

Example Problem

- If you know
 - the crystal structure,
 - the atomic radius
 - the atomic weight,

you can calculate the density of a particular material

Example:

Copper has an atomic radius 0.128 nm an FCC crystal structure and an atomic weight of 63.5 g/mol. Calculate its density.

Crystallographic Directions, and Planes

Now that we know how atoms arrange themselves to form crystals, *we need a way to identify directions and planes of atoms*.

•Why?

✓ Deformation under loading (*slip*) occurs on certain crystalline planes and in certain crystallographic directions. Before we can predict how materials fail, we need to know what modes of failure are more likely to occur.

 \checkmark Other properties of materials (*electrical conductivity, thermal conductivity, elastic modulus*) can vary in a crystal with orientation.

Crystallographic Planes & Directions

- It is often necessary to be able to specify certain directions and planes in crystals.
- Many material properties and processes vary with direction in the crystal.
- Directions and planes are described using three integers Indices

```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia University Mech 221 lecture 5/9

Point coordinates

• Point position specified in terms of its coordinates as fractional multiples of the unit cell edge lengths

General Rules for Lattice Directions, Planes & Miller Indices

- Miller indices used to express lattice *planes* and *directions*
- x, y, z are the axes (on arbitrarily positioned origin)
 in some crystal systems these are not mutually ⊥
- a, b, c are lattice parameters (*length of unit cell along a side*)
- h, k, l are the Miller indices for planes and directions expressed as planes: (hkl) and directions: [hkl]
- Conventions for naming
 - There are NO COMMAS between numbers
 - Negative values are expressed
 with a bar over the number
- Crystallographic direction:
 [123]
 [100]
- Example: -2 is expressed 2

– ... etc.

Miller Indices for Directions

[111]

[100]

[110]

<u>Method</u>

- Draw vector, define tail as origin.
- Determine length of the [???] vector projection in unit cell dimensions, a, b, and c
- Remove fractions by multiplying by smallest possible factor
- Enclose in square brackets
- What is ???

Dr. M. Medrai

x

Mech 221 lecture 5/10

Miller Indices for Planes

- (hkl) Crystallographic plane
- {hkl} Family of crystallographic planes - e.g. (hkl), (lhk), (hlk) ... etc.

In the <u>cubic</u> system planes having the same indices regardless of <u>order</u> or <u>sign</u> are equivalent

- Hexagonal crystals can be expressed in a four index system (u v t w)
 - Can be converted to a three index system using formulas

Miller Indices for PLANES

Method

- If the plane passes through the origin, select an equivalent plane or move the origin
- Determine the intersection of the plane with the axes in terms of a, b, and c
- Take the reciprocal $(1/\infty = 0)$
- Convert to smallest integers *(optional)*
- Enclose by parentheses

see example 3.8

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 221 lecture 5/17 Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 221 lecture 5/18 Crystallographic Planes (.....) Next time: Linear and Planner Densities Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 221 lecture 5/19 Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 221 lecture 5/20