Outline:

- Review of Crystal structure
- Stacking Sequence
- Theoretical Density
- Crystallographic Directions and Planes
- examples

Review: Crystal Structure

- Close-packed directions are

- Contains =
- Coordination \# = (\# nearest neighbors)

$$
\text { APF }=\frac{1 \frac{4}{3} \pi(0.5 a)^{3}}{a^{3}}
$$

This is a unit cell

- APF for a simple cubic structure =

Dr. M. Medraj
Mech. Eng. Dept. - Concordia University
Mech 221 lecture $5 / 2$

Review: Crystal Structure

Review: Crystal Structure

- Close packed directions are
- Coordination \# =

$$
\text { APF }=\frac{2 \frac{4}{3} \pi(\sqrt{3} a / 4)^{3}}{a^{3}}
$$

- APF for a BCC structure = \qquad

This is a unit cell

Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

- Close packed directions are
- Coordination \# = \qquad

$$
\text { APF }=\frac{4 \frac{4}{3} \pi(\sqrt{2} a / 4)^{3}}{a^{3}}
$$

- APF for a FCC structure = \qquad

This is a unit cell

FCC Stacking Sequence

Review: Crystal Structure

- FCC Unit Cell

2D Projection

- ABCABC... Stacking Sequence

Dr. M. Medraj

Example Problem

- If you know
- the crystal structure,
- the atomic radius
- the atomic weight,
you can calculate the density of a particular material

Example:

Copper has an atomic radius 0.128 nm an FCC crystal structure and an atomic weight of $63.5 \mathrm{~g} / \mathrm{mol}$. Calculate its density.

Crystallographic Directions, and Planes

Now that we know how atoms arrange themselves to form crystals, we need a way to identify directions and planes of atoms.
-Why?
\checkmark Deformation under loading (slip) occurs on certain crystalline planes and in certain crystallographic directions. Before we can predict how materials fail, we need to know what modes of failure are more likely to occur.
\checkmark Other properties of materials (electrical conductivity, thermal conductivity, elastic modulus) can vary in a crystal with orientation.

Crystallographic Planes \& Directions

direction

plane

- It is often necessary to be able to specify certain directions and planes in crystals.
- Many material properties and processes vary with direction in the crystal.
- Directions and planes are described using three integers -
.......... Indices

General Rules for Lattice Directions, Planes \& Miller Indices

- Miller indices used to express lattice planes and directions
- $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the axes (on arbitrarily positioned origin)
- in some crystal systems these are not mutually \perp
- a, b, c are lattice parameters (length of unit cell along a side)
- h, k, l are the Miller indices for planes and directions expressed as planes: (hkl) and directions: [hkl]
- Conventions for naming
- There are NO COMMAS between numbers
- Negative values are expressed
with a bar over the number
- Example: -2 is expressed $\overline{2}$
- Crystallographic direction:
- [100]
- ... etc.
Men. Eng. Dppt. Conocoridia nuivesily

Miller Indices for Directions

Method

- Draw vector, define tail as origin.
- Determine length of the vector projection in unit cell dimensions, a, b, and c
- Remove fractions by multiplying by smallest possible factor
- Enclose in square brackets
- What is ???

Example - Naming Directions

Dr. M. Medraj

Families of Directions

Isotropy vs. Anisotropy in Single Crystals

- Equivalence of directions

- <123> Family of directions
> [123], [213], [312], [132], [231], [321]
- only in a cubic crystal

In the cubic system directions having the same indices regardless of order or sign are equivalent.

Miller Indices for Planes

- (hkl) Crystallographic plane
- \{hkl\} Family of crystallographic planes
- e.g. (hkl), (lhk), (hlk) ... etc.

In the cubic system planes having the same indices regardless of order or sign are equivalent

- Hexagonal crystals can be expressed in a four index system (u v t w)
- Can be converted to a three index system using formulas

Miller Indices for PLANES

Method

- If the plane passes through the origin, select an equivalent plane or move the origin
- Determine the intersection of the plane with the axes in terms of a, b, and c
- Take the reciprocal ($1 / \infty=0$)
- Convert to smallest integers (optional)
- Enclose by parentheses

see example 3.8
Dr. M. Medraj
Mech. Eng. Dept. - Concordia University
Mech 221 lecture 5/18

Crystallographic Planes

