OUTLINE

- INTRODUCTION
- ELECTRICAL CONDUCTION
- ENERGY BAND STRUCTURE IN SOLIDS
- INSULATORS AND SEMICONDUCTORS
- METALS: ELECTRON MOBILITY
- INFLUENCE OF TEMPERATURE
- INFLUENCE OF IMPURITY
- SEMICONDUCTORS
- P-N RECTIFYING JUNCTION
- SUMMARY

INTRODUCTION

- Scanning electron microscope images of an IC:

 ![Scanning electron microscope images](image)

 From Fig. 18.0 and 18.25, Callister 6e.

 - In SEM the electron beam causes the surface atoms to emit X-rays.
 - It is possible to filter all the rays but the ones from the atom of interest.
 - When these rays are projected on a cathode tube screen, they will generate white dots – *dot map*

ELECTRICAL CONDUCTION

- Ohm's Law:
 \[V = IR \]

 - \(V \): voltage drop (volts)
 - \(I \): current (amps)
 - \(R \): resistance (Ohms)

- Resistivity, \(\rho \) and Conductivity, \(\sigma \):
 \(\sigma \) is geometry-independent forms of Ohm's Law

 \[\sigma = \frac{1}{\rho} \]

 \(\rho \): resistivity (Ohm-m)
 \(\sigma \): Conductivity
 \(J \): current density

- Resistance:
 \[R = \frac{\rho L}{A} = \frac{L}{A \sigma} \]

CONDUCTIVITY: COMPARISON

- Solid materials exhibit a very wide range of electrical conductivity
 - ………… range compared to other phys. properties.
 - Materials can be classified according to their electrical conductivity.

<table>
<thead>
<tr>
<th>Material</th>
<th>Conductivity (Ohm-m)^{-1} at room temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>METALS</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>6.8 x 10^7</td>
</tr>
<tr>
<td>Copper</td>
<td>6.0 x 10^7</td>
</tr>
<tr>
<td>Iron</td>
<td>1.0 x 10^7</td>
</tr>
<tr>
<td>CERAMICS</td>
<td></td>
</tr>
<tr>
<td>Soda-lime glass</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>Concrete</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>Aluminum oxide</td>
<td><10^{-13}</td>
</tr>
<tr>
<td>SEMICONDUCTORS</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>4 x 10^{-4}</td>
</tr>
<tr>
<td>Germanium</td>
<td>2 x 10^{-6}</td>
</tr>
<tr>
<td>GaAs</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>POLYMERS</td>
<td></td>
</tr>
<tr>
<td>Polystyrene</td>
<td><10^{-14}</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>10^{-15} - 10^{-17}</td>
</tr>
<tr>
<td>INSULATORS</td>
<td></td>
</tr>
</tbody>
</table>

Selected values from Tables 18.1, 18.2, and 18.3, Callister 6e.
EXAMPLE

A copper wire 100 m long must experience a voltage drop of less than 1.5 V when a current of 2.5 A passes through it. If $\sigma = 6.07 \times 10^7$ (Ohm-m)$^{-1}$, compute the minimum diameter of the wire.

\[\Delta V \]

\[\text{Cu wire} \]

\[I = 2.5 A \]

\[e^- \]

\[100 m \]

Energy Band Structure in Solids

The electrical properties of a solid material are a consequence of its arrangement of the outermost electron bands and the way in which they are filled with electrons.

The various possible electron band structures in solids at 0 K:

- Metals such as copper, in which electron states are available above and adjacent to filled states, in the same band.
- Insulators: the filled valence band is separated from the empty conduction band by a relatively large band gap (2 eV).
- Semiconductors: same as for insulators except that the band gap is relatively small (2 eV).

CONDUCTION & ELECTRON TRANSPORT

- Only electrons with energies greater than the Fermi energy E_F (i.e., free electrons) may be acted on and accelerated when the electric field is applied.
- Holes have energies less than E_F and also participate in electronic conduction.
- The electrical conductivity depends on the numbers of free electrons and holes.

- Metals:
 - Thermal energy (kT) puts many electrons into a higher energy state.
 - Energy States:
 - For metals the nearby energy states are accessible by thermal fluctuations.

- Energy States:
 - For metals the nearby energy states are accessible by thermal fluctuations.

Free electrons are different from the electron sea! They do not become truly free until they have the required excitation ($E > E_F$).

INSULATORS AND SEMICONDUCTORS

- Insulators:
 - Higher energy states not accessible due to gap.

- Semiconductors:
 - Higher energy states separated by a smaller gap.

The …… the band gap, the …… is the electrical conductivity at a given temp.
• Imperfections resistivity
 - grain boundaries
 - dislocations
 - impurity atoms
 - vacancies

These act to scatter electrons so that they take a less direct path.

