Optical Properties

Outline

- Introduction
- Basic Concepts
 - absorption
 - reflection
 - transmission
 - refraction
- Applications
 - Iuminescence and fluorescence
 - Laser and fiber optics

Dr.	M.	Medrai

Mech. Eng. Dept. - Concordia University

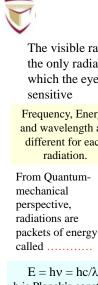
MECH 221 lecture 24/1

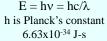
Introduction

The study of the optical properties of materials is a huge field and we will only be able to scratch the surface of this science.

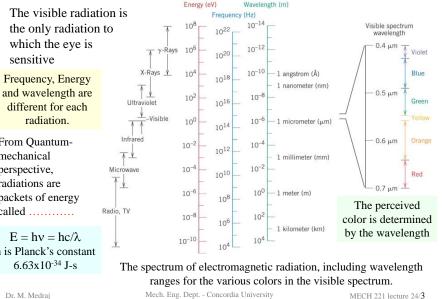
> Magnetic field Electric field

- Light is an wave:
- with a velocity given by
- $c = 1/\sqrt{(\epsilon_0 \mu_0)} = 3 \times 10^8 \text{ m/s}$
- ε₀ is the electric permittivity of a vacuum
- μ_0 is the magnetic permeability of a vacuum
- **c** = λv = wavelength*frequency


In view of this, it is not surprising that the electric field component of the light waves interact with electrons.


Optical properties: are the materials responses to exposure to electromagnetic radiation especially to *visible* light.

Dr. M. Medraj


Mech. Eng. Dept. - Concordia University

MECH 221 lecture 24/2

Introduction

Light Interactions with Solids

- Because of conservation of energy, we can say that: $\mathbf{I}_0 = \mathbf{I}_T + \mathbf{I}_A + \mathbf{I}_R$
 - I_o is the intensity (W/m²) of incident light and subscripts refer to transmitted, absorbed or reflected

Reflected: IR

Incident: In

- Alternatively **T + A + R = 1** where T. A. and R are fractions of the amount of incident light.
 - $T = I_T/I_0$, etc.
- · So materials are broadly classified as
 - transparent: relatively little absorption and reflection
 - translucent: light scatters within the material
 - opaque: relatively little transmission

Transmitted: IT

Absorbed: IA

Generally, metals are opaque, electrical insulators can be made transparent and some semiconductors are transparent. Mech. Eng. Dept. - Concordia University

Dr. M. Medraj

OPTICAL PROPERTIES OF METALS: ABSORPTION

- Absorption of photons by electron transition:
- Metals have a fine succession of energy states.
- This structure for metals means that almost any frequency of light can be absorbed.
- Since there is a very high concentration of electrons, practically all the light is absorbed within about 0.1µm of the surface.
- Metal films thinner than this will transmit light *e.g. gold coatings on space suit helmets*

- nuclei all materials
- electrons metals and small band-gap materials

Energy of electron

Dr. M. Medraj

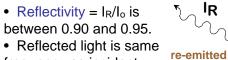
Mech. Eng. Dept. - Concordia University

MECH 221 lecture 24/5

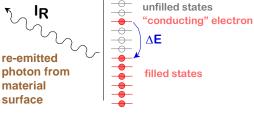
OPTICAL PROPERTIES OF METALS: ABSORPTION

- Penetration depths for some materials are:
 - water: 32 cm
 - glass: 29 cm
 - graphite: 0.6 μm
 - gold: 0.15µm
- So what happens to the excited atoms in the surface layers of metal atoms?
 - they relax again, a photon
- The energy lost by the descending electron is the same as the one originally incident
- So the metal reflects the light very well about for most metals
 - metals are both opaque and reflective
 - the remaining energy is usually lost as heat

Dr. M. Medraj


Mech. Eng. Dept. - Concordia University

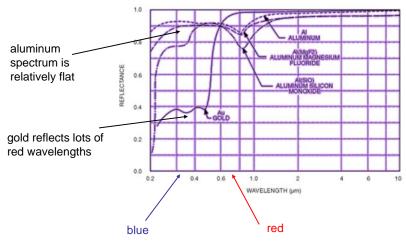
MECH 221 lecture 24/6



Optical Properties Of Metals: Reflection

• Electron transition emits a photon.

- frequency as incident. • Metals appear
- reflective (shiny)!


