Outline:

- Mechanical Properties
- Ceramic Materials
- Polymer Materials
- Optical Properties
- Thermal Properties

Question 1: Mechanical Properties

Below are tabulated the tensile stress-strain data for several materials.

Material	Yield Strength (MPa)	Tensile Strength (MPa)	Strain at Fracture	Fracture Strength (MPa)	Elastic Modulus (GPa)
А	310	340	0.35	295	210
В	100	120	0.40	105	150
С	415	550	0.15	500	310
D	700	850	0.14	720	210
Е	Fractur	es before y	650	350	

- 1. Which of these materials will experience the greatest percent area reduction? Why?
- 2. Which of these materials is the strongest? Why?
- 3. Which of these materials is the toughest? Why?
- 4. Which of these materials is the stiffest? Why?
- 5. Which of these materials has the highest modulus of resilience? Why?

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 221 lecture 25/1

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 221 lecture 25/2

Question 2: Ceramic Materials

A ceramic material, in the form of a circular bar with radius 5mm, is tested in 3 point bending. The length between the support points is 50mm.

- If the load required to cause fracture is 2380N, determine the flexure strength of this ceramic.
- If this material has a fracture toughness K_{IC} , of 4.5 MNm^{-3/2} what is the size of the longest <u>internal</u> deflect? Assume the geometric parameter Y is equal to 1.
- If this material has value for σ_0 and *n* of 441MPa and 3.75 respectively, what is the fraction porosity of this material?
- Knowing that the Modulus of Elasticity for the non porous material, E_0 , is 400 GPa, what is the modulus of this porous ceramic?

Question 3: Polymers

We have a polyethylene sample containing 4000 chains with molecular weights between 0 and 5000 g/mol, 8000 chains with molecular weights between 5000 and 10,000 g/mol, 7000 chains with molecular weights between 10,000 and 15,000 g/mol, and 2000 chains with molecular weights between 15,000 and 20,000 g/mol. Determine both the number and weight average molecular weights.

SOLUTION

First we need to determine the number fraction x_i and weight fraction f_i for each of the four ranges. We can then use Equations (14-3a) and (14-3b) to find the molecular weights.

Question 3: Solution

Number of Chains	Mean <i>M</i> per Chain	Xi	<i>х_і М</i> і	Weight	f _i	f _i M _i
4000	2500	0.191	477.5	$10 imes 10^6$	0.0519	129.75
8000	7500	0.381	2857.5	$60 imes 10^6$	0.3118	2338.50
7000	12,500	0.333	4162.5	87.5×10^{6}	0.4545	5681.25
2000	17,500	0.095	1662.5	$35 imes 10^6$	0.1818	3181.50
$\sum = 21,000$		$\sum = 1.00$	$\sum = 9160$	$\sum = 192.5 imes 10^6$	$\sum = 1$	$\sum = 11,331$

Note: the weight average molecular weight is larger that the number average molecular weight.

Mech. Eng. Dept. - Concordia University

MECH 221 lecture 25/5

Question 4: Optical Properties

A light-emitting diode display made using a GaAs-GaP solid solution of composition 0.4 GaP-0.6 GaAs has a direct bandgap of 1.9 eV. What will be the color this LED display?

SOLUTION

The wavelength of the light emitted is related to the bandgap by:

$$E_g = hv = (hc/\lambda)$$

where h = Plancks constant (6.63 × 10⁻³⁴ J-s, 4.41 × 10⁻¹⁵ eV-s), c = speed of light (2.998 × 10⁸ m/s), λ = wavelength of light (m). We can put in the values of E_g , c and h and calculate the wavelength λ .

Therefore, $\lambda = 0.652 \ \mu$ m or 652 nm. This is the wavelength of red light, and, therefore, the LED display would be red in color.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 221 lecture 25/6

Question 5: Thermal Properties

A ceramic coating is to be applied to a 1020 steel plate. The ceramic has a fracture strength of 4000 psi, a modulus of elasticity of 15×10^6 psi, and a coefficient of thermal expansion of 10×10^{-6} 1/°C. What is the maximum temp. change that can be allowed without cracking the ceramic.

SOLUTION: If only the coating is heated (i.e. *the steel remained at a constant temperature*), the maximum temperature change would be:

However, the steel also expands. Its coefficient of thermal expansion (Table 19.1) is 11.8×10^{-6} 1/°C and its modulus of elasticity is 30×10^{6} psi. The net coefficient of expansion is:

Next time: Review for the Final Exam