1-
Determine the Miller indices for the directions in the cubic unit cell shown.

Solution: $\quad A: 0,0,1-1,0,0=-1,0,1 \quad=[\overline{1} 01]$
$B: 1,0,1-1 / 2,1,0=1 / 2,-1,1=[1 \overline{2} 2]$
C: $1,0,0-0,3 / 4,1=1,-3 / 4,-1=[4 \overline{34}]$
D: $0,1,1 / 2-0,0,0=0,1,1 / 2=[021]$

2- Determine the plane indices for the planes shown below.

Solution

(W) $(A)(1 \overline{1} 1)$
(B) (010)
(C) $(10 \overline{2})$
(X) $(A)(\overline{3} 64)$
(B) (3 $\overline{4} 0)$
(C)(346)

3-
Draw the following directions and planes

a)	$[101]$	g)	(011)
b)	$[0 \overline{1} 0]$	h)	(102)
c)	$[12 \overline{2}]$	j)	(002)
d)	$[301]$	j)	$(1 \overline{3} 0)$
e)	$[102]$	k)	$(\overline{2} 12)$
f)	$[2 \overline{1} 3]$	\square	$(3 \overline{12})$

Solution:

(4) Derive linear density expressions for FCC [111] direction in terms of the atomic radius R.

An FCC unit cell within which is drawn a [111] direction is shown below.

For this [111] direction, the vector shown passes through only the centers of the single atom at each of its ends, and, thus, there is the equivalence of 1 atom that is centered on the direction vector. The length of this direction vector is denoted by z in this figure, which is equal to

$$
z=\sqrt{x^{2}+y^{2}}
$$

where x is the length of the bottom face diagonal, which is equal to $4 R$. Furthermore, y is the unit cell edge length, which is equal to $2 R \sqrt{2}$ (Equation 3.1). Thus, using the above equation, the length z may be calculated as follows:

$$
z=\sqrt{(4 R)^{2}+(2 R \sqrt{2})^{2}}=\sqrt{24 R^{2}}=2 R \sqrt{6}
$$

Therefore, the expression for the linear density of this direction is

$$
\begin{gathered}
\mathrm{LD}_{111}=\frac{\text { number of atoms centered on [111] direction vector }}{\text { length of [111] direction vector }} \\
=\frac{1 \text { atom }}{2 R \sqrt{6}}=\frac{1}{2 R \sqrt{6}}
\end{gathered}
$$

(5) Derive planar density expressions for FCC (111) plane in terms of the atomic radius R.

That portion of an FCC (111) plane contained within a unit cell is shown below.

There are six atoms whose centers lie on this plane, which are labeled A through F. One-sixth of each of atoms A, D, and F are associated with this plane (yielding an equivalence of one-half atom), with one-half of each of atoms B, C, and E (or an equivalence of one and one-half atoms) for a total equivalence of two atoms. Now, the area of the triangle shown in the above figure is equal to one-half of the product of the base length and the height, h. If we consider half of the triangle, then

$$
(2 R)^{2}+h^{2}=(4 R)^{2}
$$

which leads to $h=2 R \sqrt{3}$. Thus, the area is equal to

$$
\text { Area }=\frac{4 R(h)}{2}=\frac{(4 R)(2 R \sqrt{3})}{2}=4 R^{2} \sqrt{3}
$$

And, thus, the planar density is

$$
\begin{gathered}
\mathrm{PD}_{111}=\frac{\text { number of atoms centered on (111) plane }}{\text { area of (111) plane }} \\
=\frac{2 \text { atoms }}{4 R^{2} \sqrt{3}}=\frac{1}{2 R^{2} \sqrt{3}}
\end{gathered}
$$