Adapted from Fig. 21.4(b), Callister 6e.

- The metal appears "silvery" since it acts as a perfect mirror
- OK then, why are gold and copper not silvery?
 - because the band structure of a real metal is not always as simple as we have assumed; there can be some empty levels below E_F and the energy re-emitted from these absorptions is not in the visible spectrum
- Metals are more transparent to very high energy radiation (x-ray & γray).

OPTICAL PROPERTIES OF METALS: REFLECTION

Reflection spectra for gold and aluminum are:

Dr. M. Medraj

Selected Absorption: Nonmetals

• Absorption by electron transition occurs if $h_V > E_{gap}$

Semiconductors and blue light: hv= 3.1eV insulators behave red light: hv=1.7eV essentially the same way, the only difference incident photon being in the size of the energy hv l_o


- If Egap < 1.8eV, full absorption; color is black (Si, GaAs)
- If Egap > 3.1eV, no absorption; colorless (diamond)
- If Egap in between, partial absorption; material has a color.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Energy of electron unfilled states Egap illed states Adapted from Fig. 21.5(a), Callister 6e.

Optical Properties of Semiconductors

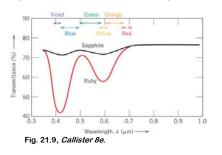
- Cadmium Sulfide (CdS)
- $E_{gap} = 2.4 eV$
- absorbs higher energy visible light (blue, violet),

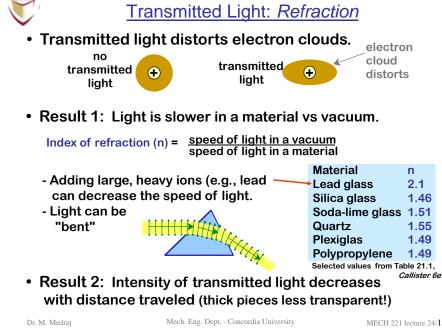
- Red/yellow/orange is transmitted and gives it color.

CdS

- Semiconductors can appear "metallic" if visible photons are all reflected (like Ge) but those with smaller $E_{\alpha},$ such as CdS look coloured
 - vellow for CdS which absorbs 540nm and above
- This is applicable for pure materials but impurities can cause extra absorption.
- Impurities divide up the band gap to allow transitions with energies less than E_a

```
Dr. M. Medraj
```

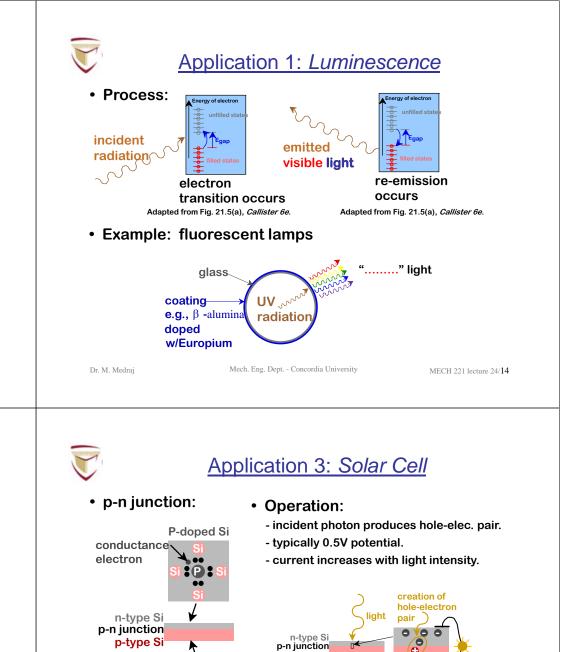

Mech. Eng. Dept. - Concordia University

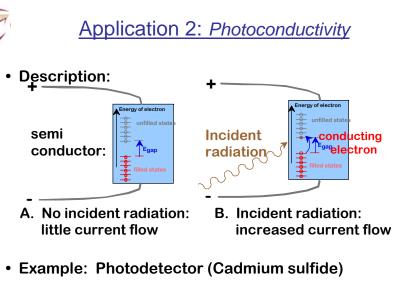

```
MECH 221 lecture 24/10
```


Color of Nonmetals

- · Color determined by sum of frequencies of - transmitted light,
 - re-emitted light from electron transitions.
- Example: Ruby = Sapphire $(Al_2O_3) + (0.5 \text{ to } 2) \text{ at}\% \text{ Cr}_2O_3$
 - Sapphire is colorless
 - (i.e., $E_{qap} > 3.1eV$)
 - adding Cr₂O₃:
 - alters the band gap
 - · blue light is absorbed
 - yellow/green is absorbed
 - · red is transmitted
 - → Ruby has deep red color.