• Resistivity increases with temp., impurity concentration and %CW

\[\rho_{\text{total}} = \rho_{\text{thermal}} + \rho_{\text{impurity}} + \rho_{\text{def}} \]

Where \(\rho_o \) and \(a \) are constants for each metal.

\[\rho_{\text{thermal}} = \rho_o + aT \]

\(\rho_{\text{thermal}} \) rule

T \(\rightarrow \) vibration and lattice defects \(\rightarrow \) electron scattering

\%CW \(\rightarrow \) dislocation concentration \(\rightarrow \) resistivity

Ni atoms scatter the electrons \(\rightarrow \rho \uparrow \)

For a two phase alloy a rule of mixtures applies and the impurity resistivity can be estimated as:

\[\rho_{\text{impurity}} = \rho_a V_a + \rho_{\beta} V_{\beta} \]

V’s and \(\rho \)'s are the volume fraction and individual resistivities for each phase.

Estimate the electrical conductivity of a Cu-Ni alloy that has a yield strength of 125 MPa.

For every electron excited into the conduction band there is left behind a missing electron -………

\[\sigma_{\text{undoped}} \propto e^{-\frac{E_{\text{gap}}}{kT}} \]
Electrical Conductivity given by:

\[\sigma = n_e \mu_e + p_h \mu_h \]

- \(n_e \) and \(p_h \) are the number of electrons and holes, respectively.
- \(\mu_e \) and \(\mu_h \) are the electron and hole mobilities, respectively.

\# electrons/m\(^3\) \hspace{1cm} \# holes/m\(^3\) \hspace{1cm} electron mobility \hspace{1cm} hole mobility

In intrinsic semiconductors \(n_e = p_h \)

Electron and Hole Migration

- No applied electric field
- Electron and hole pair creation
- Applied electric field
- Electron and hole pair migration

Adapted from Fig. 18.10, Callister 6e.

Electron Conductivity
- Occurs when impurities are added with more # valence electrons than the host (e.g., doping Si with P or B)

Hole Conductivity
- Occurs when impurities are added with fewer # valence electrons than the host (e.g., doping Si with B or Al)

Intrinsic vs Extrinsic Conduction

Intrinsic:
- \(n \neq p \)
- Occurs when impurities are added with a different # valence electrons than the host (e.g., doping Si with P or B)

Extrinsic:
- \(n \approx p \)
- No applied electric field
- Electron and hole pair migration

N-type Extrinsic: \(n >> p \)
- Phosphorus atom
- Donor impurities
- Group V: P, As, Sb
- Donor impurities have one extra electron
- Donor impurities donate an electron to Si

P-type Extrinsic: \(p >> n \)
- Boron atom
- Acceptor impurities
- Group III: B, Al, In, Ga
- Acceptor impurities have one fewer electrons
- Acceptor impurities accept electrons from Si

Semiconductors: Summary

- **Intrinsic Conductivity** (pure materials): electron-hole pairs
- Conductivity: \(Si \ 4 \times 10^{-4} \ (\Omega \ m)^{-1} \) vs. \(Fe \ 1 \times 10^{7} \ (\Omega \ m)^{-1} \)
- Electron has to overcome the energy gap \(E_g \)

Intrinsic conductivity strongly depends on temperature and as-present impurities

- **Extrinsic Conductivity**
 - Doping: substituting a Si atom in the lattice by an impurity atom (............) that has one extra or one fewer valence electrons
 - **Donor** impurities have one extra electron (group V: P, As, Sb), donate an electron to Si.
 - **Acceptor** impurities have one fewer electrons (group III: B, Al, In, Ga), accept electrons from Si which creates holes.
Doped Silicon:
- Dopant concentration \uparrow - σ \uparrow
- Reason: imperfection sites lower the activation energy to produce mobile electrons.

<table>
<thead>
<tr>
<th>Doping Level</th>
<th>Electrical Conductivity (σ)</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0013 at% B</td>
<td>10^{-2} Ohm-m</td>
<td>10^{21} m$^{-3}$ of a n-type donor impurity (such as P).</td>
</tr>
<tr>
<td>0.0052 at% B</td>
<td>10^{-1} Ohm-m</td>
<td>for $T < 100K$: thermal energy insufficient to excite electrons.</td>
</tr>
<tr>
<td>Pure (undoped)</td>
<td>10^0 Ohm-m</td>
<td>for $150K < T < 450K$: carrier flow away from p-n junction; carrier conc. Greatly reduced at junction; little current flow.</td>
</tr>
</tbody>
</table>

Adapted from Fig. 19.15, Callister 5e.

• Intrinsic vs Extrinsic conduction:
- extrinsic doping level: 10^{21}/m3 of a n-type donor impurity (such as P).
- for $T < 100K$: thermal energy insufficient to excite electrons.
- for $150K < T < 450K$: carrier flow away from p-n junction; carrier conc. Greatly reduced at junction; little current flow.
- for $T >> 450K$: carrier flow through p-type and n-type regions; holes and electrons recombine at p-n junction; current flows.

Adapted from Fig. 18.16, Callister 6e.

SUMMARY

• Electrical resistance is:
 - a geometry and material dependent parameter.

• Electrical conductivity and resistivity are:
 - material parameters and geometry independent.

• Conductors, semiconductors, and insulators...
 - different in whether there are accessible energy states for electrons.

• For metals, conductivity is increased by
 - reducing deformation
 - reducing imperfections
 - decreasing temperature.

• For pure semiconductors, conductivity is increased by
 - increasing temperature
 - doping (e.g., adding B to Si (p-type) or P to Si (n-type)).