The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-hundred. The total fracture strain at fracture is 0.165; subtracting out the elastic strain (which is about 0.005) leaves a plastic strain of 0.160. Thus, the ductility is about 16%EL.e) True stress at fracture:

$$\sigma_T = \frac{F}{A_i} = \frac{36400}{(\pi/4)(9.40)^2} = 524.51 \, MPa$$