MECH 221 lecture 24/9




Translucency

- Even after the light has entered the material, it • might yet be reflected out again due to scattering inside the material
- Even the transmitted light can lose information by being scattered internally
 - so a beam of light will spread out or an image will become blurred
- In extreme cases, the material could become opaque due to excessive internal scattering

Mech. Eng. Dept. - Concordia University

- Scattering can come from obvious causes:
 - in poly-crystalline materials
 - fine pores in ceramics
 - different phases of materials

This phenomenon is utilized in photographic light meters. A photo-induced current is measured and its magnitude is a direct function of the intensity of the incident light radiation.

Dr. M. Medraj

MECH 221 lecture 24/13

p-type Si

hole

Si

B-doped Si

p-type Si

6

Can be thought of as the reverse

operation of the light-emitting diode.

Application 4: Laser

- LASER stands for Light Amplification by the Stimulated Emission of Radiation.
- The key word here is "....."
- All of the light emission we have mentioned so far is spontaneous.
 - It happened just due to randomly occurring "natural" effects.
 - The emitted light has the same energy and phase as the incident light (=)
 - Under normal circumstances, there are few excited electrons and many in the ground-state,
 - so we get predominantly absorption
 - If we could arrange for excited than non-excited electrons, then we would get mostly stimulated emission.
 - Clearly, random spontaneous emission "wastes" electron transitions by giving incoherent output.

Mech. Eng. Dept. - Concordia University

MECH 221 lecture 24/17

Legend:

Ground State

Energy Level 1

Energy Level 2

Spontaneous

Emission

Stimulated Emission

The @ are

atoms, ions,

or molecules

depending on

lasing medium

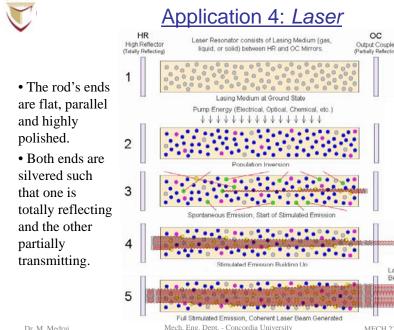
Laser

Ream

MECH 221 lecture 24/19

oc

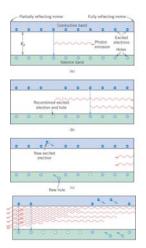
Application 4: Laser


- The first is achieved by filling the metastable states with electrons generated by light from a xenon flash lamp.
- The second condition is achieved by confining the photons to travel back and forth along the rod of ruby using mirrored ends.
- · Ruby is a common laser material, which we saw was Al₂O₃ (sapphire) with Cr³⁺ impurities.
- · When the electrons decay to the metastable state they may reside up to before stimulated emission \rightarrow long time \rightarrow large number of these metastable states become occupied \rightarrow avalanche of stimulated electrons. Dr. M. Medraj

MECH 221 lecture 24/18

The energy levels of a laser material.

Coherent bea



Application 4: Laser

cident photo

- In order to keep the coherent • emission, we must ensure that the light which completes the round trip between the mirrors returns with itself.
- Hence the distance between the mirrors should obey $2L = N\lambda - \lambda$ where N is an integer, λ is the laser wavelength and L is the cavity length.
- Semiconductor lasers work in just the same way except that they achieve the population inversion electrically using a carefully designed band structure.

Semiconductor laser (Callister Fig. 21.14)

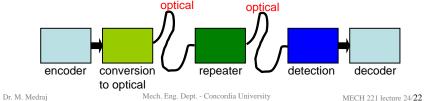
Dr. M. Medraj

Application 4: Laser

• Some laser characteristics are given in the following table:

