MECH 221

Equation Sheet
Given in Final Exam
The following equations will be given to you during the exam in Mech221.
It is strongly suggested that you know how to use the following equations and know what they mean.
We will assume however that you know the normal general geometric formulae (eg. Area of circle) and physical formulae (eg. mass $=$ density x volume).

$$
F_{\text {Net }}=F_{A}+F_{R} \quad E=\int F d r \quad E_{\text {Net }}=E_{A}+E_{R} \quad \rho=\frac{n A}{V_{c} N_{A}} \quad n \lambda=2 d_{h k l} \sin \theta
$$

$$
\text { \%ionicity }=\left\{1-\exp \left(-0.25\left[X_{A}-X_{B}\right]^{2}\right)\right\} \times 100 \quad N_{v}=N \exp \left(\frac{-Q}{k T}\right) \quad D=D_{o} \exp \left(\frac{-Q}{R T}\right)
$$

$$
\frac{C_{X}-C_{0}}{C_{s}-C_{0}}=1-e r f\left(\frac{x}{2 \sqrt{D t}}\right) \quad d_{h k l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}} \quad N=2^{n-1} \quad J=-\frac{M}{A t}
$$

$$
\begin{array}{lll}
J=-D \frac{d c}{d x} & \frac{d C}{d t}=D \frac{d^{2} c}{d x^{2}} & C_{1}=\frac{m_{1}}{m_{1}+m_{2}} \times 100 \\
\tau=\frac{F}{A_{0}}=G \gamma & \% E l=\left(\frac{l_{f}-l_{0}}{l_{o}}\right) \times 100 & E=2 G(1+v) \\
v=-\frac{\varepsilon_{x}}{\varepsilon_{z}}=-\frac{\varepsilon_{y}}{\varepsilon_{z}} & \% A R=\left(\frac{A_{o}-A_{i}}{A_{o}}\right) \times 100 & U_{r}=\frac{1}{2} \sigma_{y} \varepsilon_{y}=\frac{\sigma_{y}^{2}}{2 E} \\
\tau=G \gamma & \% \text { crystallinity }=\frac{\rho_{c}\left(\rho_{s}-\rho_{a}\right)}{\rho_{s}\left(\rho_{c}-\rho_{a}\right)} & T S=T S_{\infty}-\frac{A}{\overline{M_{n}}} \\
K_{1 c}=Y \sigma \sqrt{\pi a} & \sigma_{f s}=\sigma_{o} \exp (-n P) & E=E_{o}\left(1-1.9 P+0.9 P^{2}\right)
\end{array}
$$

$$
\sigma_{f s}=\frac{3 F_{f} L}{2 b d^{2}} \quad \sigma_{f s}=\frac{F_{f} L}{\pi R^{3}} \quad E=\frac{F}{\delta} \frac{L^{3}}{4 b d^{3}} \quad E=\frac{F}{\delta} \frac{L^{3}}{12 \pi R^{4}}
$$

$$
\Delta \mathrm{V}=\mathrm{I} \mathrm{R} \quad \mathrm{R}=\frac{\rho \mathrm{L}}{\mathrm{~A}}=\frac{\mathrm{L}}{\mathrm{~A} \sigma}
$$

$$
\rho_{\text {total }}=\rho_{\text {thermal }}+\rho_{\text {impurity }}+\rho_{\text {def }} \quad \rho_{\text {thermal }}=\rho_{o}+a T \quad \rho_{\text {impurity }}=A c_{i}\left(1-c_{i}\right)
$$

$$
\sigma=\mathrm{n}|\mathrm{e}| \mu_{\mathrm{e}}+\mathrm{p}|\mathrm{e}| \mu_{\mathrm{h}} \quad \mathbf{C}=\mathbf{q} / \Delta \mathbf{T}=\delta \mathbf{q} / \mathbf{d T}[\mathrm{J} / \mathrm{mol}-\mathrm{K}] \quad \mathrm{C}_{\mathrm{v}}=\left(\frac{\delta \mathrm{q}}{\mathrm{dT}}\right)_{\mathrm{v}} \quad \mathrm{C}_{\mathrm{P}}=\left(\frac{\delta \mathrm{q}}{\mathrm{dT}}\right)_{\mathrm{p}}
$$

$$
\frac{\Delta \mathrm{L}}{\mathrm{~L}_{\mathrm{o}}}=\alpha\left(\mathbf{T}_{\mathbf{2}}-\mathbf{T}_{\mathbf{1}}\right) \quad \mathrm{q}=-\mathrm{k} \frac{\mathrm{dT}}{\mathrm{dx}} \quad H=\frac{N I}{L} \quad B=\mu H \quad \mu_{r}=\frac{\mu}{\mu_{0}}
$$

$$
B=\mu_{0} H+\mu_{0} M \quad M=\chi_{m} H \quad \chi_{m}=\mu_{r}-1
$$

$$
\mathrm{E}=\mathrm{h} v=\mathrm{hc} / \lambda \quad \mathrm{I}_{0}=\mathrm{I}_{\mathrm{T}}+\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{P}}
$$

Constants

$\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$ atoms $/ \mathrm{mol} \quad$ speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{k}=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{atom} \quad$ Planck's constant $=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}=4.13 \times 10^{-15} \mathrm{eV}-\mathrm{s}$
$\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$

