Name:

Student ID:

Question 1 \{5 marks $\}$
(i) Cite the phases that are present and the phase compositions for the following alloys:
2.12 kg Zn and 1.88 kg Cu at $500^{\circ} \mathrm{C}$
(ii) Determine the relative amounts (in terms of mass fractions) of the phases for this alloy at $500^{\circ} \mathrm{C}$.

Solution:

For an alloy composed of 2.12 kg Zn and 1.88 kg Cu and at $500^{\circ} \mathrm{C}$, we must first determine the Zn and Cu concentrations, as

$$
\begin{aligned}
& C_{\mathrm{Zn}}=\frac{2.12 \mathrm{~kg}}{2.12 \mathrm{~kg}+1.88 \mathrm{~kg}} \times 100=53 \mathrm{wt} \% \\
& C_{\mathrm{Cu}}=\frac{1.88 \mathrm{~kg}}{2.12 \mathrm{~kg}+1.88 \mathrm{~kg}} \times 100=47 \mathrm{wt} \%
\end{aligned}
$$

That portion of the Cu-Zn phase diagram (Figure 9.19) that pertains to this problem is shown below; the point labeled "E" represents the $53 \mathrm{wt} \% \mathrm{Zn}-47 \mathrm{wt} \% \mathrm{Cu}$ composition at $500^{\circ} \mathrm{C}$.

(i) Point E lies within the $\beta+\gamma$ phase field. A tie line has been constructed at $500^{\circ} \mathrm{C}$; its intersection with the $\beta / \beta+\gamma$ phase boundary is at $49 w t \% \mathrm{Zn}$, which corresponds to the composition of the β phase. Similarly, the tie-line intersection with the $\beta+\gamma / \gamma$ phase boundary
occurs at $58 \mathrm{wt} \% \mathrm{Zn}$, which is the composition of the \curlyvee phase. Thus, the phase compositions are as follows:

$$
\begin{aligned}
& C_{\beta}=49 w t \% Z n-51 w t \% C u \\
& C_{\gamma}=58 w t \% Z n-42 w t \% C u
\end{aligned}
$$

(ii) Inasmuch as the composition of the alloy $\mathrm{C}_{0}=53 \mathrm{wt} \% \mathrm{Zn}$ and application of lever rule leads to

$$
\begin{aligned}
& W_{\beta}=\frac{C_{\gamma}-C_{0}}{C_{\gamma}-C_{\beta}}=\frac{58-53}{58-49}=0.56 \\
& W_{\gamma}=\frac{C_{0}-C_{\beta}}{C_{\gamma}-C_{\beta}}=\frac{53-49}{58-49}=0.44
\end{aligned}
$$

Question 2 \{5 M arks $\}$
Consider 2.5 kg of austenite containing $0.65 \mathrm{wt} \% \mathrm{C}$, cooled to just below $727^{\circ} \mathrm{C}$.
(a) How many kilograms each of total ferrite and cementite form?
(b) How many kilograms each of pearlite and the proeutectoid phase form?

Solution:

(a) For this portion of the problem, we are asked to determine how much total ferrite and cementite form. For ferrite, application of lever rule yields
$\mathrm{W}_{\alpha}=\left(\mathrm{C}_{\mathrm{Fe} 3 \mathrm{C}}-\mathrm{C}_{0}\right) /\left(\mathrm{C}_{\text {Fe3C }}-\mathrm{C}_{\alpha}\right)=(6.70-0.65) /(6.70-0.022)=0.91$
which corresponds to $(0.91)(2.5 \mathrm{~kg})=2.275 \mathrm{~kg}$ of total ferrite.
Similarly, for total cementite,
$W_{\text {Fe3C }}=\left(C_{0}-C_{\alpha}\right) /\left(C_{\text {Fe3C }}-C_{\alpha}\right)=(0.65-0.022) /(6.70-0.022)=0.09$
Which corresponds to $(0.09)(2.5 \mathrm{~kg})=0.225 \mathrm{~kg}$ of total cementite.
(b) Now consider the amounts of pearlite and proeutectoid ferrite. Using Equation 9.20
$W_{p}=\left(C_{0}{ }^{\prime}-0.022\right) / 0.74=(0.65-0.022) / 0.74=0.85$
This corresponds to $(0.85)(2.5 \mathrm{~kg})=2.12 \mathrm{~kg}$ of pearlite. Also, from Equation 9.21, $W_{\alpha^{\prime}}=(0.76-0.65) / 0.74=0.15$
Or, there are $(0.15)(2.5 \mathrm{~kg})=0.38 \mathrm{~kg}$ of proeutectoid ferrite.