Table 21.2 Characteristics and Applications of Several Types of Lase

Laser	Type	Common Wavelengths (µm)	Max. Output Power (W) ^a	Applications
He-Ne	Gas	0.6328, 1.15, 3.39	0.0005-0.05 (CW)	Line-of-sight communications, recording playback of holograms
CO ₂	Gas	9.6, 10.6	500-15,000 (CW)	Heat treating, welding, cutting, scribing, marking
Argon	Gas ion	0.488, 0.5145	0.005-20 (CW)	Surgery, distance measurements, holog- raphy
HeCd	Metal vapor	0.441, 0.325	0.05-0.1	Light shows, spectroscopy
Dye	Liquid	0.38-1.0	0.01 (CW) $1 \times 10^{6} (P)$	Spectroscopy, pollution detection
Ruby	Solid state	0.694	(P)	Pulsed holography, hole piercing
Nd-YAG	Solid state	1.06	1000 (CW) $2 \times 10^{8} (P)$	Welding, hole piercing, cutting
Nd-Glass	Solid state	1.06	5×10^{14} (P)	Pulse welding, hole piercing
Diode	Semiconductor	0.33-40	0.6 (CW) 100 (P)	Bar-code reading, CDs and DVDs, optical communications

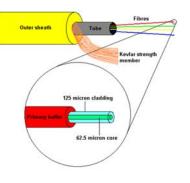


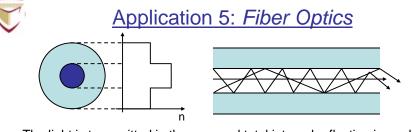
Application 5: Fiber Optics

- Fibre-optic technology has revolutionised telecommunications owing to the speed of data transmission:
 - equivalent to >3 hrs of TV per second
 - 24,000 simultaneous phone calls
 - 0.1kg of fibre carries same information as
 of copper cable

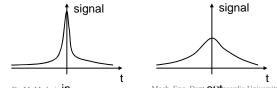
 Owing to attenuation in the cable, transmission is usually digital and the system requires several sections:

Dr. M. Medraj


Application 5: Fiber Optics


Mech. Eng. Dept. - Concordia University

- Obviously, the loss in the cable is important because is determines the maximum uninterrupted length of the fibre.
- We know that losses depend on the wavelength of the light and the purity of the material
 - recall the penetration depth for glass was ~30cm
- <u>In 1970</u>, 1km of fibre attenuated 850nm light by a factor of 100
- <u>By 1979</u>, 1km of fibre attenuated 1.2µm light (*infrared*) by a factor of only
- Now, over 10 km of optical fibre silica glass, the loss is the same as 25mm of ordinary window glass!

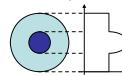

Thus, the cross section of the fibre is designed as follows:

MECH 221 lecture 24/21

- The light is transmitted in the core and total internal reflection is made possible by the difference in the index of refraction between the cladding and the core.
- A simple approach is the "step-index" design.
- The main problem with this design is that different light rays follow slightly different trajectories and will reach at different times.
- Hence the input pulse is found to broaden during transmission:

This limits the data rate of digital communication

Dr. M. Medraj


MECH 221 lecture 24/23

Dr. M. Medraj **in**

Application 5: Fiber Optics

Such broadening is largely eliminated by using a "gradedindex" design.

- This is achieved by doping the silica with B₂O₃ or GeO₂ parabolically as shown above.
- Now, waves which travel in the outer regions that have lower refractive index material and hence the velocity is higher (v = c/n)
- Therefore, they travel both *further* and *faster*
 - as a result, they arrive at the output at almost time as the waves with shorter trajectories
- · Anything that might cause scattering in the core must be minimised
 - Cu, Fe, V are all reduced to parts per billion
 - H₂O and OH concentrations also need to be very low
 - Variations in the diameter of the fibre also cause scattering; this variation is now over a length of 1km

```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia University

MECH 221 lecture 24/25

Summary

- When light (radiation) shines on a material, it may be: - reflected, absorbed and/or transmitted.
- Optical classification: - transparent, translucent, opaque
- Metals:
 - fine succession of energy states causes absorption and reflection.
- Non-Metals:
 - may have *full no* or *partial* absorption (depends on the Egap).
 - color is determined by light wavelengths that are transmitted or re-emitted from electron transitions.
 - color may be changed by adding impurities which change the band gap magnitude (e.g., Ruby)
- Refraction:
 - speed of transmitted light varies among materials.
- Applications of this knowledge include:
 - anti-reflective coatings for lenses
 - fibre-optic communications

- lasers

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 221 lecture 24/26

Next Time:

Review for the Final Exam

MECH 221 lecture 24/27