- 1. What are the differences between thermoplastics and thermosets? Give an example of a thermoplastic and of a thermoset.
- 2. Outline the processing principles and describe a particular fabrication process for three of the following materials, giving any advantages/disadvantages of the process where possible:
 - a) Soda-lime (container) glass.
 - Engineering ceramics (e.g. alumina, silicon nitride). b)
 - Thermoplastics. C)
 - d) Thermosets.
 - e) Elastomers

12

- b) On the Figure indicate the Melting Point and the glass transition temperature.
- Explain what happens to each of the ideal polymers as they cool down from high temperature. C)
- Indicate on the graph the type of behaviour that you would expect from a semi-crystalline polymer. d)

e) A sample of polymer has a density of 2.144 g.cm⁻³. The densities of the completely amorphous structure and the completely crystalline structure of this polymer are respectively, 2.000 g.cm⁻³ and 2.301 g.cm⁻³. What is the percentage crystallinity of the sample?

- 4. What is a copolymer? Describe three of the types of copolymers that can form (use diagrams to help your description).
- 5. Describe the tensile mechanical behaviour of the following materials at room temperature, using diagrams where necessary. Include factors such as stiffness, yielding, tensile strength, fracture, elastic and/or plastic deformation, etc.
 - a) a typical metal
 - b) a typical ceramic
 - c) a typical thermoplastic.

Material	Yield Strength (MPa)	Tensile Strength (MPa)	Strain at Fracture	Fracture Strength (MPa)	Elastic Modulus (GPa)
А	310	340	0.23	265	210
В	100	120	0.40	105	150
С	415	550	0.15	500	310
D	700	850	0.14	720	210
E	Fractures before yielding			650	350

8. Below are tabulated the tensile stress-strain data for several materials.

- a) Which of these materials will experience the greatest percent area reduction? Why?
- b) Which of these materials is the strongest? Why?
- c) Which of these materials is the toughest? Why?
- d) Which of these materials is the stiffest? Why?
- e) Which of these materials has the highest modulus of resilience? Why?
- 9 (i) Consider a 10 kg sample of an iron-carbon alloy and at a temperature just below the eutectoid temperature. In this sample the mass of total ferrite is 8.68 kg.
 - a) What is the proeutectoid phase in this alloy? Why?
 - b) Calculate the mass fraction of pearlite in this alloy at a temperature just below the eutectoid temperature.
 - c) Schematically sketch and label the microstructure.
- (ii) Is it possible to have an iron-carbon alloy for which the mass fractions of total ferrite and proeutectoid ferrite are 0.966 and 0.692, respectively? Why or Why not?

- 10. A ceramic material, in the form of a circular bar with radius 5mm, is tested in 3pt flexure. The length between the support points is 50mm.
 - a) If the load required to cause fracture is 2380N, determine the flexure strength of this ceramic.
 - b) If this material has a fracture toughness K_{IC} , of 4.5 MNm^{-3/2} what is the size of the longest <u>internal</u> deflect? Assume the geometric parameter Y is equal to 1.
 - c) If this material has value for σ_0 and n of 441MPa and 3.75 respectively, what is the fraction porosity of this material?

Knowing that the Modulus of Elasticity for the non porous material, E_0 , is 400 GPa, what is the modulus of this porous ceramic?